ocl.cpp 186 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
43
#include <list>
44
#include <map>
45 46 47
#include <string>
#include <sstream>
#include <iostream> // std::cerr
48

49
#define CV_OPENCL_ALWAYS_SHOW_BUILD_LOG 0
50
#define CV_OPENCL_SHOW_RUN_ERRORS       0
51 52
#define CV_OPENCL_SHOW_SVM_ERROR_LOG    1
#define CV_OPENCL_SHOW_SVM_LOG          0
53

54 55 56 57 58 59 60 61 62
#include "opencv2/core/bufferpool.hpp"
#ifndef LOG_BUFFER_POOL
# if 0
#   define LOG_BUFFER_POOL printf
# else
#   define LOG_BUFFER_POOL(...)
# endif
#endif

63 64 65 66

// TODO Move to some common place
static bool getBoolParameter(const char* name, bool defaultValue)
{
67 68 69 70 71 72 73
/*
 * If your system doesn't support getenv(), define NO_GETENV to disable
 * this feature.
 */
#ifdef NO_GETENV
    const char* envValue = NULL;
#else
74
    const char* envValue = getenv(name);
75
#endif
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    if (envValue == NULL)
    {
        return defaultValue;
    }
    cv::String value = envValue;
    if (value == "1" || value == "True" || value == "true" || value == "TRUE")
    {
        return true;
    }
    if (value == "0" || value == "False" || value == "false" || value == "FALSE")
    {
        return false;
    }
    CV_ErrorNoReturn(cv::Error::StsBadArg, cv::format("Invalid value for %s parameter: %s", name, value.c_str()));
}


93 94 95
// TODO Move to some common place
static size_t getConfigurationParameterForSize(const char* name, size_t defaultValue)
{
96
#ifdef NO_GETENV
97 98
    const char* envValue = NULL;
#else
99
    const char* envValue = getenv(name);
100
#endif
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    if (envValue == NULL)
    {
        return defaultValue;
    }
    cv::String value = envValue;
    size_t pos = 0;
    for (; pos < value.size(); pos++)
    {
        if (!isdigit(value[pos]))
            break;
    }
    cv::String valueStr = value.substr(0, pos);
    cv::String suffixStr = value.substr(pos, value.length() - pos);
    int v = atoi(valueStr.c_str());
    if (suffixStr.length() == 0)
        return v;
    else if (suffixStr == "MB" || suffixStr == "Mb" || suffixStr == "mb")
        return v * 1024 * 1024;
    else if (suffixStr == "KB" || suffixStr == "Kb" || suffixStr == "kb")
        return v * 1024;
    CV_ErrorNoReturn(cv::Error::StsBadArg, cv::format("Invalid value for %s parameter: %s", name, value.c_str()));
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137
#if CV_OPENCL_SHOW_SVM_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_P printf("line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_P(...)
#endif

#if CV_OPENCL_SHOW_SVM_ERROR_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_ERROR_P printf("Error on line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_ERROR_P(...)
#endif

Ilya Lavrenov's avatar
Ilya Lavrenov committed
138
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
Ilya Lavrenov's avatar
Ilya Lavrenov committed
139
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
Ilya Lavrenov's avatar
Ilya Lavrenov committed
140

141 142 143 144 145
#ifdef HAVE_OPENCL
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#else
// TODO FIXIT: This file can't be build without OPENCL

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
  Part of the file is an extract from the standard OpenCL headers from Khronos site.
  Below is the original copyright.
*/

/*******************************************************************************
 * Copyright (c) 2008 - 2012 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Materials, and to
 * permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Materials.
 *
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
 ******************************************************************************/

#if 0 //defined __APPLE__
#define HAVE_OPENCL 1
#else
#undef HAVE_OPENCL
#endif

#define OPENCV_CL_NOT_IMPLEMENTED -1000

#ifdef HAVE_OPENCL

#if defined __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif

static const bool g_haveOpenCL = true;

#else

extern "C" {

struct _cl_platform_id { int dummy; };
struct _cl_device_id { int dummy; };
struct _cl_context { int dummy; };
struct _cl_command_queue { int dummy; };
struct _cl_mem { int dummy; };
struct _cl_program { int dummy; };
struct _cl_kernel { int dummy; };
struct _cl_event { int dummy; };
struct _cl_sampler { int dummy; };

typedef struct _cl_platform_id *    cl_platform_id;
typedef struct _cl_device_id *      cl_device_id;
typedef struct _cl_context *        cl_context;
typedef struct _cl_command_queue *  cl_command_queue;
typedef struct _cl_mem *            cl_mem;
typedef struct _cl_program *        cl_program;
typedef struct _cl_kernel *         cl_kernel;
typedef struct _cl_event *          cl_event;
typedef struct _cl_sampler *        cl_sampler;

typedef int cl_int;
typedef unsigned cl_uint;
218 219 220 221 222 223 224
#if defined (_WIN32) && defined(_MSC_VER)
    typedef __int64 cl_long;
    typedef unsigned __int64 cl_ulong;
#else
    typedef long cl_long;
    typedef unsigned long cl_ulong;
#endif
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

typedef cl_uint             cl_bool; /* WARNING!  Unlike cl_ types in cl_platform.h, cl_bool is not guaranteed to be the same size as the bool in kernels. */
typedef cl_ulong            cl_bitfield;
typedef cl_bitfield         cl_device_type;
typedef cl_uint             cl_platform_info;
typedef cl_uint             cl_device_info;
typedef cl_bitfield         cl_device_fp_config;
typedef cl_uint             cl_device_mem_cache_type;
typedef cl_uint             cl_device_local_mem_type;
typedef cl_bitfield         cl_device_exec_capabilities;
typedef cl_bitfield         cl_command_queue_properties;
typedef intptr_t            cl_device_partition_property;
typedef cl_bitfield         cl_device_affinity_domain;

typedef intptr_t            cl_context_properties;
typedef cl_uint             cl_context_info;
typedef cl_uint             cl_command_queue_info;
typedef cl_uint             cl_channel_order;
typedef cl_uint             cl_channel_type;
typedef cl_bitfield         cl_mem_flags;
typedef cl_uint             cl_mem_object_type;
typedef cl_uint             cl_mem_info;
typedef cl_bitfield         cl_mem_migration_flags;
typedef cl_uint             cl_image_info;
typedef cl_uint             cl_buffer_create_type;
typedef cl_uint             cl_addressing_mode;
typedef cl_uint             cl_filter_mode;
typedef cl_uint             cl_sampler_info;
typedef cl_bitfield         cl_map_flags;
typedef cl_uint             cl_program_info;
typedef cl_uint             cl_program_build_info;
typedef cl_uint             cl_program_binary_type;
typedef cl_int              cl_build_status;
typedef cl_uint             cl_kernel_info;
typedef cl_uint             cl_kernel_arg_info;
typedef cl_uint             cl_kernel_arg_address_qualifier;
typedef cl_uint             cl_kernel_arg_access_qualifier;
typedef cl_bitfield         cl_kernel_arg_type_qualifier;
typedef cl_uint             cl_kernel_work_group_info;
typedef cl_uint             cl_event_info;
typedef cl_uint             cl_command_type;
typedef cl_uint             cl_profiling_info;


typedef struct _cl_image_format {
    cl_channel_order        image_channel_order;
    cl_channel_type         image_channel_data_type;
} cl_image_format;

typedef struct _cl_image_desc {
    cl_mem_object_type      image_type;
    size_t                  image_width;
    size_t                  image_height;
    size_t                  image_depth;
    size_t                  image_array_size;
    size_t                  image_row_pitch;
    size_t                  image_slice_pitch;
    cl_uint                 num_mip_levels;
    cl_uint                 num_samples;
    cl_mem                  buffer;
} cl_image_desc;

typedef struct _cl_buffer_region {
    size_t                  origin;
    size_t                  size;
} cl_buffer_region;


//////////////////////////////////////////////////////////

#define CL_SUCCESS                                  0
#define CL_DEVICE_NOT_FOUND                         -1
#define CL_DEVICE_NOT_AVAILABLE                     -2
#define CL_COMPILER_NOT_AVAILABLE                   -3
#define CL_MEM_OBJECT_ALLOCATION_FAILURE            -4
#define CL_OUT_OF_RESOURCES                         -5
#define CL_OUT_OF_HOST_MEMORY                       -6
#define CL_PROFILING_INFO_NOT_AVAILABLE             -7
#define CL_MEM_COPY_OVERLAP                         -8
#define CL_IMAGE_FORMAT_MISMATCH                    -9
#define CL_IMAGE_FORMAT_NOT_SUPPORTED               -10
#define CL_BUILD_PROGRAM_FAILURE                    -11
#define CL_MAP_FAILURE                              -12
#define CL_MISALIGNED_SUB_BUFFER_OFFSET             -13
#define CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST -14
#define CL_COMPILE_PROGRAM_FAILURE                  -15
#define CL_LINKER_NOT_AVAILABLE                     -16
#define CL_LINK_PROGRAM_FAILURE                     -17
#define CL_DEVICE_PARTITION_FAILED                  -18
#define CL_KERNEL_ARG_INFO_NOT_AVAILABLE            -19

#define CL_INVALID_VALUE                            -30
#define CL_INVALID_DEVICE_TYPE                      -31
#define CL_INVALID_PLATFORM                         -32
#define CL_INVALID_DEVICE                           -33
#define CL_INVALID_CONTEXT                          -34
#define CL_INVALID_QUEUE_PROPERTIES                 -35
#define CL_INVALID_COMMAND_QUEUE                    -36
#define CL_INVALID_HOST_PTR                         -37
#define CL_INVALID_MEM_OBJECT                       -38
#define CL_INVALID_IMAGE_FORMAT_DESCRIPTOR          -39
#define CL_INVALID_IMAGE_SIZE                       -40
#define CL_INVALID_SAMPLER                          -41
#define CL_INVALID_BINARY                           -42
#define CL_INVALID_BUILD_OPTIONS                    -43
#define CL_INVALID_PROGRAM                          -44
#define CL_INVALID_PROGRAM_EXECUTABLE               -45
#define CL_INVALID_KERNEL_NAME                      -46
#define CL_INVALID_KERNEL_DEFINITION                -47
#define CL_INVALID_KERNEL                           -48
#define CL_INVALID_ARG_INDEX                        -49
#define CL_INVALID_ARG_VALUE                        -50
#define CL_INVALID_ARG_SIZE                         -51
#define CL_INVALID_KERNEL_ARGS                      -52
#define CL_INVALID_WORK_DIMENSION                   -53
#define CL_INVALID_WORK_GROUP_SIZE                  -54
#define CL_INVALID_WORK_ITEM_SIZE                   -55
#define CL_INVALID_GLOBAL_OFFSET                    -56
#define CL_INVALID_EVENT_WAIT_LIST                  -57
#define CL_INVALID_EVENT                            -58
#define CL_INVALID_OPERATION                        -59
#define CL_INVALID_GL_OBJECT                        -60
#define CL_INVALID_BUFFER_SIZE                      -61
#define CL_INVALID_MIP_LEVEL                        -62
#define CL_INVALID_GLOBAL_WORK_SIZE                 -63
#define CL_INVALID_PROPERTY                         -64
#define CL_INVALID_IMAGE_DESCRIPTOR                 -65
#define CL_INVALID_COMPILER_OPTIONS                 -66
#define CL_INVALID_LINKER_OPTIONS                   -67
#define CL_INVALID_DEVICE_PARTITION_COUNT           -68

/*#define CL_VERSION_1_0                              1
#define CL_VERSION_1_1                              1
#define CL_VERSION_1_2                              1*/

#define CL_FALSE                                    0
#define CL_TRUE                                     1
#define CL_BLOCKING                                 CL_TRUE
#define CL_NON_BLOCKING                             CL_FALSE

#define CL_PLATFORM_PROFILE                         0x0900
#define CL_PLATFORM_VERSION                         0x0901
#define CL_PLATFORM_NAME                            0x0902
#define CL_PLATFORM_VENDOR                          0x0903
#define CL_PLATFORM_EXTENSIONS                      0x0904

#define CL_DEVICE_TYPE_DEFAULT                      (1 << 0)
#define CL_DEVICE_TYPE_CPU                          (1 << 1)
#define CL_DEVICE_TYPE_GPU                          (1 << 2)
#define CL_DEVICE_TYPE_ACCELERATOR                  (1 << 3)
#define CL_DEVICE_TYPE_CUSTOM                       (1 << 4)
#define CL_DEVICE_TYPE_ALL                          0xFFFFFFFF
#define CL_DEVICE_TYPE                              0x1000
#define CL_DEVICE_VENDOR_ID                         0x1001
#define CL_DEVICE_MAX_COMPUTE_UNITS                 0x1002
#define CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS          0x1003
#define CL_DEVICE_MAX_WORK_GROUP_SIZE               0x1004
#define CL_DEVICE_MAX_WORK_ITEM_SIZES               0x1005
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR       0x1006
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT      0x1007
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT        0x1008
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG       0x1009
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT      0x100A
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE     0x100B
#define CL_DEVICE_MAX_CLOCK_FREQUENCY               0x100C
#define CL_DEVICE_ADDRESS_BITS                      0x100D
#define CL_DEVICE_MAX_READ_IMAGE_ARGS               0x100E
#define CL_DEVICE_MAX_WRITE_IMAGE_ARGS              0x100F
#define CL_DEVICE_MAX_MEM_ALLOC_SIZE                0x1010
#define CL_DEVICE_IMAGE2D_MAX_WIDTH                 0x1011
#define CL_DEVICE_IMAGE2D_MAX_HEIGHT                0x1012
#define CL_DEVICE_IMAGE3D_MAX_WIDTH                 0x1013
#define CL_DEVICE_IMAGE3D_MAX_HEIGHT                0x1014
#define CL_DEVICE_IMAGE3D_MAX_DEPTH                 0x1015
#define CL_DEVICE_IMAGE_SUPPORT                     0x1016
#define CL_DEVICE_MAX_PARAMETER_SIZE                0x1017
#define CL_DEVICE_MAX_SAMPLERS                      0x1018
#define CL_DEVICE_MEM_BASE_ADDR_ALIGN               0x1019
#define CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE          0x101A
#define CL_DEVICE_SINGLE_FP_CONFIG                  0x101B
#define CL_DEVICE_GLOBAL_MEM_CACHE_TYPE             0x101C
#define CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE         0x101D
#define CL_DEVICE_GLOBAL_MEM_CACHE_SIZE             0x101E
#define CL_DEVICE_GLOBAL_MEM_SIZE                   0x101F
#define CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE          0x1020
#define CL_DEVICE_MAX_CONSTANT_ARGS                 0x1021
#define CL_DEVICE_LOCAL_MEM_TYPE                    0x1022
#define CL_DEVICE_LOCAL_MEM_SIZE                    0x1023
#define CL_DEVICE_ERROR_CORRECTION_SUPPORT          0x1024
#define CL_DEVICE_PROFILING_TIMER_RESOLUTION        0x1025
#define CL_DEVICE_ENDIAN_LITTLE                     0x1026
#define CL_DEVICE_AVAILABLE                         0x1027
#define CL_DEVICE_COMPILER_AVAILABLE                0x1028
#define CL_DEVICE_EXECUTION_CAPABILITIES            0x1029
#define CL_DEVICE_QUEUE_PROPERTIES                  0x102A
#define CL_DEVICE_NAME                              0x102B
#define CL_DEVICE_VENDOR                            0x102C
#define CL_DRIVER_VERSION                           0x102D
#define CL_DEVICE_PROFILE                           0x102E
#define CL_DEVICE_VERSION                           0x102F
#define CL_DEVICE_EXTENSIONS                        0x1030
#define CL_DEVICE_PLATFORM                          0x1031
#define CL_DEVICE_DOUBLE_FP_CONFIG                  0x1032
#define CL_DEVICE_HALF_FP_CONFIG                    0x1033
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF       0x1034
#define CL_DEVICE_HOST_UNIFIED_MEMORY               0x1035
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR          0x1036
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT         0x1037
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_INT           0x1038
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG          0x1039
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT         0x103A
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE        0x103B
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF          0x103C
#define CL_DEVICE_OPENCL_C_VERSION                  0x103D
#define CL_DEVICE_LINKER_AVAILABLE                  0x103E
#define CL_DEVICE_BUILT_IN_KERNELS                  0x103F
#define CL_DEVICE_IMAGE_MAX_BUFFER_SIZE             0x1040
#define CL_DEVICE_IMAGE_MAX_ARRAY_SIZE              0x1041
#define CL_DEVICE_PARENT_DEVICE                     0x1042
#define CL_DEVICE_PARTITION_MAX_SUB_DEVICES         0x1043
#define CL_DEVICE_PARTITION_PROPERTIES              0x1044
#define CL_DEVICE_PARTITION_AFFINITY_DOMAIN         0x1045
#define CL_DEVICE_PARTITION_TYPE                    0x1046
#define CL_DEVICE_REFERENCE_COUNT                   0x1047
#define CL_DEVICE_PREFERRED_INTEROP_USER_SYNC       0x1048
#define CL_DEVICE_PRINTF_BUFFER_SIZE                0x1049
#define CL_DEVICE_IMAGE_PITCH_ALIGNMENT             0x104A
#define CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT      0x104B

