slasv2.c 6.35 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slasv2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Table of constant values */

static real c_b3 = 2.f;
static real c_b4 = 1.f;

/* Subroutine */ int slasv2_(real *f, real *g, real *h__, real *ssmin, real *
	ssmax, real *snr, real *csr, real *snl, real *csl)
{
    /* System generated locals */
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal), r_sign(real *, real *);

    /* Local variables */
    real a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt, crt, 
	    slt, srt;
    integer pmax;
    real temp;
    logical swap;
    real tsign;
    logical gasmal;
    extern doublereal slamch_(char *);


41
/*  -- LAPACK auxiliary routine (version 3.2) -- */
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASV2 computes the singular value decomposition of a 2-by-2 */
/*  triangular matrix */
/*     [  F   G  ] */
/*     [  0   H  ]. */
/*  On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */
/*  smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */
/*  right singular vectors for abs(SSMAX), giving the decomposition */

/*     [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ] */
/*     [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ]. */

/*  Arguments */
/*  ========= */

/*  F       (input) REAL */
/*          The (1,1) element of the 2-by-2 matrix. */

/*  G       (input) REAL */
/*          The (1,2) element of the 2-by-2 matrix. */

/*  H       (input) REAL */
/*          The (2,2) element of the 2-by-2 matrix. */

/*  SSMIN   (output) REAL */
/*          abs(SSMIN) is the smaller singular value. */

/*  SSMAX   (output) REAL */
/*          abs(SSMAX) is the larger singular value. */

/*  SNL     (output) REAL */
/*  CSL     (output) REAL */
/*          The vector (CSL, SNL) is a unit left singular vector for the */
/*          singular value abs(SSMAX). */

/*  SNR     (output) REAL */
/*  CSR     (output) REAL */
/*          The vector (CSR, SNR) is a unit right singular vector for the */
/*          singular value abs(SSMAX). */

/*  Further Details */
/*  =============== */

/*  Any input parameter may be aliased with any output parameter. */

/*  Barring over/underflow and assuming a guard digit in subtraction, all */
/*  output quantities are correct to within a few units in the last */
/*  place (ulps). */

/*  In IEEE arithmetic, the code works correctly if one matrix element is */
/*  infinite. */

/*  Overflow will not occur unless the largest singular value itself */
/*  overflows or is within a few ulps of overflow. (On machines with */
/*  partial overflow, like the Cray, overflow may occur if the largest */
/*  singular value is within a factor of 2 of overflow.) */

/*  Underflow is harmless if underflow is gradual. Otherwise, results */
/*  may correspond to a matrix modified by perturbations of size near */
/*  the underflow threshold. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    ft = *f;
    fa = dabs(ft);
    ht = *h__;
    ha = dabs(*h__);

/*     PMAX points to the maximum absolute element of matrix */
/*       PMAX = 1 if F largest in absolute values */
/*       PMAX = 2 if G largest in absolute values */
/*       PMAX = 3 if H largest in absolute values */

    pmax = 1;
    swap = ha > fa;
    if (swap) {
	pmax = 3;
	temp = ft;
	ft = ht;
	ht = temp;
	temp = fa;
	fa = ha;
	ha = temp;

/*        Now FA .ge. HA */

    }
    gt = *g;
    ga = dabs(gt);
    if (ga == 0.f) {

/*        Diagonal matrix */

	*ssmin = ha;
	*ssmax = fa;
	clt = 1.f;
	crt = 1.f;
	slt = 0.f;
	srt = 0.f;
    } else {
	gasmal = TRUE_;
	if (ga > fa) {
	    pmax = 2;
	    if (fa / ga < slamch_("EPS")) {

/*              Case of very large GA */

		gasmal = FALSE_;
		*ssmax = ga;
		if (ha > 1.f) {
		    *ssmin = fa / (ga / ha);
		} else {
		    *ssmin = fa / ga * ha;
		}
		clt = 1.f;
		slt = ht / gt;
		srt = 1.f;
		crt = ft / gt;
	    }
	}
	if (gasmal) {

/*           Normal case */

	    d__ = fa - ha;
	    if (d__ == fa) {

/*              Copes with infinite F or H */

		l = 1.f;
	    } else {
		l = d__ / fa;
	    }

/*           Note that 0 .le. L .le. 1 */

	    m = gt / ft;

/*           Note that abs(M) .le. 1/macheps */

	    t = 2.f - l;

/*           Note that T .ge. 1 */

	    mm = m * m;
	    tt = t * t;
	    s = sqrt(tt + mm);

/*           Note that 1 .le. S .le. 1 + 1/macheps */

	    if (l == 0.f) {
		r__ = dabs(m);
	    } else {
		r__ = sqrt(l * l + mm);
	    }

/*           Note that 0 .le. R .le. 1 + 1/macheps */

	    a = (s + r__) * .5f;

/*           Note that 1 .le. A .le. 1 + abs(M) */

	    *ssmin = ha / a;
	    *ssmax = fa * a;
	    if (mm == 0.f) {

/*              Note that M is very tiny */

		if (l == 0.f) {
		    t = r_sign(&c_b3, &ft) * r_sign(&c_b4, &gt);
		} else {
		    t = gt / r_sign(&d__, &ft) + m / t;
		}
	    } else {
		t = (m / (s + t) + m / (r__ + l)) * (a + 1.f);
	    }
	    l = sqrt(t * t + 4.f);
	    crt = 2.f / l;
	    srt = t / l;
	    clt = (crt + srt * m) / a;
	    slt = ht / ft * srt / a;
	}
    }
    if (swap) {
	*csl = srt;
	*snl = crt;
	*csr = slt;
	*snr = clt;
    } else {
	*csl = clt;
	*snl = slt;
	*csr = crt;
	*snr = srt;
    }

/*     Correct signs of SSMAX and SSMIN */

    if (pmax == 1) {
	tsign = r_sign(&c_b4, csr) * r_sign(&c_b4, csl) * r_sign(&c_b4, f);
    }
    if (pmax == 2) {
	tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, csl) * r_sign(&c_b4, g);
    }
    if (pmax == 3) {
	tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, snl) * r_sign(&c_b4, h__);
    }
    *ssmax = r_sign(ssmax, &tsign);
    r__1 = tsign * r_sign(&c_b4, f) * r_sign(&c_b4, h__);
    *ssmin = r_sign(ssmin, &r__1);
    return 0;

/*     End of SLASV2 */

} /* slasv2_ */