#define CL_FP_DENORM                                (1 << 0)
#define CL_FP_INF_NAN                               (1 << 1)
#define CL_FP_ROUND_TO_NEAREST                      (1 << 2)
#define CL_FP_ROUND_TO_ZERO                         (1 << 3)
#define CL_FP_ROUND_TO_INF                          (1 << 4)
#define CL_FP_FMA                                   (1 << 5)
#define CL_FP_SOFT_FLOAT                            (1 << 6)
#define CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT         (1 << 7)

#define CL_NONE                                     0x0
#define CL_READ_ONLY_CACHE                          0x1
#define CL_READ_WRITE_CACHE                         0x2
#define CL_LOCAL                                    0x1
#define CL_GLOBAL                                   0x2
#define CL_EXEC_KERNEL                              (1 << 0)
#define CL_EXEC_NATIVE_KERNEL                       (1 << 1)
#define CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE      (1 << 0)
#define CL_QUEUE_PROFILING_ENABLE                   (1 << 1)

#define CL_CONTEXT_REFERENCE_COUNT                  0x1080
#define CL_CONTEXT_DEVICES                          0x1081
#define CL_CONTEXT_PROPERTIES                       0x1082
#define CL_CONTEXT_NUM_DEVICES                      0x1083
#define CL_CONTEXT_PLATFORM                         0x1084
#define CL_CONTEXT_INTEROP_USER_SYNC                0x1085

#define CL_DEVICE_PARTITION_EQUALLY                 0x1086
#define CL_DEVICE_PARTITION_BY_COUNTS               0x1087
#define CL_DEVICE_PARTITION_BY_COUNTS_LIST_END      0x0
#define CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN      0x1088
#define CL_DEVICE_AFFINITY_DOMAIN_NUMA                     (1 << 0)
#define CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE                 (1 << 1)
#define CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE                 (1 << 2)
#define CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE                 (1 << 3)
#define CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE                 (1 << 4)
#define CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE       (1 << 5)
#define CL_QUEUE_CONTEXT                            0x1090
#define CL_QUEUE_DEVICE                             0x1091
#define CL_QUEUE_REFERENCE_COUNT                    0x1092
#define CL_QUEUE_PROPERTIES                         0x1093
#define CL_MEM_READ_WRITE                           (1 << 0)
#define CL_MEM_WRITE_ONLY                           (1 << 1)
#define CL_MEM_READ_ONLY                            (1 << 2)
#define CL_MEM_USE_HOST_PTR                         (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR                       (1 << 4)
#define CL_MEM_COPY_HOST_PTR                        (1 << 5)
500
// reserved                                         (1 << 6)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
#define CL_MEM_HOST_WRITE_ONLY                      (1 << 7)
#define CL_MEM_HOST_READ_ONLY                       (1 << 8)
#define CL_MEM_HOST_NO_ACCESS                       (1 << 9)
#define CL_MIGRATE_MEM_OBJECT_HOST                  (1 << 0)
#define CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED     (1 << 1)

#define CL_R                                        0x10B0
#define CL_A                                        0x10B1
#define CL_RG                                       0x10B2
#define CL_RA                                       0x10B3
#define CL_RGB                                      0x10B4
#define CL_RGBA                                     0x10B5
#define CL_BGRA                                     0x10B6
#define CL_ARGB                                     0x10B7
#define CL_INTENSITY                                0x10B8
#define CL_LUMINANCE                                0x10B9
#define CL_Rx                                       0x10BA
#define CL_RGx                                      0x10BB
#define CL_RGBx                                     0x10BC
#define CL_DEPTH                                    0x10BD
#define CL_DEPTH_STENCIL                            0x10BE

#define CL_SNORM_INT8                               0x10D0
#define CL_SNORM_INT16                              0x10D1
#define CL_UNORM_INT8                               0x10D2
#define CL_UNORM_INT16                              0x10D3
#define CL_UNORM_SHORT_565                          0x10D4
#define CL_UNORM_SHORT_555                          0x10D5
#define CL_UNORM_INT_101010                         0x10D6
#define CL_SIGNED_INT8                              0x10D7
#define CL_SIGNED_INT16                             0x10D8
#define CL_SIGNED_INT32                             0x10D9
#define CL_UNSIGNED_INT8                            0x10DA
#define CL_UNSIGNED_INT16                           0x10DB
#define CL_UNSIGNED_INT32                           0x10DC
#define CL_HALF_FLOAT                               0x10DD
#define CL_FLOAT                                    0x10DE
#define CL_UNORM_INT24                              0x10DF

#define CL_MEM_OBJECT_BUFFER                        0x10F0
#define CL_MEM_OBJECT_IMAGE2D                       0x10F1
#define CL_MEM_OBJECT_IMAGE3D                       0x10F2
#define CL_MEM_OBJECT_IMAGE2D_ARRAY                 0x10F3
#define CL_MEM_OBJECT_IMAGE1D                       0x10F4
#define CL_MEM_OBJECT_IMAGE1D_ARRAY                 0x10F5
#define CL_MEM_OBJECT_IMAGE1D_BUFFER                0x10F6

#define CL_MEM_TYPE                                 0x1100
#define CL_MEM_FLAGS                                0x1101
#define CL_MEM_SIZE                                 0x1102
#define CL_MEM_HOST_PTR                             0x1103
#define CL_MEM_MAP_COUNT                            0x1104
#define CL_MEM_REFERENCE_COUNT                      0x1105
#define CL_MEM_CONTEXT                              0x1106
#define CL_MEM_ASSOCIATED_MEMOBJECT                 0x1107
#define CL_MEM_OFFSET                               0x1108

#define CL_IMAGE_FORMAT                             0x1110
#define CL_IMAGE_ELEMENT_SIZE                       0x1111
#define CL_IMAGE_ROW_PITCH                          0x1112
#define CL_IMAGE_SLICE_PITCH                        0x1113
#define CL_IMAGE_WIDTH                              0x1114
#define CL_IMAGE_HEIGHT                             0x1115
#define CL_IMAGE_DEPTH                              0x1116
#define CL_IMAGE_ARRAY_SIZE                         0x1117
#define CL_IMAGE_BUFFER                             0x1118
#define CL_IMAGE_NUM_MIP_LEVELS                     0x1119
#define CL_IMAGE_NUM_SAMPLES                        0x111A

#define CL_ADDRESS_NONE                             0x1130
#define CL_ADDRESS_CLAMP_TO_EDGE                    0x1131
#define CL_ADDRESS_CLAMP                            0x1132
#define CL_ADDRESS_REPEAT                           0x1133
#define CL_ADDRESS_MIRRORED_REPEAT                  0x1134

#define CL_FILTER_NEAREST                           0x1140
#define CL_FILTER_LINEAR                            0x1141

#define CL_SAMPLER_REFERENCE_COUNT                  0x1150
#define CL_SAMPLER_CONTEXT                          0x1151
#define CL_SAMPLER_NORMALIZED_COORDS                0x1152
#define CL_SAMPLER_ADDRESSING_MODE                  0x1153
#define CL_SAMPLER_FILTER_MODE                      0x1154

#define CL_MAP_READ                                 (1 << 0)
#define CL_MAP_WRITE                                (1 << 1)
#define CL_MAP_WRITE_INVALIDATE_REGION              (1 << 2)

#define CL_PROGRAM_REFERENCE_COUNT                  0x1160
#define CL_PROGRAM_CONTEXT                          0x1161
#define CL_PROGRAM_NUM_DEVICES                      0x1162
#define CL_PROGRAM_DEVICES                          0x1163
#define CL_PROGRAM_SOURCE                           0x1164
#define CL_PROGRAM_BINARY_SIZES                     0x1165
#define CL_PROGRAM_BINARIES                         0x1166
#define CL_PROGRAM_NUM_KERNELS                      0x1167
#define CL_PROGRAM_KERNEL_NAMES                     0x1168
#define CL_PROGRAM_BUILD_STATUS                     0x1181
#define CL_PROGRAM_BUILD_OPTIONS                    0x1182
#define CL_PROGRAM_BUILD_LOG                        0x1183
#define CL_PROGRAM_BINARY_TYPE                      0x1184
#define CL_PROGRAM_BINARY_TYPE_NONE                 0x0
#define CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT      0x1
#define CL_PROGRAM_BINARY_TYPE_LIBRARY              0x2
#define CL_PROGRAM_BINARY_TYPE_EXECUTABLE           0x4

#define CL_BUILD_SUCCESS                            0
#define CL_BUILD_NONE                               -1
#define CL_BUILD_ERROR                              -2
#define CL_BUILD_IN_PROGRESS                        -3

#define CL_KERNEL_FUNCTION_NAME                     0x1190
#define CL_KERNEL_NUM_ARGS                          0x1191
#define CL_KERNEL_REFERENCE_COUNT                   0x1192
#define CL_KERNEL_CONTEXT                           0x1193
#define CL_KERNEL_PROGRAM                           0x1194
#define CL_KERNEL_ATTRIBUTES                        0x1195
#define CL_KERNEL_ARG_ADDRESS_QUALIFIER             0x1196
#define CL_KERNEL_ARG_ACCESS_QUALIFIER              0x1197
#define CL_KERNEL_ARG_TYPE_NAME                     0x1198
#define CL_KERNEL_ARG_TYPE_QUALIFIER                0x1199
#define CL_KERNEL_ARG_NAME                          0x119A
#define CL_KERNEL_ARG_ADDRESS_GLOBAL                0x119B
#define CL_KERNEL_ARG_ADDRESS_LOCAL                 0x119C
#define CL_KERNEL_ARG_ADDRESS_CONSTANT              0x119D
#define CL_KERNEL_ARG_ADDRESS_PRIVATE               0x119E
#define CL_KERNEL_ARG_ACCESS_READ_ONLY              0x11A0
#define CL_KERNEL_ARG_ACCESS_WRITE_ONLY             0x11A1
#define CL_KERNEL_ARG_ACCESS_READ_WRITE             0x11A2
#define CL_KERNEL_ARG_ACCESS_NONE                   0x11A3
#define CL_KERNEL_ARG_TYPE_NONE                     0
#define CL_KERNEL_ARG_TYPE_CONST                    (1 << 0)
#define CL_KERNEL_ARG_TYPE_RESTRICT                 (1 << 1)
#define CL_KERNEL_ARG_TYPE_VOLATILE                 (1 << 2)
#define CL_KERNEL_WORK_GROUP_SIZE                   0x11B0
#define CL_KERNEL_COMPILE_WORK_GROUP_SIZE           0x11B1
#define CL_KERNEL_LOCAL_MEM_SIZE                    0x11B2
#define CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 0x11B3
#define CL_KERNEL_PRIVATE_MEM_SIZE                  0x11B4
#define CL_KERNEL_GLOBAL_WORK_SIZE                  0x11B5

#define CL_EVENT_COMMAND_QUEUE                      0x11D0
#define CL_EVENT_COMMAND_TYPE                       0x11D1
#define CL_EVENT_REFERENCE_COUNT                    0x11D2
#define CL_EVENT_COMMAND_EXECUTION_STATUS           0x11D3
#define CL_EVENT_CONTEXT                            0x11D4

#define CL_COMMAND_NDRANGE_KERNEL                   0x11F0
#define CL_COMMAND_TASK                             0x11F1
#define CL_COMMAND_NATIVE_KERNEL                    0x11F2
#define CL_COMMAND_READ_BUFFER                      0x11F3
#define CL_COMMAND_WRITE_BUFFER                     0x11F4
#define CL_COMMAND_COPY_BUFFER                      0x11F5
#define CL_COMMAND_READ_IMAGE                       0x11F6
#define CL_COMMAND_WRITE_IMAGE                      0x11F7
#define CL_COMMAND_COPY_IMAGE                       0x11F8
#define CL_COMMAND_COPY_IMAGE_TO_BUFFER             0x11F9
#define CL_COMMAND_COPY_BUFFER_TO_IMAGE             0x11FA
#define CL_COMMAND_MAP_BUFFER                       0x11FB
#define CL_COMMAND_MAP_IMAGE                        0x11FC
#define CL_COMMAND_UNMAP_MEM_OBJECT                 0x11FD
#define CL_COMMAND_MARKER                           0x11FE
#define CL_COMMAND_ACQUIRE_GL_OBJECTS               0x11FF
#define CL_COMMAND_RELEASE_GL_OBJECTS               0x1200
#define CL_COMMAND_READ_BUFFER_RECT                 0x1201
#define CL_COMMAND_WRITE_BUFFER_RECT                0x1202
#define CL_COMMAND_COPY_BUFFER_RECT                 0x1203
#define CL_COMMAND_USER                             0x1204
#define CL_COMMAND_BARRIER                          0x1205
#define CL_COMMAND_MIGRATE_MEM_OBJECTS              0x1206
#define CL_COMMAND_FILL_BUFFER                      0x1207
#define CL_COMMAND_FILL_IMAGE                       0x1208

#define CL_COMPLETE                                 0x0
#define CL_RUNNING                                  0x1
#define CL_SUBMITTED                                0x2
#define CL_QUEUED                                   0x3
#define CL_BUFFER_CREATE_TYPE_REGION                0x1220

#define CL_PROFILING_COMMAND_QUEUED                 0x1280
#define CL_PROFILING_COMMAND_SUBMIT                 0x1281
#define CL_PROFILING_COMMAND_START                  0x1282
#define CL_PROFILING_COMMAND_END                    0x1283

#define CL_CALLBACK CV_STDCALL

static volatile bool g_haveOpenCL = false;
static const char* oclFuncToCheck = "clEnqueueReadBufferRect";

#if defined(__APPLE__)
#include <dlfcn.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
701 702 703 704
            const char* oclpath = getenv("OPENCV_OPENCL_RUNTIME");
            oclpath = oclpath && strlen(oclpath) > 0 ? oclpath :
                "/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL";
            handle = dlopen(oclpath, RTLD_LAZY);
705 706
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
707
            if( g_haveOpenCL )
708
                fprintf(stderr, "Successfully loaded OpenCL v1.1+ runtime from %s\n", oclpath);
709 710
            else
                fprintf(stderr, "Failed to load OpenCL runtime\n");
711 712 713 714 715
        }
        if(!handle)
            return 0;
    }

716
    return funcname && handle ? dlsym(handle, funcname) : 0;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

#elif defined WIN32 || defined _WIN32

#ifndef _WIN32_WINNT           // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
  #define _WIN32_WINNT 0x0400  // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
  #include <synchapi.h>
#endif
#undef small
#undef min
#undef max
#undef abs

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static HMODULE handle = 0;
    if (!handle)
    {
739
#ifndef WINRT
740 741 742 743
        if(!initialized)
        {
            handle = LoadLibraryA("OpenCL.dll");
            initialized = true;
744
            g_haveOpenCL = handle != 0 && GetProcAddress(handle, oclFuncToCheck) != 0;
745
        }
746
#endif
747 748 749
        if(!handle)
            return 0;
    }
750 751

    return funcname ? (void*)GetProcAddress(handle, funcname) : 0;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

#elif defined(__linux)

#include <dlfcn.h>
#include <stdio.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
767
            handle = dlopen("libOpenCL.so", RTLD_LAZY);
768
            if(!handle)
769
                handle = dlopen("libCL.so", RTLD_LAZY);
770 771 772 773 774 775
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
        }
        if(!handle)
            return 0;
    }
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    return funcname ? (void*)dlsym(handle, funcname) : 0;
}

#else

static void* initOpenCLAndLoad(const char*)
{
    return 0;
}

#endif


#define OCL_FUNC(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
                return OPENCV_CL_NOT_IMPLEMENTED; \
        } \
        return funcname##_p args; \
    }


#define OCL_FUNC_P(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
            { \
                if( errcode_ret ) \
                    *errcode_ret = OPENCV_CL_NOT_IMPLEMENTED; \
                return 0; \
            } \
        } \
        return funcname##_p args; \
    }

OCL_FUNC(cl_int, clGetPlatformIDs,
    (cl_uint num_entries, cl_platform_id* platforms, cl_uint* num_platforms),
    (num_entries, platforms, num_platforms))

OCL_FUNC(cl_int, clGetPlatformInfo,
    (cl_platform_id platform, cl_platform_info param_name,
    size_t param_value_size, void * param_value,
    size_t * param_value_size_ret),
    (platform, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetDeviceInfo,
         (cl_device_id device,
          cl_device_info param_name,
          size_t param_value_size,
          void * param_value,
          size_t * param_value_size_ret),
         (device, param_name, param_value_size, param_value, param_value_size_ret))


OCL_FUNC(cl_int, clGetDeviceIDs,
    (cl_platform_id platform,
844 845 846
    cl_device_type device_type,
    cl_uint num_entries,
    cl_device_id * devices,
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    cl_uint * num_devices),
    (platform, device_type, num_entries, devices, num_devices))

OCL_FUNC_P(cl_context, clCreateContext,
    (const cl_context_properties * properties,
    cl_uint num_devices,
    const cl_device_id * devices,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, num_devices, devices, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clReleaseContext, (cl_context context), (context))

/*
OCL_FUNC(cl_int, clRetainContext, (cl_context context), (context))

OCL_FUNC_P(cl_context, clCreateContextFromType,
    (const cl_context_properties * properties,
    cl_device_type device_type,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, device_type, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clGetContextInfo,
873 874 875 876
    (cl_context context,
    cl_context_info param_name,
    size_t param_value_size,
    void * param_value,
877
    size_t * param_value_size_ret),
878
    (context, param_name, param_value_size,
879 880 881
    param_value, param_value_size_ret))
*/
OCL_FUNC_P(cl_command_queue, clCreateCommandQueue,
882 883
    (cl_context context,
    cl_device_id device,
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    cl_command_queue_properties properties,
    cl_int * errcode_ret),
    (context, device, properties, errcode_ret))

OCL_FUNC(cl_int, clReleaseCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC_P(cl_mem, clCreateBuffer,
    (cl_context context,
    cl_mem_flags flags,
    size_t size,
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, size, host_ptr, errcode_ret))

/*
OCL_FUNC(cl_int, clRetainCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clGetCommandQueueInfo,
 (cl_command_queue command_queue,
 cl_command_queue_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (command_queue, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC_P(cl_mem, clCreateSubBuffer,
    (cl_mem buffer,
    cl_mem_flags flags,
    cl_buffer_create_type buffer_create_type,
    const void * buffer_create_info,
    cl_int * errcode_ret),
    (buffer, flags, buffer_create_type, buffer_create_info, errcode_ret))
916
*/
917 918 919 920 921

OCL_FUNC_P(cl_mem, clCreateImage,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
922
    const cl_image_desc * image_desc,
923 924 925 926
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, image_format, image_desc, host_ptr, errcode_ret))

927 928 929 930 931 932 933 934 935 936 937
OCL_FUNC_P(cl_mem, clCreateImage2D,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
    size_t image_width,
    size_t image_height,
    size_t image_row_pitch,
    void * host_ptr,
    cl_int *errcode_ret),
    (context, flags, image_format, image_width, image_height, image_row_pitch, host_ptr, errcode_ret))

938 939 940 941 942 943 944 945 946
OCL_FUNC(cl_int, clGetSupportedImageFormats,
 (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format * image_formats,
 cl_uint * num_image_formats),
 (context, flags, image_type, num_entries, image_formats, num_image_formats))

947

948
/*
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
OCL_FUNC(cl_int, clGetMemObjectInfo,
 (cl_mem memobj,
 cl_mem_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (memobj, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetImageInfo,
 (cl_mem image,
 cl_image_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (image, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clCreateKernelsInProgram,
 (cl_program program,
 cl_uint num_kernels,
 cl_kernel * kernels,
 cl_uint * num_kernels_ret),
 (program, num_kernels, kernels, num_kernels_ret))

OCL_FUNC(cl_int, clRetainKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clGetKernelArgInfo,
 (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, arg_indx, param_name, param_value_size, param_value, param_value_size_ret))
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
OCL_FUNC(cl_int, clEnqueueReadImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_read,
 const size_t * origin[3],
 const size_t * region[3],
 size_t row_pitch,
 size_t slice_pitch,
 void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_read, origin, region,
 row_pitch, slice_pitch,
 ptr,
 num_events_in_wait_list,
 event_wait_list,
 event))

OCL_FUNC(cl_int, clEnqueueWriteImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t * origin[3],
 const size_t * region[3],
 size_t input_row_pitch,
 size_t input_slice_pitch,
 const void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_write, origin, region, input_row_pitch,
 input_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueFillImage,
 (cl_command_queue command_queue,
 cl_mem image,
 const void * fill_color,
 const size_t * origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, fill_color, origin, region,
 num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImage,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,
 const size_t * src_origin[3],
 const size_t * dst_origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_image, src_origin, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImageToBuffer,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,
 const size_t * src_origin[3],
 const size_t * region[3],
 size_t dst_offset,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_buffer, src_origin, region, dst_offset,
 num_events_in_wait_list, event_wait_list, event))
1054
*/
1055 1056 1057 1058 1059 1060

OCL_FUNC(cl_int, clEnqueueCopyBufferToImage,
 (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,
1061 1062
 const size_t dst_origin[3],
 const size_t region[3],
1063 1064 1065 1066 1067 1068
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_buffer, dst_image, src_offset, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

1069 1070 1071
 OCL_FUNC(cl_int, clFlush,
 (cl_command_queue command_queue),
 (command_queue))
1072

1073
/*
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
OCL_FUNC_P(void*, clEnqueueMapImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t * origin[3],
 const size_t * region[3],
 size_t * image_row_pitch,
 size_t * image_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event,
 cl_int * errcode_ret),
 (command_queue, image, blocking_map, map_flags, origin, region,
 image_row_pitch, image_slice_pitch, num_events_in_wait_list,
 event_wait_list, event, errcode_ret))
1090
*/
1091

1092
/*
1093
OCL_FUNC(cl_int, clRetainProgram, (cl_program program), (program))
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
OCL_FUNC(cl_int, clGetKernelInfo,
 (cl_kernel kernel,
 cl_kernel_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clRetainMemObject, (cl_mem memobj), (memobj))

*/

OCL_FUNC(cl_int, clReleaseMemObject, (cl_mem memobj), (memobj))


OCL_FUNC_P(cl_program, clCreateProgramWithSource,
    (cl_context context,
    cl_uint count,
    const char ** strings,
    const size_t * lengths,
    cl_int * errcode_ret),
    (context, count, strings, lengths, errcode_ret))

OCL_FUNC_P(cl_program, clCreateProgramWithBinary,
    (cl_context context,
    cl_uint num_devices,
    const cl_device_id * device_list,
    const size_t * lengths,
    const unsigned char ** binaries,
    cl_int * binary_status,
    cl_int * errcode_ret),
    (context, num_devices, device_list, lengths, binaries, binary_status, errcode_ret))

OCL_FUNC(cl_int, clReleaseProgram, (cl_program program), (program))

OCL_FUNC(cl_int, clBuildProgram,
    (cl_program program,
    cl_uint num_devices,
    const cl_device_id * device_list,
1134
    const char * options,
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    void (CL_CALLBACK * pfn_notify)(cl_program, void *),
    void * user_data),
    (program, num_devices, device_list, options, pfn_notify, user_data))

OCL_FUNC(cl_int, clGetProgramInfo,
    (cl_program program,
    cl_program_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetProgramBuildInfo,
    (cl_program program,
    cl_device_id device,
    cl_program_build_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, device, param_name, param_value_size, param_value, param_value_size_ret))
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
OCL_FUNC_P(cl_kernel, clCreateKernel,
    (cl_program program,
    const char * kernel_name,
    cl_int * errcode_ret),
    (program, kernel_name, errcode_ret))

OCL_FUNC(cl_int, clReleaseKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clSetKernelArg,
    (cl_kernel kernel,
    cl_uint arg_index,
    size_t arg_size,
    const void * arg_value),
    (kernel, arg_index, arg_size, arg_value))

OCL_FUNC(cl_int, clGetKernelWorkGroupInfo,
    (cl_kernel kernel,
    cl_device_id device,
    cl_kernel_work_group_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (kernel, device, param_name, param_value_size, param_value, param_value_size_ret))
1179

1180 1181 1182 1183 1184 1185 1186
OCL_FUNC(cl_int, clFinish, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clEnqueueReadBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    size_t offset,
1187
    size_t size,
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueReadBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    const size_t * buffer_offset,
1200
    const size_t * host_offset,
1201 1202 1203 1204
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1205
    size_t host_slice_pitch,
1206 1207 1208 1209 1210 1211 1212 1213 1214
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, buffer_offset, host_offset, region, buffer_row_pitch,
    buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, num_events_in_wait_list,
    event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBuffer,
1215 1216 1217 1218 1219 1220 1221 1222
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    size_t offset,
    size_t size,
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1223 1224 1225 1226 1227 1228 1229 1230 1231
    cl_event * event),
    (command_queue, buffer, blocking_write, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    const size_t * buffer_offset,
1232
    const size_t * host_offset,
1233 1234 1235 1236
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1237
    size_t host_slice_pitch,
1238 1239 1240 1241 1242 1243 1244 1245
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_write, buffer_offset, host_offset,
    region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch,
    host_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

1246
/*OCL_FUNC(cl_int, clEnqueueFillBuffer,
1247
    (cl_command_queue command_queue,
1248 1249 1250 1251 1252 1253 1254
    cl_mem buffer,
    const void * pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1255
    cl_event * event),
1256 1257
    (command_queue, buffer, pattern, pattern_size, offset, size,
    num_events_in_wait_list, event_wait_list, event))*/
1258 1259

OCL_FUNC(cl_int, clEnqueueCopyBuffer,
1260
    (cl_command_queue command_queue,
1261
    cl_mem src_buffer,
1262
    cl_mem dst_buffer,
1263 1264
    size_t src_offset,
    size_t dst_offset,
1265
    size_t size,
1266 1267 1268 1269 1270 1271 1272
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_offset, dst_offset,
    size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyBufferRect,
1273
    (cl_command_queue command_queue,
1274
    cl_mem src_buffer,
1275
    cl_mem dst_buffer,
1276 1277
    const size_t * src_origin,
    const size_t * dst_origin,
1278
    const size_t * region,
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_origin, dst_origin,
    region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC_P(void*, clEnqueueMapBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
1293
    cl_bool blocking_map,
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    cl_map_flags map_flags,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event,
    cl_int * errcode_ret),
    (command_queue, buffer, blocking_map, map_flags, offset, size,
    num_events_in_wait_list, event_wait_list, event, errcode_ret))

OCL_FUNC(cl_int, clEnqueueUnmapMemObject,
    (cl_command_queue command_queue,
    cl_mem memobj,
    void * mapped_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, memobj, mapped_ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueNDRangeKernel,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t * global_work_offset,
    const size_t * global_work_size,
    const size_t * local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, work_dim, global_work_offset, global_work_size,
    local_work_size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueTask,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clSetEventCallback,
    (cl_event event,
    cl_int command_exec_callback_type ,
    void (CL_CALLBACK  *pfn_event_notify) (cl_event event, cl_int event_command_exec_status, void *user_data),
    void *user_data),
    (event, command_exec_callback_type, pfn_event_notify, user_data))

OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))

}

#endif

1347 1348 1349 1350 1351 1352
#ifndef CL_VERSION_1_2
#define CL_VERSION_1_2
#endif

#endif

1353 1354 1355
#ifdef _DEBUG
#define CV_OclDbgAssert CV_DbgAssert
#else
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static bool isRaiseError()
{
    static bool initialized = false;
    static bool value = false;
    if (!initialized)
    {
        value = getBoolParameter("OPENCV_OPENCL_RAISE_ERROR", false);
        initialized = true;
    }
    return value;
}
#define CV_OclDbgAssert(expr) do { if (isRaiseError()) { CV_Assert(expr); } else { (void)(expr); } } while ((void)0, 0)
1368 1369
#endif

1370 1371 1372 1373 1374 1375
#ifdef HAVE_OPENCL_SVM
#include "opencv2/core/opencl/runtime/opencl_svm_20.hpp"
#include "opencv2/core/opencl/runtime/opencl_svm_hsa_extension.hpp"
#include "opencv2/core/opencl/opencl_svm.hpp"
#endif

1376 1377
namespace cv { namespace ocl {

1378 1379
struct UMat2D
{
1380
    UMat2D(const UMat& m)
1381
    {
1382 1383
        offset = (int)m.offset;
        step = (int)m.step;
1384 1385 1386
        rows = m.rows;
        cols = m.cols;
    }
1387 1388
    int offset;
    int step;
1389 1390 1391 1392 1393 1394
    int rows;
    int cols;
};

struct UMat3D
{
1395
    UMat3D(const UMat& m)
1396
    {
1397 1398 1399 1400
        offset = (int)m.offset;
        step = (int)m.step.p[1];
        slicestep = (int)m.step.p[0];
        slices = (int)m.size.p[0];
1401 1402 1403
        rows = m.size.p[1];
        cols = m.size.p[2];
    }
1404 1405 1406
    int offset;
    int slicestep;
    int step;
1407 1408 1409 1410 1411
    int slices;
    int rows;
    int cols;
};

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
    static uint64 table[256];
    static bool initialized = false;

    if( !initialized )
    {
        for( int i = 0; i < 256; i++ )
        {
            uint64 c = i;
            for( int j = 0; j < 8; j++ )
                c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
            table[i] = c;
        }
        initialized = true;
    }

    uint64 crc = ~crc0;
    for( size_t idx = 0; idx < size; idx++ )
        crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);

    return ~crc;
}

struct HashKey
{
    typedef uint64 part;
    HashKey(part _a, part _b) : a(_a), b(_b) {}
    part a, b;
};

inline bool operator == (const HashKey& h1, const HashKey& h2)
{
    return h1.a == h2.a && h1.b == h2.b;
}

inline bool operator < (const HashKey& h1, const HashKey& h2)
{
    return h1.a < h2.a || (h1.a == h2.a && h1.b < h2.b);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1454

1455 1456
bool haveOpenCL()
{
1457 1458 1459 1460
#ifdef HAVE_OPENCL
    static bool g_isOpenCLInitialized = false;
    static bool g_isOpenCLAvailable = false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1461
    if (!g_isOpenCLInitialized)
1462
    {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1463
        try
1464
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1465 1466
            cl_uint n = 0;
            g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
1467
        }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1468 1469 1470
        catch (...)
        {
            g_isOpenCLAvailable = false;
1471
        }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1472
        g_isOpenCLInitialized = true;
1473 1474
    }
    return g_isOpenCLAvailable;
1475 1476 1477
#else
    return false;
#endif
1478 1479 1480 1481
}

bool useOpenCL()
{
1482
    CoreTLSData* data = getCoreTlsData().get();
1483
    if( data->useOpenCL < 0 )
1484 1485 1486
    {
        try
        {
1487
            data->useOpenCL = (int)haveOpenCL() && Device::getDefault().ptr() && Device::getDefault().available();
1488 1489 1490 1491 1492 1493
        }
        catch (...)
        {
            data->useOpenCL = 0;
        }
    }
1494 1495 1496
    return data->useOpenCL > 0;
}

1497 1498 1499 1500
void setUseOpenCL(bool flag)
{
    if( haveOpenCL() )
    {
1501
        CoreTLSData* data = getCoreTlsData().get();
1502
        data->useOpenCL = (flag && Device::getDefault().ptr() != NULL) ? 1 : 0;
1503 1504 1505
    }
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
#ifdef HAVE_CLAMDBLAS

class AmdBlasHelper
{
public:
    static AmdBlasHelper & getInstance()
    {
        static AmdBlasHelper amdBlas;
        return amdBlas;
    }

    bool isAvailable() const
    {
        return g_isAmdBlasAvailable;
    }

    ~AmdBlasHelper()
    {
        try
        {
            clAmdBlasTeardown();
        }
        catch (...) { }
    }

protected:
    AmdBlasHelper()
    {
        if (!g_isAmdBlasInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdBlasInitialized && haveOpenCL())
            {
                try
                {
                    g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
                }
                catch (...)
                {
                    g_isAmdBlasAvailable = false;
                }
            }
            else
                g_isAmdBlasAvailable = false;

            g_isAmdBlasInitialized = true;
        }
    }

private:
    static Mutex m;
    static bool g_isAmdBlasInitialized;
    static bool g_isAmdBlasAvailable;
};

bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
Mutex AmdBlasHelper::m;

bool haveAmdBlas()
{
    return AmdBlasHelper::getInstance().isAvailable();
}

#else

bool haveAmdBlas()
{
    return false;
}

#endif

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#ifdef HAVE_CLAMDFFT

class AmdFftHelper
{
public:
    static AmdFftHelper & getInstance()
    {
        static AmdFftHelper amdFft;
        return amdFft;
    }

    bool isAvailable() const
    {
        return g_isAmdFftAvailable;
    }

    ~AmdFftHelper()
    {
        try
        {
//            clAmdFftTeardown();
        }
        catch (...) { }
    }

protected:
    AmdFftHelper()
    {
        if (!g_isAmdFftInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdFftInitialized && haveOpenCL())
            {
                try
                {
1616
                    cl_uint major, minor, patch;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1617
                    CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);
1618 1619 1620

                    // it throws exception in case AmdFft binaries are not found
                    CV_Assert(clAmdFftGetVersion(&major, &minor, &patch) == CLFFT_SUCCESS);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
                    g_isAmdFftAvailable = true;
                }
                catch (const Exception &)
                {
                    g_isAmdFftAvailable = false;
                }
            }
            else
                g_isAmdFftAvailable = false;

            g_isAmdFftInitialized = true;
        }
    }

private:
    static clAmdFftSetupData setupData;
    static Mutex m;
    static bool g_isAmdFftInitialized;
    static bool g_isAmdFftAvailable;
};

clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
Mutex AmdFftHelper::m;

bool haveAmdFft()
{
    return AmdFftHelper::getInstance().isAvailable();
}

#else

bool haveAmdFft()
{
    return false;
}

#endif

1661 1662 1663 1664 1665 1666 1667 1668 1669
bool haveSVM()
{
#ifdef HAVE_OPENCL_SVM
    return true;
#else
    return false;
#endif
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1670
void finish()
1671 1672 1673 1674 1675 1676
{
    Queue::getDefault().finish();
}

#define IMPLEMENT_REFCOUNTABLE() \
    void addref() { CV_XADD(&refcount, 1); } \
1677
    void release() { if( CV_XADD(&refcount, -1) == 1 && !cv::__termination) delete this; } \
1678 1679
    int refcount

1680 1681
/////////////////////////////////////////// Platform /////////////////////////////////////////////

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
struct Platform::Impl
{
    Impl()
    {
        refcount = 1;
        handle = 0;
        initialized = false;
    }

    ~Impl() {}

    void init()
    {
        if( !initialized )
        {
            //cl_uint num_entries
            cl_uint n = 0;
1699
            if( clGetPlatformIDs(1, &handle, &n) != CL_SUCCESS || n == 0 )
1700 1701 1702 1703 1704
                handle = 0;
            if( handle != 0 )
            {
                char buf[1000];
                size_t len = 0;
1705
                CV_OclDbgAssert(clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len) == CL_SUCCESS);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
                buf[len] = '\0';
                vendor = String(buf);
            }

            initialized = true;
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_platform_id handle;
    String vendor;
    bool initialized;
};

Platform::Platform()
{
    p = 0;
}

Platform::~Platform()
{
    if(p)
        p->release();
}

Platform::Platform(const Platform& pl)
{
    p = (Impl*)pl.p;
    if(p)
        p->addref();
}

Platform& Platform::operator = (const Platform& pl)
{
    Impl* newp = (Impl*)pl.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

void* Platform::ptr() const
{
    return p ? p->handle : 0;
}

Platform& Platform::getDefault()
{
    static Platform p;
    if( !p.p )
    {
        p.p = new Impl;
        p.p->init();
    }
    return p;
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/////////////////////////////////////// Device ////////////////////////////////////////////

// deviceVersion has format
//   OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
//   http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
//   http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static void parseDeviceVersion(const String &deviceVersion, int &major, int &minor)
{
    major = minor = 0;
    if (10 >= deviceVersion.length())
        return;
    const char *pstr = deviceVersion.c_str();
    if (0 != strncmp(pstr, "OpenCL ", 7))
        return;
    size_t ppos = deviceVersion.find('.', 7);
    if (String::npos == ppos)
        return;
    String temp = deviceVersion.substr(7, ppos - 7);
    major = atoi(temp.c_str());
    temp = deviceVersion.substr(ppos + 1);
    minor = atoi(temp.c_str());
}
1789 1790 1791 1792 1793 1794

struct Device::Impl
{
    Impl(void* d)
    {
        handle = (cl_device_id)d;
1795
        refcount = 1;
1796 1797 1798 1799 1800 1801 1802 1803 1804

        name_ = getStrProp(CL_DEVICE_NAME);
        version_ = getStrProp(CL_DEVICE_VERSION);
        doubleFPConfig_ = getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG);
        hostUnifiedMemory_ = getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY);
        maxComputeUnits_ = getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS);
        maxWorkGroupSize_ = getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE);
        type_ = getProp<cl_device_type, int>(CL_DEVICE_TYPE);
        driverVersion_ = getStrProp(CL_DRIVER_VERSION);
1805 1806 1807

        String deviceVersion_ = getStrProp(CL_DEVICE_VERSION);
        parseDeviceVersion(deviceVersion_, deviceVersionMajor_, deviceVersionMinor_);
1808

1809 1810 1811 1812
        vendorName_ = getStrProp(CL_DEVICE_VENDOR);
        if (vendorName_ == "Advanced Micro Devices, Inc." ||
            vendorName_ == "AMD")
            vendorID_ = VENDOR_AMD;
1813
        else if (vendorName_ == "Intel(R) Corporation" || vendorName_ == "Intel" || strstr(name_.c_str(), "Iris") != 0)
1814 1815 1816
            vendorID_ = VENDOR_INTEL;
        else if (vendorName_ == "NVIDIA Corporation")
            vendorID_ = VENDOR_NVIDIA;
1817
        else
1818
            vendorID_ = UNKNOWN_VENDOR;
1819 1820 1821 1822 1823 1824 1825 1826
    }

    template<typename _TpCL, typename _TpOut>
    _TpOut getProp(cl_device_info prop) const
    {
        _TpCL temp=_TpCL();
        size_t sz = 0;

1827
        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
1828 1829 1830
            sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
    }

1831 1832 1833 1834 1835
    bool getBoolProp(cl_device_info prop) const
    {
        cl_bool temp = CL_FALSE;
        size_t sz = 0;

1836
        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
1837 1838 1839
            sz == sizeof(temp) ? temp != 0 : false;
    }

1840 1841 1842 1843
    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
1844
        return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
1845 1846 1847 1848 1849
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    cl_device_id handle;
1850 1851 1852 1853 1854 1855 1856 1857

    String name_;
    String version_;
    int doubleFPConfig_;
    bool hostUnifiedMemory_;
    int maxComputeUnits_;
    size_t maxWorkGroupSize_;
    int type_;
1858 1859
    int deviceVersionMajor_;
    int deviceVersionMinor_;
1860
    String driverVersion_;
1861 1862
    String vendorName_;
    int vendorID_;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
};


Device::Device()
{
    p = 0;
}

Device::Device(void* d)
{
    p = 0;
    set(d);
}

Device::Device(const Device& d)
{
    p = d.p;
    if(p)
        p->addref();
}

Device& Device::operator = (const Device& d)
{
    Impl* newp = (Impl*)d.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Device::~Device()
{
    if(p)
        p->release();
}

void Device::set(void* d)
{
    if(p)
        p->release();
    p = new Impl(d);
}

void* Device::ptr() const
{
    return p ? p->handle : 0;
}

String Device::name() const
1914
{ return p ? p->name_ : String(); }
1915 1916 1917 1918

String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

Konstantin Matskevich's avatar
Konstantin Matskevich committed
1919
String Device::version() const
1920
{ return p ? p->version_ : String(); }
Konstantin Matskevich's avatar
Konstantin Matskevich committed
1921

1922 1923 1924 1925 1926
String Device::vendorName() const
{ return p ? p->vendorName_ : String(); }

int Device::vendorID() const
{ return p ? p->vendorID_ : 0; }
1927 1928 1929 1930 1931 1932 1933

String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }

String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

1934 1935 1936 1937 1938
int Device::deviceVersionMajor() const
{ return p ? p->deviceVersionMajor_ : 0; }

int Device::deviceVersionMinor() const
{ return p ? p->deviceVersionMinor_ : 0; }
1939

1940
String Device::driverVersion() const
1941
{ return p ? p->driverVersion_ : String(); }
1942 1943

int Device::type() const
1944
{ return p ? p->type_ : 0; }
1945 1946 1947 1948 1949

int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }

bool Device::available() const
1950
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
1951 1952

bool Device::compilerAvailable() const
1953
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
1954 1955

bool Device::linkerAvailable() const
1956
#ifdef CL_VERSION_1_2
1957
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
1958 1959 1960
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1961 1962

int Device::doubleFPConfig() const
1963
{ return p ? p->doubleFPConfig_ : 0; }
1964 1965 1966 1967 1968

int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }

int Device::halfFPConfig() const
1969
#ifdef CL_VERSION_1_2
1970
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
1971 1972 1973
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1974 1975

bool Device::endianLittle() const
1976
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
1977 1978

bool Device::errorCorrectionSupport() const
1979
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }

size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }

int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }

int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }

size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }

size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }

int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }

bool Device::hostUnifiedMemory() const
2003
{ return p ? p->hostUnifiedMemory_ : false; }
2004 2005

bool Device::imageSupport() const
2006
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
bool Device::imageFromBufferSupport() const
{
    bool ret = false;
    if (p)
    {
        size_t pos = p->getStrProp(CL_DEVICE_EXTENSIONS).find("cl_khr_image2d_from_buffer");
        if (pos != String::npos)
        {
            ret = true;
        }
    }
    return ret;
}

uint Device::imagePitchAlignment() const
{
#ifdef CL_DEVICE_IMAGE_PITCH_ALIGNMENT
    return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_PITCH_ALIGNMENT) : 0;
#else
    return 0;
#endif
}

uint Device::imageBaseAddressAlignment() const
{
#ifdef CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT
    return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT) : 0;
#else
    return 0;
#endif
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }

size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }

size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }

size_t Device::imageMaxBufferSize() const
2056
#ifdef CL_VERSION_1_2
2057
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
2058 2059 2060
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
2061 2062

size_t Device::imageMaxArraySize() const
2063
#ifdef CL_VERSION_1_2
2064
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
2065 2066 2067
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
2068 2069 2070 2071 2072

int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }

int Device::maxComputeUnits() const
2073
{ return p ? p->maxComputeUnits_ : 0; }
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }

size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }

size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }

size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }

int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }

int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }

int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }

size_t Device::maxWorkGroupSize() const
2097
{ return p ? p->maxWorkGroupSize_ : 0; }
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }

void Device::maxWorkItemSizes(size_t* sizes) const
{
    if(p)
    {
        const int MAX_DIMS = 32;
        size_t retsz = 0;
2108 2109
        CV_OclDbgAssert(clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
                MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz) == CL_SUCCESS);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    }
}

int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }

int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }

int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }

int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }

int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }

int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }

int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }

int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }

int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }

int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }

int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }

int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }

int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }

size_t Device::printfBufferSize() const
2159
#ifdef CL_VERSION_1_2
2160
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
2161 2162 2163 2164
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

2165 2166 2167 2168 2169 2170

size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }

const Device& Device::getDefault()
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2171
    const Context& ctx = Context::getDefault();
2172
    int idx = getCoreTlsData().get()->device;
2173 2174
    const Device& device = ctx.device(idx);
    return device;
2175 2176
}

2177
////////////////////////////////////// Context ///////////////////////////////////////////////////
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
template <typename Functor, typename ObjectType>
inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string& param)
{
    ::size_t required;
    cl_int err = f(obj, name, 0, NULL, &required);
    if (err != CL_SUCCESS)
        return err;

    param.clear();
    if (required > 0)
    {
Alexander Alekhin's avatar
Alexander Alekhin committed
2190 2191 2192
        AutoBuffer<char> buf(required + 1);
        char* ptr = (char*)buf; // cleanup is not needed
        err = f(obj, name, required, ptr, NULL);
2193 2194
        if (err != CL_SUCCESS)
            return err;
Alexander Alekhin's avatar
Alexander Alekhin committed
2195
        param = ptr;
2196 2197 2198
    }

    return CL_SUCCESS;
2199
}
2200

2201 2202
static void split(const std::string &s, char delim, std::vector<std::string> &elems)
{
Alexander Alekhin's avatar
Alexander Alekhin committed
2203 2204 2205 2206
    elems.clear();
    if (s.size() == 0)
        return;
    std::istringstream ss(s);
2207
    std::string item;
Alexander Alekhin's avatar
Alexander Alekhin committed
2208 2209 2210
    while (!ss.eof())
    {
        std::getline(ss, item, delim);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
        elems.push_back(item);
    }
}

// Layout: <Platform>:<CPU|GPU|ACCELERATOR|nothing=GPU/CPU>:<deviceName>
// Sample: AMD:GPU:
// Sample: AMD:GPU:Tahiti
// Sample: :GPU|CPU: = '' = ':' = '::'
static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
        std::string& platform, std::vector<std::string>& deviceTypes, std::string& deviceNameOrID)
{
Alexander Alekhin's avatar
Alexander Alekhin committed
2222 2223 2224
    std::vector<std::string> parts;
    split(configurationStr, ':', parts);
    if (parts.size() > 3)
2225
    {
Alexander Alekhin's avatar
Alexander Alekhin committed
2226 2227 2228 2229 2230 2231 2232 2233
        std::cerr << "ERROR: Invalid configuration string for OpenCL device" << std::endl;
        return false;
    }
    if (parts.size() > 2)
        deviceNameOrID = parts[2];
    if (parts.size() > 1)
    {
        split(parts[1], '|', deviceTypes);
2234
    }
Alexander Alekhin's avatar
Alexander Alekhin committed
2235
    if (parts.size() > 0)
2236
    {
Alexander Alekhin's avatar
Alexander Alekhin committed
2237
        platform = parts[0];
2238 2239 2240 2241
    }
    return true;
}

2242
#ifdef WINRT
2243 2244 2245 2246 2247
static cl_device_id selectOpenCLDevice()
{
    return NULL;
}
#else
2248 2249
static cl_device_id selectOpenCLDevice()
{
2250
    std::string platform, deviceName;
2251
    std::vector<std::string> deviceTypes;
2252

2253
    const char* configuration = getenv("OPENCV_OPENCL_DEVICE");
2254 2255 2256 2257
    if (configuration &&
            (strcmp(configuration, "disabled") == 0 ||
             !parseOpenCLDeviceConfiguration(std::string(configuration), platform, deviceTypes, deviceName)
            ))
2258
        return NULL;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

    bool isID = false;
    int deviceID = -1;
    if (deviceName.length() == 1)
    // We limit ID range to 0..9, because we want to write:
    // - '2500' to mean i5-2500
    // - '8350' to mean AMD FX-8350
    // - '650' to mean GeForce 650
    // To extend ID range change condition to '> 0'
    {
        isID = true;
        for (size_t i = 0; i < deviceName.length(); i++)
        {
            if (!isdigit(deviceName[i]))
            {
                isID = false;
                break;
            }
        }
        if (isID)
        {
            deviceID = atoi(deviceName.c_str());
2281 2282
            if (deviceID < 0)
                return NULL;
2283 2284 2285 2286
        }
    }

    std::vector<cl_platform_id> platforms;
Alexander Alekhin's avatar
Alexander Alekhin committed
2287 2288
    {
        cl_uint numPlatforms = 0;
2289 2290
        CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);

Alexander Alekhin's avatar
Alexander Alekhin committed
2291 2292 2293
        if (numPlatforms == 0)
            return NULL;
        platforms.resize((size_t)numPlatforms);
2294
        CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
Alexander Alekhin's avatar
Alexander Alekhin committed
2295 2296
        platforms.resize(numPlatforms);
    }
2297 2298 2299 2300 2301 2302 2303

    int selectedPlatform = -1;
    if (platform.length() > 0)
    {
        for (size_t i = 0; i < platforms.size(); i++)
        {
            std::string name;
2304
            CV_OclDbgAssert(getStringInfo(clGetPlatformInfo, platforms[i], CL_PLATFORM_NAME, name) == CL_SUCCESS);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
            if (name.find(platform) != std::string::npos)
            {
                selectedPlatform = (int)i;
                break;
            }
        }
        if (selectedPlatform == -1)
        {
            std::cerr << "ERROR: Can't find OpenCL platform by name: " << platform << std::endl;
            goto not_found;
        }
    }
    if (deviceTypes.size() == 0)
    {
        if (!isID)
        {
            deviceTypes.push_back("GPU");
2322 2323
            if (configuration)
                deviceTypes.push_back("CPU");
2324 2325 2326 2327 2328 2329 2330
        }
        else
            deviceTypes.push_back("ALL");
    }
    for (size_t t = 0; t < deviceTypes.size(); t++)
    {
        int deviceType = 0;
2331 2332 2333 2334
        std::string tempStrDeviceType = deviceTypes[t];
        std::transform( tempStrDeviceType.begin(), tempStrDeviceType.end(), tempStrDeviceType.begin(), tolower );

        if (tempStrDeviceType == "gpu" || tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
2335
            deviceType = Device::TYPE_GPU;
2336
        else if (tempStrDeviceType == "cpu")
2337
            deviceType = Device::TYPE_CPU;
2338
        else if (tempStrDeviceType == "accelerator")
2339
            deviceType = Device::TYPE_ACCELERATOR;
2340
        else if (tempStrDeviceType == "all")
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
            deviceType = Device::TYPE_ALL;
        else
        {
            std::cerr << "ERROR: Unsupported device type for OpenCL device (GPU, CPU, ACCELERATOR): " << deviceTypes[t] << std::endl;
            goto not_found;
        }

        std::vector<cl_device_id> devices; // TODO Use clReleaseDevice to cleanup
        for (int i = selectedPlatform >= 0 ? selectedPlatform : 0;
                (selectedPlatform >= 0 ? i == selectedPlatform : true) && (i < (int)platforms.size());
                i++)
        {
            cl_uint count = 0;
2354 2355
            cl_int status = clGetDeviceIDs(platforms[i], deviceType, 0, NULL, &count);
            CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
2356 2357 2358 2359 2360
            if (count == 0)
                continue;
            size_t base = devices.size();
            devices.resize(base + count);
            status = clGetDeviceIDs(platforms[i], deviceType, count, &devices[base], &count);
2361
            CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
2362 2363 2364 2365 2366 2367 2368
        }

        for (size_t i = (isID ? deviceID : 0);
             (isID ? (i == (size_t)deviceID) : true) && (i < devices.size());
             i++)
        {
            std::string name;
2369
            CV_OclDbgAssert(getStringInfo(clGetDeviceInfo, devices[i], CL_DEVICE_NAME, name) == CL_SUCCESS);
2370
            cl_bool useGPU = true;
2371
            if(tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
2372 2373 2374
            {
                cl_bool isIGPU = CL_FALSE;
                clGetDeviceInfo(devices[i], CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof(isIGPU), &isIGPU, NULL);
2375
                useGPU = tempStrDeviceType == "dgpu" ? !isIGPU : isIGPU;
2376 2377
            }
            if ( (isID || name.find(deviceName) != std::string::npos) && useGPU)
2378 2379 2380 2381 2382 2383
            {
                // TODO check for OpenCL 1.1
                return devices[i];
            }
        }
    }
2384

2385
not_found:
2386 2387 2388 2389
    if (!configuration)
        return NULL; // suppress messages on stderr

    std::cerr << "ERROR: Requested OpenCL device not found, check configuration: " << (configuration == NULL ? "" : configuration) << std::endl
2390 2391 2392 2393
            << "    Platform: " << (platform.length() == 0 ? "any" : platform) << std::endl
            << "    Device types: ";
    for (size_t t = 0; t < deviceTypes.size(); t++)
        std::cerr << deviceTypes[t] << " ";
2394

2395 2396 2397
    std::cerr << std::endl << "    Device name: " << (deviceName.length() == 0 ? "any" : deviceName) << std::endl;
    return NULL;
}
2398
#endif
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
#ifdef HAVE_OPENCL_SVM
namespace svm {

enum AllocatorFlags { // don't use first 16 bits
        OPENCL_SVM_COARSE_GRAIN_BUFFER = 1 << 16, // clSVMAlloc + SVM map/unmap
        OPENCL_SVM_FINE_GRAIN_BUFFER = 2 << 16, // clSVMAlloc
        OPENCL_SVM_FINE_GRAIN_SYSTEM = 3 << 16, // direct access
        OPENCL_SVM_BUFFER_MASK = 3 << 16,
        OPENCL_SVM_BUFFER_MAP = 4 << 16
};

static bool checkForceSVMUmatUsage()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_FORCE_UMAT_USAGE", false);
        initialized = true;
    }
    return force;
}
static bool checkDisableSVMUMatUsage()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_DISABLE_UMAT_USAGE", false);
        initialized = true;
    }
    return force;
}
static bool checkDisableSVM()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_DISABLE", false);
        initialized = true;
    }
    return force;
}
// see SVMCapabilities
static unsigned int getSVMCapabilitiesMask()
{
    static bool initialized = false;
    static unsigned int mask = 0;
    if (!initialized)
    {
        const char* envValue = getenv("OPENCV_OPENCL_SVM_CAPABILITIES_MASK");
        if (envValue == NULL)
        {
            return ~0U; // all bits 1
        }
        mask = atoi(envValue);
        initialized = true;
    }
    return mask;
}
} // namespace
#endif

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2464
struct Context::Impl
2465
{
2466 2467 2468
    static Context::Impl* get(Context& context) { return context.p; }

    void __init()
2469 2470 2471
    {
        refcount = 1;
        handle = 0;
2472 2473 2474 2475 2476 2477 2478 2479
#ifdef HAVE_OPENCL_SVM
        svmInitialized = false;
#endif
    }

    Impl()
    {
        __init();
2480 2481
    }

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
    void setDefault()
    {
        CV_Assert(handle == NULL);

        cl_device_id d = selectOpenCLDevice();

        if (d == NULL)
            return;

        cl_platform_id pl = NULL;
2492
        CV_OclDbgAssert(clGetDeviceInfo(d, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &pl, NULL) == CL_SUCCESS);
2493 2494 2495 2496 2497 2498 2499 2500

        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        // !!! in the current implementation force the number of devices to 1 !!!
2501 2502
        cl_uint nd = 1;
        cl_int status;
2503 2504

        handle = clCreateContext(prop, nd, &d, 0, 0, &status);
2505 2506

        bool ok = handle != 0 && status == CL_SUCCESS;
2507 2508 2509 2510 2511 2512 2513 2514 2515
        if( ok )
        {
            devices.resize(nd);
            devices[0].set(d);
        }
        else
            handle = NULL;
    }

2516 2517
    Impl(int dtype0)
    {
2518
        __init();
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

        cl_int retval = 0;
        cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        cl_uint i, nd0 = 0, nd = 0;
        int dtype = dtype0 & 15;
2530 2531
        CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, 0, 0, &nd0 ) == CL_SUCCESS);

2532 2533 2534
        AutoBuffer<void*> dlistbuf(nd0*2+1);
        cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
        cl_device_id* dlist_new = dlist + nd0;
2535
        CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, nd0, dlist, &nd0 ) == CL_SUCCESS);
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
        String name0;

        for(i = 0; i < nd0; i++)
        {
            Device d(dlist[i]);
            if( !d.available() || !d.compilerAvailable() )
                continue;
            if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
                continue;
            if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
                continue;
            String name = d.name();
            if( nd != 0 && name != name0 )
                continue;
            name0 = name;
            dlist_new[nd++] = dlist[i];
        }

        if(nd == 0)
            return;

        // !!! in the current implementation force the number of devices to 1 !!!
        nd = 1;

        handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
2561
        bool ok = handle != 0 && retval == CL_SUCCESS;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        if( ok )
        {
            devices.resize(nd);
            for( i = 0; i < nd; i++ )
                devices[i].set(dlist_new[i]);
        }
    }

    ~Impl()
    {
        if(handle)
2573
        {
2574
            clReleaseContext(handle);
2575 2576
            handle = NULL;
        }
2577 2578 2579
        devices.clear();
    }

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2580
    Program getProg(const ProgramSource& src,
2581 2582 2583 2584 2585 2586 2587 2588 2589
                    const String& buildflags, String& errmsg)
    {
        String prefix = Program::getPrefix(buildflags);
        HashKey k(src.hash(), crc64((const uchar*)prefix.c_str(), prefix.size()));
        phash_t::iterator it = phash.find(k);
        if( it != phash.end() )
            return it->second;
        //String filename = format("%08x%08x_%08x%08x.clb2",
        Program prog(src, buildflags, errmsg);
2590 2591
        if(prog.ptr())
            phash.insert(std::pair<HashKey,Program>(k, prog));
2592 2593 2594 2595 2596 2597 2598 2599
        return prog;
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_context handle;
    std::vector<Device> devices;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2600
    typedef ProgramSource::hash_t hash_t;
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

    struct HashKey
    {
        HashKey(hash_t _a, hash_t _b) : a(_a), b(_b) {}
        bool operator < (const HashKey& k) const { return a < k.a || (a == k.a && b < k.b); }
        bool operator == (const HashKey& k) const { return a == k.a && b == k.b; }
        bool operator != (const HashKey& k) const { return a != k.a || b != k.b; }
        hash_t a, b;
    };
    typedef std::map<HashKey, Program> phash_t;
    phash_t phash;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

#ifdef HAVE_OPENCL_SVM
    bool svmInitialized;
    bool svmAvailable;
    bool svmEnabled;
    svm::SVMCapabilities svmCapabilities;
    svm::SVMFunctions svmFunctions;

    void svmInit()
    {
        CV_Assert(handle != NULL);
        const Device& device = devices[0];
        cl_device_svm_capabilities deviceCaps = 0;
        CV_Assert(((void)0, CL_DEVICE_SVM_CAPABILITIES == CL_DEVICE_SVM_CAPABILITIES_AMD)); // Check assumption
        cl_int status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_SVM_CAPABILITIES, sizeof(deviceCaps), &deviceCaps, NULL);
        if (status != CL_SUCCESS)
        {
            CV_OPENCL_SVM_TRACE_ERROR_P("CL_DEVICE_SVM_CAPABILITIES via clGetDeviceInfo failed: %d\n", status);
            goto noSVM;
        }
        CV_OPENCL_SVM_TRACE_P("CL_DEVICE_SVM_CAPABILITIES returned: 0x%x\n", (int)deviceCaps);
        CV_Assert(((void)0, CL_DEVICE_SVM_COARSE_GRAIN_BUFFER == CL_DEVICE_SVM_COARSE_GRAIN_BUFFER_AMD)); // Check assumption
        svmCapabilities.value_ =
                ((deviceCaps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_COARSE_GRAIN_BUFFER : 0) |
                ((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_FINE_GRAIN_BUFFER : 0) |
                ((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) ? svm::SVMCapabilities::SVM_FINE_GRAIN_SYSTEM : 0) |
                ((deviceCaps & CL_DEVICE_SVM_ATOMICS) ? svm::SVMCapabilities::SVM_ATOMICS : 0);
        svmCapabilities.value_ &= svm::getSVMCapabilitiesMask();
        if (svmCapabilities.value_ == 0)
        {
            CV_OPENCL_SVM_TRACE_ERROR_P("svmCapabilities is empty\n");
            goto noSVM;
        }
        try
        {
            // Try OpenCL 2.0
            CV_OPENCL_SVM_TRACE_P("Try SVM from OpenCL 2.0 ...\n");
            void* ptr = clSVMAlloc(handle, CL_MEM_READ_WRITE, 100, 0);
            if (!ptr)
            {
                CV_OPENCL_SVM_TRACE_ERROR_P("clSVMAlloc returned NULL...\n");
                CV_ErrorNoReturn(Error::StsBadArg, "clSVMAlloc returned NULL");
            }
            try
            {
                bool error = false;
                cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                if (CL_SUCCESS != clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE, ptr, 100, 0, NULL, NULL))
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMMap failed...\n");
                    CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMMap FAILED");
                }
                clFinish(q);
                try
                {
                    ((int*)ptr)[0] = 100;
                }
                catch (...)
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("SVM buffer access test FAILED\n");
                    error = true;
                }
                if (CL_SUCCESS != clEnqueueSVMUnmap(q, ptr, 0, NULL, NULL))
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMUnmap failed...\n");
                    CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMUnmap FAILED");
                }
                clFinish(q);
                if (error)
                {
                    CV_ErrorNoReturn(Error::StsBadArg, "OpenCL SVM buffer access test was FAILED");
                }
            }
            catch (...)
            {
                CV_OPENCL_SVM_TRACE_ERROR_P("OpenCL SVM buffer access test was FAILED\n");
                clSVMFree(handle, ptr);
                throw;
            }
            clSVMFree(handle, ptr);
            svmFunctions.fn_clSVMAlloc = clSVMAlloc;
            svmFunctions.fn_clSVMFree = clSVMFree;
            svmFunctions.fn_clSetKernelArgSVMPointer = clSetKernelArgSVMPointer;
            //svmFunctions.fn_clSetKernelExecInfo = clSetKernelExecInfo;
            //svmFunctions.fn_clEnqueueSVMFree = clEnqueueSVMFree;
            svmFunctions.fn_clEnqueueSVMMemcpy = clEnqueueSVMMemcpy;
            svmFunctions.fn_clEnqueueSVMMemFill = clEnqueueSVMMemFill;
            svmFunctions.fn_clEnqueueSVMMap = clEnqueueSVMMap;
            svmFunctions.fn_clEnqueueSVMUnmap = clEnqueueSVMUnmap;
        }
        catch (...)
        {
            CV_OPENCL_SVM_TRACE_P("clSVMAlloc failed, trying HSA extension...\n");
            try
            {
                // Try HSA extension
                String extensions = device.extensions();
                if (extensions.find("cl_amd_svm") == String::npos)
                {
                    CV_OPENCL_SVM_TRACE_P("Device extension doesn't have cl_amd_svm: %s\n", extensions.c_str());
                    goto noSVM;
                }
                cl_platform_id p = NULL;
                status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &p, NULL);
                CV_Assert(status == CL_SUCCESS);
                svmFunctions.fn_clSVMAlloc = (clSVMAllocAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMAllocAMD");
                svmFunctions.fn_clSVMFree = (clSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMFreeAMD");
                svmFunctions.fn_clSetKernelArgSVMPointer = (clSetKernelArgSVMPointerAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelArgSVMPointerAMD");
                //svmFunctions.fn_clSetKernelExecInfo = (clSetKernelExecInfoAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelExecInfoAMD");
                //svmFunctions.fn_clEnqueueSVMFree = (clEnqueueSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMFreeAMD");
                svmFunctions.fn_clEnqueueSVMMemcpy = (clEnqueueSVMMemcpyAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemcpyAMD");
                svmFunctions.fn_clEnqueueSVMMemFill = (clEnqueueSVMMemFillAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemFillAMD");
                svmFunctions.fn_clEnqueueSVMMap = (clEnqueueSVMMapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMapAMD");
                svmFunctions.fn_clEnqueueSVMUnmap = (clEnqueueSVMUnmapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMUnmapAMD");
                CV_Assert(svmFunctions.isValid());
            }
            catch (...)
            {
                CV_OPENCL_SVM_TRACE_P("Something is totally wrong\n");
                goto noSVM;
            }
        }

        svmAvailable = true;
        svmEnabled = !svm::checkDisableSVM();
        svmInitialized = true;
        CV_OPENCL_SVM_TRACE_P("OpenCV OpenCL SVM support initialized\n");
        return;
    noSVM:
        CV_OPENCL_SVM_TRACE_P("OpenCL SVM is not detected\n");
        svmAvailable = false;
        svmEnabled = false;
        svmCapabilities.value_ = 0;
        svmInitialized = true;
        svmFunctions.fn_clSVMAlloc = NULL;
        return;
    }
#endif
2750 2751 2752
};


Ilya Lavrenov's avatar
Ilya Lavrenov committed
2753
Context::Context()
2754 2755 2756 2757
{
    p = 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2758
Context::Context(int dtype)
2759 2760 2761 2762 2763
{
    p = 0;
    create(dtype);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2764
bool Context::create()
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl();
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2779
bool Context::create(int dtype0)
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl(dtype0);
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2794
Context::~Context()
2795
{
2796 2797 2798 2799 2800
    if (p)
    {
        p->release();
        p = NULL;
    }
2801 2802
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2803
Context::Context(const Context& c)
2804 2805 2806 2807 2808 2809
{
    p = (Impl*)c.p;
    if(p)
        p->addref();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2810
Context& Context::operator = (const Context& c)
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
{
    Impl* newp = (Impl*)c.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2821
void* Context::ptr() const
2822
{
2823
    return p == NULL ? NULL : p->handle;
2824 2825
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2826
size_t Context::ndevices() const
2827 2828 2829 2830
{
    return p ? p->devices.size() : 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2831
const Device& Context::device(size_t idx) const
2832 2833 2834 2835 2836
{
    static Device dummy;
    return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2837
Context& Context::getDefault(bool initialize)
2838
{
2839 2840
    static Context* ctx = new Context();
    if(!ctx->p && haveOpenCL())
2841
    {
2842 2843
        if (!ctx->p)
            ctx->p = new Impl();
2844 2845
        if (initialize)
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2846
            // do not create new Context right away.
2847
            // First, try to retrieve existing context of the same type.
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2848
            // In its turn, Platform::getContext() may call Context::create()
2849
            // if there is no such context.
2850 2851
            if (ctx->p->handle == NULL)
                ctx->p->setDefault();
2852
        }
2853 2854
    }

2855
    return *ctx;
2856 2857
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2858
Program Context::getProg(const ProgramSource& prog,
2859 2860 2861 2862 2863
                         const String& buildopts, String& errmsg)
{
    return p ? p->getProg(prog, buildopts, errmsg) : Program();
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928


#ifdef HAVE_OPENCL_SVM
bool Context::useSVM() const
{
    Context::Impl* i = p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    return i->svmEnabled;
}
void Context::setUseSVM(bool enabled)
{
    Context::Impl* i = p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    if (enabled && !i->svmAvailable)
    {
        CV_ErrorNoReturn(Error::StsError, "OpenCL Shared Virtual Memory (SVM) is not supported by OpenCL device");
    }
    i->svmEnabled = enabled;
}
#else
bool Context::useSVM() const { return false; }
void Context::setUseSVM(bool enabled) { CV_Assert(!enabled); }
#endif

#ifdef HAVE_OPENCL_SVM
namespace svm {

const SVMCapabilities getSVMCapabilitites(const ocl::Context& context)
{
    Context::Impl* i = context.p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    return i->svmCapabilities;
}

CV_EXPORTS const SVMFunctions* getSVMFunctions(const ocl::Context& context)
{
    Context::Impl* i = context.p;
    CV_Assert(i);
    CV_Assert(i->svmInitialized); // getSVMCapabilitites() must be called first
    CV_Assert(i->svmFunctions.fn_clSVMAlloc != NULL);
    return &i->svmFunctions;
}

CV_EXPORTS bool useSVM(UMatUsageFlags usageFlags)
{
    if (checkForceSVMUmatUsage())
        return true;
    if (checkDisableSVMUMatUsage())
        return false;
    if ((usageFlags & USAGE_ALLOCATE_SHARED_MEMORY) != 0)
        return true;
    return false; // don't use SVM by default
}

} // namespace cv::ocl::svm
#endif // HAVE_OPENCL_SVM



Ilya Lavrenov's avatar
Ilya Lavrenov committed
2929
void initializeContextFromHandle(Context& ctx, void* platform, void* _context, void* _device)
2930 2931 2932 2933 2934
{
    cl_context context = (cl_context)_context;
    cl_device_id device = (cl_device_id)_device;

    // cleanup old context
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2935
    Context::Impl * impl = ctx.p;
2936 2937
    if (impl->handle)
    {
2938
        CV_OclDbgAssert(clReleaseContext(impl->handle) == CL_SUCCESS);
2939 2940 2941 2942 2943 2944 2945 2946
    }
    impl->devices.clear();

    impl->handle = context;
    impl->devices.resize(1);
    impl->devices[0].set(device);

    Platform& p = Platform::getDefault();
2947
    Platform::Impl* pImpl = p.p;
2948 2949 2950
    pImpl->handle = (cl_platform_id)platform;
}

2951
/////////////////////////////////////////// Queue /////////////////////////////////////////////
2952

2953 2954
struct Queue::Impl
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2955
    Impl(const Context& c, const Device& d)
2956 2957
    {
        refcount = 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2958
        const Context* pc = &c;
2959 2960 2961
        cl_context ch = (cl_context)pc->ptr();
        if( !ch )
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2962
            pc = &Context::getDefault();
2963 2964 2965 2966 2967 2968 2969
            ch = (cl_context)pc->ptr();
        }
        cl_device_id dh = (cl_device_id)d.ptr();
        if( !dh )
            dh = (cl_device_id)pc->device(0).ptr();
        cl_int retval = 0;
        handle = clCreateCommandQueue(ch, dh, 0, &retval);
2970
        CV_OclDbgAssert(retval == CL_SUCCESS);
2971 2972 2973 2974
    }

    ~Impl()
    {
2975 2976 2977
#ifdef _WIN32
        if (!cv::__termination)
#endif
2978
        {
2979 2980 2981 2982
            if(handle)
            {
                clFinish(handle);
                clReleaseCommandQueue(handle);
2983
                handle = NULL;
2984
            }
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_command_queue handle;
};

Queue::Queue()
{
    p = 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2998
Queue::Queue(const Context& c, const Device& d)
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
{
    p = 0;
    create(c, d);
}

Queue::Queue(const Queue& q)
{
    p = q.p;
    if(p)
        p->addref();
}

Queue& Queue::operator = (const Queue& q)
{
    Impl* newp = (Impl*)q.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Queue::~Queue()
{
    if(p)
        p->release();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3028
bool Queue::create(const Context& c, const Device& d)
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
{
    if(p)
        p->release();
    p = new Impl(c, d);
    return p->handle != 0;
}

void Queue::finish()
{
    if(p && p->handle)
3039 3040 3041
    {
        CV_OclDbgAssert(clFinish(p->handle) == CL_SUCCESS);
    }
3042 3043 3044 3045 3046 3047 3048 3049 3050
}

void* Queue::ptr() const
{
    return p ? p->handle : 0;
}

Queue& Queue::getDefault()
{
3051
    Queue& q = getCoreTlsData().get()->oclQueue;
3052
    if( !q.p && haveOpenCL() )
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3053
        q.create(Context::getDefault());
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    return q;
}

static cl_command_queue getQueue(const Queue& q)
{
    cl_command_queue qq = (cl_command_queue)q.ptr();
    if(!qq)
        qq = (cl_command_queue)Queue::getDefault().ptr();
    return qq;
}

3065 3066
/////////////////////////////////////////// KernelArg /////////////////////////////////////////////

3067
KernelArg::KernelArg()
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3068
    : flags(0), m(0), obj(0), sz(0), wscale(1), iwscale(1)
3069 3070 3071
{
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3072 3073
KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, int _iwscale, const void* _obj, size_t _sz)
    : flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale), iwscale(_iwscale)
3074 3075 3076 3077 3078 3079
{
}

KernelArg KernelArg::Constant(const Mat& m)
{
    CV_Assert(m.isContinuous());
3080
    return KernelArg(CONSTANT, 0, 0, 0, m.ptr(), m.total()*m.elemSize());
3081 3082
}

3083
/////////////////////////////////////////// Kernel /////////////////////////////////////////////
3084 3085 3086

struct Kernel::Impl
{
3087 3088
    Impl(const char* kname, const Program& prog) :
        refcount(1), e(0), nu(0)
3089 3090 3091 3092 3093
    {
        cl_program ph = (cl_program)prog.ptr();
        cl_int retval = 0;
        handle = ph != 0 ?
            clCreateKernel(ph, kname, &retval) : 0;
3094
        CV_OclDbgAssert(retval == CL_SUCCESS);
3095 3096
        for( int i = 0; i < MAX_ARRS; i++ )
            u[i] = 0;
3097
        haveTempDstUMats = false;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
    }

    void cleanupUMats()
    {
        for( int i = 0; i < MAX_ARRS; i++ )
            if( u[i] )
            {
                if( CV_XADD(&u[i]->urefcount, -1) == 1 )
                    u[i]->currAllocator->deallocate(u[i]);
                u[i] = 0;
            }
        nu = 0;
3110
        haveTempDstUMats = false;
3111 3112
    }

3113
    void addUMat(const UMat& m, bool dst)
3114 3115 3116 3117 3118
    {
        CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
        u[nu] = m.u;
        CV_XADD(&m.u->urefcount, 1);
        nu++;
3119 3120
        if(dst && m.u->tempUMat())
            haveTempDstUMats = true;
3121
    }
3122

3123 3124 3125 3126 3127
    void addImage(const Image2D& image)
    {
        images.push_back(image);
    }

3128 3129
    void finit()
    {
3130
        cleanupUMats();
3131
        images.clear();
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
        if(e) { clReleaseEvent(e); e = 0; }
        release();
    }

    ~Impl()
    {
        if(handle)
            clReleaseKernel(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_kernel handle;
    cl_event e;
3146 3147 3148
    enum { MAX_ARRS = 16 };
    UMatData* u[MAX_ARRS];
    int nu;
3149
    std::list<Image2D> images;
3150
    bool haveTempDstUMats;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
};

}}

extern "C"
{
static void CL_CALLBACK oclCleanupCallback(cl_event, cl_int, void *p)
{
    ((cv::ocl::Kernel::Impl*)p)->finit();
}

}

namespace cv { namespace ocl {

Kernel::Kernel()
{
    p = 0;
}

Kernel::Kernel(const char* kname, const Program& prog)
{
    p = 0;
    create(kname, prog);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3177
Kernel::Kernel(const char* kname, const ProgramSource& src,
3178
               const String& buildopts, String* errmsg)
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
{
    p = 0;
    create(kname, src, buildopts, errmsg);
}

Kernel::Kernel(const Kernel& k)
{
    p = k.p;
    if(p)
        p->addref();
}

Kernel& Kernel::operator = (const Kernel& k)
{
    Impl* newp = (Impl*)k.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Kernel::~Kernel()
{
    if(p)
        p->release();
}

bool Kernel::create(const char* kname, const Program& prog)
{
    if(p)
        p->release();
    p = new Impl(kname, prog);
    if(p->handle == 0)
    {
        p->release();
        p = 0;
    }
3218 3219 3220
#ifdef CV_OPENCL_RUN_ASSERT // check kernel compilation fails
    CV_Assert(p);
#endif
3221 3222 3223
    return p != 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3224
bool Kernel::create(const char* kname, const ProgramSource& src,
3225
                    const String& buildopts, String* errmsg)
3226 3227 3228 3229 3230 3231
{
    if(p)
    {
        p->release();
        p = 0;
    }
3232 3233
    String tempmsg;
    if( !errmsg ) errmsg = &tempmsg;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3234
    const Program& prog = Context::getDefault().getProg(src, buildopts, *errmsg);
3235 3236 3237 3238 3239 3240 3241 3242
    return create(kname, prog);
}

void* Kernel::ptr() const
{
    return p ? p->handle : 0;
}

3243
bool Kernel::empty() const
3244
{
3245 3246 3247 3248 3249
    return ptr() == 0;
}

int Kernel::set(int i, const void* value, size_t sz)
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3250 3251
    if (!p || !p->handle)
        return -1;
3252 3253
    if (i < 0)
        return i;
3254 3255
    if( i == 0 )
        p->cleanupUMats();
3256 3257 3258 3259

    cl_int retval = clSetKernelArg(p->handle, (cl_uint)i, sz, value);
    CV_OclDbgAssert(retval == CL_SUCCESS);
    if (retval != CL_SUCCESS)
3260 3261
        return -1;
    return i+1;
3262 3263
}

3264 3265
int Kernel::set(int i, const Image2D& image2D)
{
3266
    p->addImage(image2D);
3267 3268 3269 3270
    cl_mem h = (cl_mem)image2D.ptr();
    return set(i, &h, sizeof(h));
}

3271
int Kernel::set(int i, const UMat& m)
3272
{
3273
    return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
3274 3275
}

3276
int Kernel::set(int i, const KernelArg& arg)
3277
{
3278 3279
    if( !p || !p->handle )
        return -1;
3280 3281
    if (i < 0)
        return i;
3282 3283
    if( i == 0 )
        p->cleanupUMats();
3284 3285
    if( arg.m )
    {
3286 3287
        int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
                          ((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3288
        bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
3289 3290
        cl_mem h = (cl_mem)arg.m->handle(accessFlags);

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3291 3292 3293 3294 3295 3296 3297
        if (!h)
        {
            p->release();
            p = 0;
            return -1;
        }

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
#ifdef HAVE_OPENCL_SVM
        if ((arg.m->u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
        {
            const Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            uchar*& svmDataPtr = (uchar*&)arg.m->u->handle;
            CV_OPENCL_SVM_TRACE_P("clSetKernelArgSVMPointer: %p\n", svmDataPtr);
#if 1 // TODO
            cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, svmDataPtr);
#else
            cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, &svmDataPtr);
#endif
            CV_Assert(status == CL_SUCCESS);
        }
        else
#endif
        {
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h) == CL_SUCCESS);
        }

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3318
        if (ptronly)
3319 3320 3321
        {
            i++;
        }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3322
        else if( arg.m->dims <= 2 )
3323
        {
3324
            UMat2D u2d(*arg.m);
3325 3326
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset) == CL_SUCCESS);
3327 3328 3329 3330
            i += 3;

            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3331
                int cols = u2d.cols*arg.wscale/arg.iwscale;
3332 3333
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols) == CL_SUCCESS);
3334 3335
                i += 2;
            }
3336 3337 3338
        }
        else
        {
3339
            UMat3D u3d(*arg.m);
3340 3341 3342
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset) == CL_SUCCESS);
3343 3344 3345
            i += 4;
            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3346
                int cols = u3d.cols*arg.wscale/arg.iwscale;
3347 3348 3349
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols) == CL_SUCCESS);
3350 3351
                i += 3;
            }
3352
        }
3353
        p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
3354
        return i;
3355
    }
3356
    CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj) == CL_SUCCESS);
3357
    return i+1;
3358 3359 3360
}


3361
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
3362
                 bool sync, const Queue& q)
3363
{
3364 3365
    if(!p || !p->handle || p->e != 0)
        return false;
3366

3367
    cl_command_queue qq = getQueue(q);
3368
    size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
3369
    size_t total = 1;
3370
    CV_Assert(_globalsize != 0);
3371 3372
    for (int i = 0; i < dims; i++)
    {
3373
        size_t val = _localsize ? _localsize[i] :
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3374
            dims == 1 ? 64 : dims == 2 ? (i == 0 ? 256 : 8) : dims == 3 ? (8>>(int)(i>0)) : 1;
3375
        CV_Assert( val > 0 );
3376 3377 3378 3379 3380
        total *= _globalsize[i];
        globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
    }
    if( total == 0 )
        return true;
3381 3382
    if( p->haveTempDstUMats )
        sync = true;
3383
    cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
3384
                                           offset, globalsize, _localsize, 0, 0,
3385
                                           sync ? 0 : &p->e);
3386 3387 3388 3389 3390 3391 3392
#if CV_OPENCL_SHOW_RUN_ERRORS
    if (retval != CL_SUCCESS)
    {
        printf("OpenCL program returns error: %d\n", retval);
        fflush(stdout);
    }
#endif
3393
    if( sync || retval != CL_SUCCESS )
3394
    {
3395
        CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
3396
        p->cleanupUMats();
3397 3398 3399 3400
    }
    else
    {
        p->addref();
3401
        CV_OclDbgAssert(clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
3402
    }
3403
    return retval == CL_SUCCESS;
3404 3405
}

3406
bool Kernel::runTask(bool sync, const Queue& q)
3407
{
3408 3409 3410
    if(!p || !p->handle || p->e != 0)
        return false;

3411
    cl_command_queue qq = getQueue(q);
3412
    cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &p->e);
3413
    if( sync || retval != CL_SUCCESS )
3414
    {
3415
        CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
3416
        p->cleanupUMats();
3417 3418 3419 3420
    }
    else
    {
        p->addref();
3421
        CV_OclDbgAssert(clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
3422
    }
3423
    return retval == CL_SUCCESS;
3424 3425 3426 3427 3428
}


size_t Kernel::workGroupSize() const
{
3429
    if(!p || !p->handle)
3430 3431 3432 3433
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
3434
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
3435 3436
}

Konstantin Matskevich's avatar
Konstantin Matskevich committed
3437 3438
size_t Kernel::preferedWorkGroupSizeMultiple() const
{
3439
    if(!p || !p->handle)
Konstantin Matskevich's avatar
Konstantin Matskevich committed
3440 3441 3442 3443
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
3444
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
Konstantin Matskevich's avatar
Konstantin Matskevich committed
3445 3446
}

3447 3448
bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
3449
    if(!p || !p->handle || !wsz)
3450 3451 3452 3453
        return 0;
    size_t retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
3454
                                    sizeof(wsz[0])*3, wsz, &retsz) == CL_SUCCESS;
3455 3456 3457 3458
}

size_t Kernel::localMemSize() const
{
3459
    if(!p || !p->handle)
3460 3461 3462 3463 3464
        return 0;
    size_t retsz = 0;
    cl_ulong val = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
3465
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? (size_t)val : 0;
3466 3467
}

3468
/////////////////////////////////////////// Program /////////////////////////////////////////////
3469 3470 3471

struct Program::Impl
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3472
    Impl(const ProgramSource& _src,
3473 3474 3475
         const String& _buildflags, String& errmsg)
    {
        refcount = 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3476
        const Context& ctx = Context::getDefault();
3477 3478 3479 3480 3481 3482 3483 3484
        src = _src;
        buildflags = _buildflags;
        const String& srcstr = src.source();
        const char* srcptr = srcstr.c_str();
        size_t srclen = srcstr.size();
        cl_int retval = 0;

        handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
3485
        if( handle && retval == CL_SUCCESS )
3486
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3487
            int i, n = (int)ctx.ndevices();
3488 3489 3490 3491
            AutoBuffer<void*> deviceListBuf(n+1);
            void** deviceList = deviceListBuf;
            for( i = 0; i < n; i++ )
                deviceList[i] = ctx.device(i).ptr();
3492

3493 3494 3495 3496 3497 3498
            Device device = Device::getDefault();
            if (device.isAMD())
                buildflags += " -D AMD_DEVICE";
            else if (device.isIntel())
                buildflags += " -D INTEL_DEVICE";

3499 3500 3501
            retval = clBuildProgram(handle, n,
                                    (const cl_device_id*)deviceList,
                                    buildflags.c_str(), 0, 0);
3502
#if !CV_OPENCL_ALWAYS_SHOW_BUILD_LOG
3503
            if( retval != CL_SUCCESS )
3504
#endif
3505 3506
            {
                size_t retsz = 0;
3507
                cl_int buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
3508
                                               CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
3509
                if (buildInfo_retval == CL_SUCCESS && retsz > 1)
3510 3511 3512
                {
                    AutoBuffer<char> bufbuf(retsz + 16);
                    char* buf = bufbuf;
3513
                    buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
3514
                                                   CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
3515
                    if (buildInfo_retval == CL_SUCCESS)
3516
                    {
3517
                        // TODO It is useful to see kernel name & program file name also
3518
                        errmsg = String(buf);
3519
                        printf("OpenCL program build log: %s\n%s\n", buildflags.c_str(), errmsg.c_str());
3520
                        fflush(stdout);
3521 3522
                    }
                }
3523
                if (retval != CL_SUCCESS && handle)
3524 3525 3526 3527
                {
                    clReleaseProgram(handle);
                    handle = NULL;
                }
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
            }
        }
    }

    Impl(const String& _buf, const String& _buildflags)
    {
        refcount = 1;
        handle = 0;
        buildflags = _buildflags;
        if(_buf.empty())
            return;
        String prefix0 = Program::getPrefix(buildflags);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3540
        const Context& ctx = Context::getDefault();
3541 3542
        const Device& dev = Device::getDefault();
        const char* pos0 = _buf.c_str();
3543
        const char* pos1 = strchr(pos0, '\n');
3544 3545
        if(!pos1)
            return;
3546
        const char* pos2 = strchr(pos1+1, '\n');
3547 3548
        if(!pos2)
            return;
3549
        const char* pos3 = strchr(pos2+1, '\n');
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
        if(!pos3)
            return;
        size_t prefixlen = (pos3 - pos0)+1;
        String prefix(pos0, prefixlen);
        if( prefix != prefix0 )
            return;
        const uchar* bin = (uchar*)(pos3+1);
        void* devid = dev.ptr();
        size_t codelen = _buf.length() - prefixlen;
        cl_int binstatus = 0, retval = 0;
        handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
                                           &codelen, &bin, &binstatus, &retval);
3562
        CV_OclDbgAssert(retval == CL_SUCCESS);
3563 3564 3565 3566 3567 3568 3569 3570 3571
    }

    String store()
    {
        if(!handle)
            return String();
        size_t progsz = 0, retsz = 0;
        String prefix = Program::getPrefix(buildflags);
        size_t prefixlen = prefix.length();
3572
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) != CL_SUCCESS)
3573 3574 3575 3576 3577
            return String();
        AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
        uchar* buf = bufbuf;
        memcpy(buf, prefix.c_str(), prefixlen);
        buf += prefixlen;
3578
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) != CL_SUCCESS)
3579 3580 3581 3582 3583 3584 3585 3586
            return String();
        buf[progsz] = (uchar)'\0';
        return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
    }

    ~Impl()
    {
        if( handle )
3587
        {
3588 3589 3590 3591 3592 3593
#ifdef _WIN32
            if (!cv::__termination)
#endif
            {
                clReleaseProgram(handle);
            }
3594 3595
            handle = NULL;
        }
3596 3597 3598 3599
    }

    IMPLEMENT_REFCOUNTABLE();

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3600
    ProgramSource src;
3601 3602 3603 3604 3605 3606 3607
    String buildflags;
    cl_program handle;
};


Program::Program() { p = 0; }

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3608
Program::Program(const ProgramSource& src,
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
        const String& buildflags, String& errmsg)
{
    p = 0;
    create(src, buildflags, errmsg);
}

Program::Program(const Program& prog)
{
    p = prog.p;
    if(p)
        p->addref();
}

Program& Program::operator = (const Program& prog)
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Program::~Program()
{
    if(p)
        p->release();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3639
bool Program::create(const ProgramSource& src,
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
            const String& buildflags, String& errmsg)
{
    if(p)
        p->release();
    p = new Impl(src, buildflags, errmsg);
    if(!p->handle)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3653
const ProgramSource& Program::source() const
3654
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3655
    static ProgramSource dummy;
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
    return p ? p->src : dummy;
}

void* Program::ptr() const
{
    return p ? p->handle : 0;
}

bool Program::read(const String& bin, const String& buildflags)
{
    if(p)
        p->release();
    p = new Impl(bin, buildflags);
    return p->handle != 0;
}

bool Program::write(String& bin) const
{
    if(!p)
        return false;
    bin = p->store();
    return !bin.empty();
}

String Program::getPrefix() const
{
    if(!p)
        return String();
    return getPrefix(p->buildflags);
}

String Program::getPrefix(const String& buildflags)
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3689
    const Context& ctx = Context::getDefault();
3690 3691 3692 3693 3694
    const Device& dev = ctx.device(0);
    return format("name=%s\ndriver=%s\nbuildflags=%s\n",
                  dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3695
///////////////////////////////////////// ProgramSource ///////////////////////////////////////////////
3696

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3697
struct ProgramSource::Impl
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
{
    Impl(const char* _src)
    {
        init(String(_src));
    }
    Impl(const String& _src)
    {
        init(_src);
    }
    void init(const String& _src)
    {
        refcount = 1;
        src = _src;
        h = crc64((uchar*)src.c_str(), src.size());
    }

    IMPLEMENT_REFCOUNTABLE();
    String src;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3716
    ProgramSource::hash_t h;
3717 3718 3719
};


Ilya Lavrenov's avatar
Ilya Lavrenov committed
3720
ProgramSource::ProgramSource()
3721 3722 3723 3724
{
    p = 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3725
ProgramSource::ProgramSource(const char* prog)
3726 3727 3728 3729
{
    p = new Impl(prog);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3730
ProgramSource::ProgramSource(const String& prog)
3731 3732 3733 3734
{
    p = new Impl(prog);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3735
ProgramSource::~ProgramSource()
3736 3737 3738 3739 3740
{
    if(p)
        p->release();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3741
ProgramSource::ProgramSource(const ProgramSource& prog)
3742 3743 3744 3745 3746 3747
{
    p = prog.p;
    if(p)
        p->addref();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3748
ProgramSource& ProgramSource::operator = (const ProgramSource& prog)
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3759
const String& ProgramSource::source() const
3760 3761 3762 3763 3764
{
    static String dummy;
    return p ? p->src : dummy;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3765
ProgramSource::hash_t ProgramSource::hash() const
3766 3767 3768 3769
{
    return p ? p->h : 0;
}

3770
//////////////////////////////////////////// OpenCLAllocator //////////////////////////////////////////////////
3771

3772
template<typename T>
3773 3774 3775 3776 3777
class OpenCLBufferPool
{
protected:
    ~OpenCLBufferPool() { }
public:
3778 3779
    virtual T allocate(size_t size) = 0;
    virtual void release(T buffer) = 0;
3780 3781
};

3782 3783
template <typename Derived, typename BufferEntry, typename T>
class OpenCLBufferPoolBaseImpl : public BufferPoolController, public OpenCLBufferPool<T>
3784
{
3785 3786
private:
    inline Derived& derived() { return *static_cast<Derived*>(this); }
3787 3788 3789 3790 3791 3792
protected:
    Mutex mutex_;

    size_t currentReservedSize;
    size_t maxReservedSize;

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    std::list<BufferEntry> allocatedEntries_; // Allocated and used entries
    std::list<BufferEntry> reservedEntries_; // LRU order. Allocated, but not used entries

    // synchronized
    bool _findAndRemoveEntryFromAllocatedList(CV_OUT BufferEntry& entry, T buffer)
    {
        typename std::list<BufferEntry>::iterator i = allocatedEntries_.begin();
        for (; i != allocatedEntries_.end(); ++i)
        {
            BufferEntry& e = *i;
            if (e.clBuffer_ == buffer)
            {
                entry = e;
                allocatedEntries_.erase(i);
                return true;
            }
        }
        return false;
    }
3812 3813 3814 3815 3816 3817

    // synchronized
    bool _findAndRemoveEntryFromReservedList(CV_OUT BufferEntry& entry, const size_t size)
    {
        if (reservedEntries_.empty())
            return false;
3818 3819 3820
        typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
        typename std::list<BufferEntry>::iterator result_pos = reservedEntries_.end();
        BufferEntry result;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
        size_t minDiff = (size_t)(-1);
        for (; i != reservedEntries_.end(); ++i)
        {
            BufferEntry& e = *i;
            if (e.capacity_ >= size)
            {
                size_t diff = e.capacity_ - size;
                if (diff < size / 8 && (result_pos == reservedEntries_.end() || diff < minDiff))
                {
                    minDiff = diff;
                    result_pos = i;
                    result = e;
                    if (diff == 0)
                        break;
                }
            }
        }
        if (result_pos != reservedEntries_.end())
        {
            //CV_DbgAssert(result == *result_pos);
            reservedEntries_.erase(result_pos);
            entry = result;
            currentReservedSize -= entry.capacity_;
3844
            allocatedEntries_.push_back(entry);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
            return true;
        }
        return false;
    }

    // synchronized
    void _checkSizeOfReservedEntries()
    {
        while (currentReservedSize > maxReservedSize)
        {
            CV_DbgAssert(!reservedEntries_.empty());
            const BufferEntry& entry = reservedEntries_.back();
            CV_DbgAssert(currentReservedSize >= entry.capacity_);
            currentReservedSize -= entry.capacity_;
3859
            derived()._releaseBufferEntry(entry);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
            reservedEntries_.pop_back();
        }
    }

    inline size_t _allocationGranularity(size_t size)
    {
        // heuristic values
        if (size < 1024)
            return 16;
        else if (size < 64*1024)
            return 64;
        else if (size < 1024*1024)
            return 4096;
        else if (size < 16*1024*1024)
            return 64*1024;
        else
            return 1024*1024;
    }

public:
3880 3881 3882
    OpenCLBufferPoolBaseImpl()
        : currentReservedSize(0),
          maxReservedSize(0)
3883
    {
3884
        // nothing
3885
    }
3886
    virtual ~OpenCLBufferPoolBaseImpl()
3887 3888 3889 3890 3891
    {
        freeAllReservedBuffers();
        CV_Assert(reservedEntries_.empty());
    }
public:
3892
    virtual T allocate(size_t size)
3893
    {
3894 3895 3896
        AutoLock locker(mutex_);
        BufferEntry entry;
        if (maxReservedSize > 0 && _findAndRemoveEntryFromReservedList(entry, size))
3897
        {
3898 3899 3900 3901 3902 3903
            CV_DbgAssert(size <= entry.capacity_);
            LOG_BUFFER_POOL("Reuse reserved buffer: %p\n", entry.clBuffer_);
        }
        else
        {
            derived()._allocateBufferEntry(entry, size);
3904 3905 3906
        }
        return entry.clBuffer_;
    }
3907
    virtual void release(T buffer)
3908
    {
3909 3910 3911
        AutoLock locker(mutex_);
        BufferEntry entry;
        CV_Assert(_findAndRemoveEntryFromAllocatedList(entry, buffer));
3912 3913
        if (maxReservedSize == 0 || entry.capacity_ > maxReservedSize / 8)
        {
3914
            derived()._releaseBufferEntry(entry);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
        }
        else
        {
            reservedEntries_.push_front(entry);
            currentReservedSize += entry.capacity_;
            _checkSizeOfReservedEntries();
        }
    }

    virtual size_t getReservedSize() const { return currentReservedSize; }
    virtual size_t getMaxReservedSize() const { return maxReservedSize; }
    virtual void setMaxReservedSize(size_t size)
    {
        AutoLock locker(mutex_);
        size_t oldMaxReservedSize = maxReservedSize;
        maxReservedSize = size;
        if (maxReservedSize < oldMaxReservedSize)
        {
3933
            typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
3934 3935 3936 3937 3938 3939 3940
            for (; i != reservedEntries_.end();)
            {
                const BufferEntry& entry = *i;
                if (entry.capacity_ > maxReservedSize / 8)
                {
                    CV_DbgAssert(currentReservedSize >= entry.capacity_);
                    currentReservedSize -= entry.capacity_;
3941
                    derived()._releaseBufferEntry(entry);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
                    i = reservedEntries_.erase(i);
                    continue;
                }
                ++i;
            }
            _checkSizeOfReservedEntries();
        }
    }
    virtual void freeAllReservedBuffers()
    {
        AutoLock locker(mutex_);
3953
        typename std::list<BufferEntry>::const_iterator i = reservedEntries_.begin();
3954 3955 3956
        for (; i != reservedEntries_.end(); ++i)
        {
            const BufferEntry& entry = *i;
3957
            derived()._releaseBufferEntry(entry);
3958 3959
        }
        reservedEntries_.clear();
3960
        currentReservedSize = 0;
3961 3962 3963
    }
};

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
struct CLBufferEntry
{
    cl_mem clBuffer_;
    size_t capacity_;
    CLBufferEntry() : clBuffer_((cl_mem)NULL), capacity_(0) { }
};

class OpenCLBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLBufferPoolImpl, CLBufferEntry, cl_mem>
{
public:
    typedef struct CLBufferEntry BufferEntry;
protected:
    int createFlags_;
public:
    OpenCLBufferPoolImpl(int createFlags = 0)
        : createFlags_(createFlags)
    {
    }

    void _allocateBufferEntry(BufferEntry& entry, size_t size)
    {
        CV_DbgAssert(entry.clBuffer_ == NULL);
        entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
        Context& ctx = Context::getDefault();
        cl_int retval = CL_SUCCESS;
        entry.clBuffer_ = clCreateBuffer((cl_context)ctx.ptr(), CL_MEM_READ_WRITE|createFlags_, entry.capacity_, 0, &retval);
        CV_Assert(retval == CL_SUCCESS);
        CV_Assert(entry.clBuffer_ != NULL);
        if(retval == CL_SUCCESS)
        {
            CV_IMPL_ADD(CV_IMPL_OCL);
        }
        LOG_BUFFER_POOL("OpenCL allocate %lld (0x%llx) bytes: %p\n",
                (long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
        allocatedEntries_.push_back(entry);
    }

    void _releaseBufferEntry(const BufferEntry& entry)
    {
        CV_Assert(entry.capacity_ != 0);
        CV_Assert(entry.clBuffer_ != NULL);
        LOG_BUFFER_POOL("OpenCL release buffer: %p, %lld (0x%llx) bytes\n",
                entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
        clReleaseMemObject(entry.clBuffer_);
    }
};

#ifdef HAVE_OPENCL_SVM
struct CLSVMBufferEntry
{
    void* clBuffer_;
    size_t capacity_;
    CLSVMBufferEntry() : clBuffer_(NULL), capacity_(0) { }
};
class OpenCLSVMBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLSVMBufferPoolImpl, CLSVMBufferEntry, void*>
{
public:
    typedef struct CLSVMBufferEntry BufferEntry;
public:
    OpenCLSVMBufferPoolImpl()
    {
    }

    void _allocateBufferEntry(BufferEntry& entry, size_t size)
    {
        CV_DbgAssert(entry.clBuffer_ == NULL);
        entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));

        Context& ctx = Context::getDefault();
        const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
        bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
        cl_svm_mem_flags memFlags = CL_MEM_READ_WRITE |
                (isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);

        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
        CV_DbgAssert(svmFns->isValid());

        CV_OPENCL_SVM_TRACE_P("clSVMAlloc: %d\n", (int)entry.capacity_);
        void *buf = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, entry.capacity_, 0);
        CV_Assert(buf);

        entry.clBuffer_ = buf;
        {
            CV_IMPL_ADD(CV_IMPL_OCL);
        }
        LOG_BUFFER_POOL("OpenCL SVM allocate %lld (0x%llx) bytes: %p\n",
                (long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
        allocatedEntries_.push_back(entry);
    }

    void _releaseBufferEntry(const BufferEntry& entry)
    {
        CV_Assert(entry.capacity_ != 0);
        CV_Assert(entry.clBuffer_ != NULL);
        LOG_BUFFER_POOL("OpenCL release SVM buffer: %p, %lld (0x%llx) bytes\n",
                entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
        Context& ctx = Context::getDefault();
        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
        CV_DbgAssert(svmFns->isValid());
        CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n",  entry.clBuffer_);
        svmFns->fn_clSVMFree((cl_context)ctx.ptr(), entry.clBuffer_);
    }
};
#endif



4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
#if defined _MSC_VER
#pragma warning(disable:4127) // conditional expression is constant
#endif
template <bool readAccess, bool writeAccess>
class AlignedDataPtr
{
protected:
    const size_t size_;
    uchar* const originPtr_;
    const size_t alignment_;
    uchar* ptr_;
    uchar* allocatedPtr_;

public:
    AlignedDataPtr(uchar* ptr, size_t size, size_t alignment)
        : size_(size), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL)
    {
        CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
        if (((size_t)ptr_ & (alignment - 1)) != 0)
        {
            allocatedPtr_ = new uchar[size_ + alignment - 1];
            ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
            if (readAccess)
            {
                memcpy(ptr_, originPtr_, size_);
            }
        }
    }

    uchar* getAlignedPtr() const
    {
        CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
        return ptr_;
    }

    ~AlignedDataPtr()
    {
        if (allocatedPtr_)
        {
            if (writeAccess)
            {
                memcpy(originPtr_, ptr_, size_);
            }
            delete[] allocatedPtr_;
            allocatedPtr_ = NULL;
        }
        ptr_ = NULL;
    }
private:
    AlignedDataPtr(const AlignedDataPtr&); // disabled
    AlignedDataPtr& operator=(const AlignedDataPtr&); // disabled
};
#if defined _MSC_VER
#pragma warning(default:4127) // conditional expression is constant
#endif

#ifndef CV_OPENCL_DATA_PTR_ALIGNMENT
#define CV_OPENCL_DATA_PTR_ALIGNMENT 16
#endif
4130

4131 4132
class OpenCLAllocator : public MatAllocator
{
4133
    mutable OpenCLBufferPoolImpl bufferPool;
4134 4135 4136 4137 4138
    mutable OpenCLBufferPoolImpl bufferPoolHostPtr;
#ifdef  HAVE_OPENCL_SVM
    mutable OpenCLSVMBufferPoolImpl bufferPoolSVM;
#endif

4139 4140
    enum AllocatorFlags
    {
4141 4142 4143 4144 4145
        ALLOCATOR_FLAGS_BUFFER_POOL_USED = 1 << 0,
        ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED = 1 << 1
#ifdef HAVE_OPENCL_SVM
        ,ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED = 1 << 2
#endif
4146
    };
4147
public:
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
    OpenCLAllocator()
        : bufferPool(0),
          bufferPoolHostPtr(CL_MEM_ALLOC_HOST_PTR)
    {
        size_t defaultPoolSize, poolSize;
        defaultPoolSize = ocl::Device::getDefault().isIntel() ? 1 << 27 : 0;
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPool.setMaxReservedSize(poolSize);
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_HOST_PTR_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPoolHostPtr.setMaxReservedSize(poolSize);
#ifdef HAVE_OPENCL_SVM
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_SVM_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPoolSVM.setMaxReservedSize(poolSize);
#endif

        matStdAllocator = Mat::getStdAllocator();
    }
4165

4166 4167
    UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step,
            int flags, UMatUsageFlags usageFlags) const
4168
    {
4169
        UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags, usageFlags);
4170 4171 4172
        return u;
    }

4173
    void getBestFlags(const Context& ctx, int /*flags*/, UMatUsageFlags usageFlags, int& createFlags, int& flags0) const
4174 4175
    {
        const Device& dev = ctx.device(0);
4176 4177 4178
        createFlags = 0;
        if ((usageFlags & USAGE_ALLOCATE_HOST_MEMORY) != 0)
            createFlags |= CL_MEM_ALLOC_HOST_PTR;
4179 4180 4181 4182 4183 4184 4185

        if( dev.hostUnifiedMemory() )
            flags0 = 0;
        else
            flags0 = UMatData::COPY_ON_MAP;
    }

4186
    UMatData* allocate(int dims, const int* sizes, int type,
4187
                       void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
4188 4189
    {
        if(!useOpenCL())
4190
            return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
4191
        CV_Assert(data == 0);
4192 4193 4194 4195 4196 4197 4198 4199
        size_t total = CV_ELEM_SIZE(type);
        for( int i = dims-1; i >= 0; i-- )
        {
            if( step )
                step[i] = total;
            total *= sizes[i];
        }

Ilya Lavrenov's avatar
Ilya Lavrenov committed
4200
        Context& ctx = Context::getDefault();
4201

4202
        int createFlags = 0, flags0 = 0;
4203
        getBestFlags(ctx, flags, usageFlags, createFlags, flags0);
4204

4205 4206
        void* handle = NULL;
        int allocatorFlags = 0;
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220

#ifdef HAVE_OPENCL_SVM
        const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
        if (ctx.useSVM() && svm::useSVM(usageFlags) && !svmCaps.isNoSVMSupport())
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED;
            handle = bufferPoolSVM.allocate(total);

            // this property is constant, so single buffer pool can be used here
            bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
            allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
        }
        else
#endif
4221 4222 4223
        if (createFlags == 0)
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_USED;
4224 4225 4226 4227 4228 4229
            handle = bufferPool.allocate(total);
        }
        else if (createFlags == CL_MEM_ALLOC_HOST_PTR)
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED;
            handle = bufferPoolHostPtr.allocate(total);
4230 4231 4232
        }
        else
        {
4233
            CV_Assert(handle != NULL); // Unsupported, throw
4234
        }
4235 4236 4237 4238

        if (!handle)
            return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);

4239 4240 4241 4242 4243
        UMatData* u = new UMatData(this);
        u->data = 0;
        u->size = total;
        u->handle = handle;
        u->flags = flags0;
4244 4245
        u->allocatorFlags_ = allocatorFlags;
        CV_DbgAssert(!u->tempUMat()); // for bufferPool.release() consistency in deallocate()
4246 4247 4248
        return u;
    }

4249
    bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
4250 4251 4252 4253 4254 4255 4256 4257 4258
    {
        if(!u)
            return false;

        UMatDataAutoLock lock(u);

        if(u->handle == 0)
        {
            CV_Assert(u->origdata != 0);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
4259
            Context& ctx = Context::getDefault();
4260
            int createFlags = 0, flags0 = 0;
4261
            getBestFlags(ctx, accessFlags, usageFlags, createFlags, flags0);
4262 4263

            cl_context ctx_handle = (cl_context)ctx.ptr();
4264 4265 4266 4267 4268 4269 4270 4271 4272
            int allocatorFlags = 0;
            int tempUMatFlags = 0;
            void* handle = NULL;
            cl_int retval = CL_SUCCESS;

#ifdef HAVE_OPENCL_SVM
            svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
            bool useSVM = ctx.useSVM() && svm::useSVM(usageFlags);
            if (useSVM && svmCaps.isSupportFineGrainSystem())
4273
            {
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
                allocatorFlags = svm::OPENCL_SVM_FINE_GRAIN_SYSTEM;
                tempUMatFlags = UMatData::TEMP_UMAT;
                handle = u->origdata;
                CV_OPENCL_SVM_TRACE_P("Use fine grain system: %d (%p)\n", (int)u->size, handle);
            }
            else if (useSVM && (svmCaps.isSupportFineGrainBuffer() || svmCaps.isSupportCoarseGrainBuffer()))
            {
                if (!(accessFlags & ACCESS_FAST)) // memcpy used
                {
                    bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
4284

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
                    cl_svm_mem_flags memFlags = createFlags |
                            (isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);

                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_OPENCL_SVM_TRACE_P("clSVMAlloc + copy: %d\n", (int)u->size);
                    handle = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, u->size, 0);
                    CV_Assert(handle);

                    cl_command_queue q = NULL;
                    if (!isFineGrainBuffer)
                    {
                        q = (cl_command_queue)Queue::getDefault().ptr();
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", handle, (int)u->size);
                        cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE,
                                handle, u->size,
                                0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);

                    }
                    memcpy(handle, u->origdata, u->size);
                    if (!isFineGrainBuffer)
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, handle, 0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                    }

                    tempUMatFlags = UMatData::TEMP_UMAT | UMatData::TEMP_COPIED_UMAT;
                    allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER
                                                : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
                }
            }
            else
#endif
            {
                tempUMatFlags = UMatData::TEMP_UMAT;
                handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
                                           u->size, u->origdata, &retval);
                if((!handle || retval < 0) && !(accessFlags & ACCESS_FAST))
                {
                    handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE|createFlags,
                                               u->size, u->origdata, &retval);
                    tempUMatFlags |= UMatData::TEMP_COPIED_UMAT;
                }
4331
            }
4332
            if(!handle || retval != CL_SUCCESS)
4333
                return false;
4334
            u->handle = handle;
4335 4336 4337
            u->prevAllocator = u->currAllocator;
            u->currAllocator = this;
            u->flags |= tempUMatFlags;
4338
            u->allocatorFlags_ = allocatorFlags;
4339 4340 4341 4342 4343 4344
        }
        if(accessFlags & ACCESS_WRITE)
            u->markHostCopyObsolete(true);
        return true;
    }

4345
    /*void sync(UMatData* u) const
4346 4347
    {
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
4348 4349
        UMatDataAutoLock lock(u);

4350
        if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
4351
        {
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
            if( u->tempCopiedUMat() )
            {
                clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                    u->size, u->origdata, 0, 0, 0);
            }
            else
            {
                cl_int retval = 0;
                void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                (CL_MAP_READ | CL_MAP_WRITE),
                                                0, u->size, 0, 0, 0, &retval);
                clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                clFinish(q);
            }
4366 4367 4368 4369 4370 4371 4372
            u->markHostCopyObsolete(false);
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
        {
            clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                 u->size, u->data, 0, 0, 0);
        }
4373
    }*/
4374

4375 4376 4377 4378 4379
    void deallocate(UMatData* u) const
    {
        if(!u)
            return;

4380 4381 4382
        CV_Assert(u->urefcount >= 0);
        CV_Assert(u->refcount >= 0);

4383 4384 4385
        CV_Assert(u->handle != 0 && u->urefcount == 0);
        if(u->tempUMat())
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
4386
//            UMatDataAutoLock lock(u);
4387

4388
            if( u->hostCopyObsolete() && u->refcount > 0 )
4389
            {
4390 4391
#ifdef HAVE_OPENCL_SVM
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
4392
                {
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    if( u->tempCopiedUMat() )
                    {
                        CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                                (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER);
                        bool isFineGrainBuffer = (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER;
                        cl_command_queue q = NULL;
                        if (!isFineGrainBuffer)
                        {
                            CV_DbgAssert(((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0));
                            q = (cl_command_queue)Queue::getDefault().ptr();
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                            cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
                                    u->handle, u->size,
                                    0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                        }
                        clFinish(q);
                        memcpy(u->origdata, u->handle, u->size);
                        if (!isFineGrainBuffer)
                        {
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                            cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                        }
                    }
                    else
                    {
                        CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM);
                        // nothing
                    }
4427 4428
                }
                else
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
#endif
                {
                    cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                    if( u->tempCopiedUMat() )
                    {
                        AlignedDataPtr<false, true> alignedPtr(u->origdata, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
                        CV_OclDbgAssert(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                            u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS);
                    }
                    else
                    {
                        // TODO Is it really needed for clCreateBuffer with CL_MEM_USE_HOST_PTR?
                        cl_int retval = 0;
                        void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                        (CL_MAP_READ | CL_MAP_WRITE),
                                                        0, u->size, 0, 0, 0, &retval);
                        CV_OclDbgAssert(retval == CL_SUCCESS);
                        CV_OclDbgAssert(clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0) == CL_SUCCESS);
                        CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
                    }
                }
                u->markHostCopyObsolete(false);
            }
#ifdef HAVE_OPENCL_SVM
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                if( u->tempCopiedUMat() )
4456
                {
4457 4458 4459 4460 4461 4462
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", u->handle);
                    svmFns->fn_clSVMFree((cl_context)ctx.ptr(), u->handle);
4463
                }
4464
            }
4465 4466 4467 4468 4469
            else
#endif
            {
                clReleaseMemObject((cl_mem)u->handle);
            }
4470
            u->handle = 0;
4471
            u->currAllocator = u->prevAllocator;
4472
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
4473 4474
                fastFree(u->data);
            u->data = u->origdata;
4475 4476 4477 4478 4479
            if(u->refcount == 0)
                u->currAllocator->deallocate(u);
        }
        else
        {
4480
            CV_Assert(u->refcount == 0);
4481 4482
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
            {
4483
                fastFree(u->data);
4484 4485
                u->data = 0;
            }
4486 4487
            if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_USED)
            {
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
                bufferPool.release((cl_mem)u->handle);
            }
            else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED)
            {
                bufferPoolHostPtr.release((cl_mem)u->handle);
            }
#ifdef HAVE_OPENCL_SVM
            else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED)
            {
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
                {
                    //nothing
                }
                else if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                        (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());
                    cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

                    if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0)
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                    }
                }
                bufferPoolSVM.release((void*)u->handle);
4517
            }
4518
#endif
4519 4520 4521 4522
            else
            {
                clReleaseMemObject((cl_mem)u->handle);
            }
4523
            u->handle = 0;
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
            delete u;
        }
    }

    void map(UMatData* u, int accessFlags) const
    {
        if(!u)
            return;

        CV_Assert( u->handle != 0 );

        UMatDataAutoLock autolock(u);

        if(accessFlags & ACCESS_WRITE)
            u->markDeviceCopyObsolete(true);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

4542 4543
        // FIXIT Workaround for UMat synchronization issue
        // if( u->refcount == 0 )
4544 4545 4546
        {
            if( !u->copyOnMap() )
            {
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
                // TODO
                // because there can be other map requests for the same UMat with different access flags,
                // we use the universal (read-write) access mode.
#ifdef HAVE_OPENCL_SVM
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
                {
                    if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                    {
                        Context& ctx = Context::getDefault();
                        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                        CV_DbgAssert(svmFns->isValid());

                        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0)
                        {
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                            cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ | CL_MAP_WRITE,
                                    u->handle, u->size,
                                    0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                            u->allocatorFlags_ |= svm::OPENCL_SVM_BUFFER_MAP;
                        }
                    }
                    clFinish(q);
                    u->data = (uchar*)u->handle;
                    u->markHostCopyObsolete(false);
                    u->markDeviceMemMapped(true);
                    return;
                }
#endif
4576 4577 4578 4579 4580
                if (u->data) // FIXIT Workaround for UMat synchronization issue
                {
                    //CV_Assert(u->hostCopyObsolete() == false);
                    return;
                }
4581

4582 4583 4584 4585
                cl_int retval = 0;
                u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                     (CL_MAP_READ | CL_MAP_WRITE),
                                                     0, u->size, 0, 0, 0, &retval);
4586
                if(u->data && retval == CL_SUCCESS)
4587 4588
                {
                    u->markHostCopyObsolete(false);
4589
                    u->markDeviceMemMapped(true);
4590 4591 4592
                    return;
                }

4593
                // TODO Is it really a good idea and was it tested well?
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
                // if map failed, switch to copy-on-map mode for the particular buffer
                u->flags |= UMatData::COPY_ON_MAP;
            }

            if(!u->data)
            {
                u->data = (uchar*)fastMalloc(u->size);
                u->markHostCopyObsolete(true);
            }
        }

        if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
        {
4607
            AlignedDataPtr<false, true> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
4608 4609 4610
#ifdef HAVE_OPENCL_SVM
            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
4611
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
4612
                                           u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS );
4613 4614 4615 4616 4617 4618 4619 4620 4621
            u->markHostCopyObsolete(false);
        }
    }

    void unmap(UMatData* u) const
    {
        if(!u)
            return;

4622

4623 4624 4625 4626
        CV_Assert(u->handle != 0);

        UMatDataAutoLock autolock(u);

4627 4628 4629 4630
        // FIXIT Workaround for UMat synchronization issue
        if(u->refcount > 0)
            return;

4631
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
4632
        cl_int retval = 0;
4633
        if( !u->copyOnMap() && u->deviceMemMapped() )
4634
        {
4635 4636
            CV_Assert(u->data != NULL);
            u->markDeviceMemMapped(false);
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
#ifdef HAVE_OPENCL_SVM
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0);
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                                0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                        clFinish(q);
                        u->allocatorFlags_ &= ~svm::OPENCL_SVM_BUFFER_MAP;
                    }
                }
                u->data = 0;
                u->markDeviceCopyObsolete(false);
                u->markHostCopyObsolete(false);
                return;
            }
#endif
4662
            CV_Assert( (retval = clEnqueueUnmapMemObject(q,
4663
                                (cl_mem)u->handle, u->data, 0, 0, 0)) == CL_SUCCESS );
4664 4665 4666 4667 4668
            if (Device::getDefault().isAMD())
            {
                // required for multithreaded applications (see stitching test)
                CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
            }
4669 4670 4671 4672
            u->data = 0;
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() )
        {
4673
            AlignedDataPtr<true, false> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
4674 4675 4676
#ifdef HAVE_OPENCL_SVM
            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
4677
            CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
4678
                                u->size, alignedPtr.getAlignedPtr(), 0, 0, 0)) == CL_SUCCESS );
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
        }
        u->markDeviceCopyObsolete(false);
        u->markHostCopyObsolete(false);
    }

    bool checkContinuous(int dims, const size_t sz[],
                         const size_t srcofs[], const size_t srcstep[],
                         const size_t dstofs[], const size_t dststep[],
                         size_t& total, size_t new_sz[],
                         size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
                         size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
    {
        bool iscontinuous = true;
        srcrawofs = srcofs ? srcofs[dims-1] : 0;
        dstrawofs = dstofs ? dstofs[dims-1] : 0;
        total = sz[dims-1];
        for( int i = dims-2; i >= 0; i-- )
        {
4697
            if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
                iscontinuous = false;
            total *= sz[i];
            if( srcofs )
                srcrawofs += srcofs[i]*srcstep[i];
            if( dstofs )
                dstrawofs += dstofs[i]*dststep[i];
        }

        if( !iscontinuous )
        {
            // OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
            if( dims == 2 )
            {
                new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
                // we assume that new_... arrays are initialized by caller
                // with 0's, so there is no else branch
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[1];
                    new_srcofs[1] = srcofs[0];
                    new_srcofs[2] = 0;
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[1];
                    new_dstofs[1] = dstofs[0];
                    new_dstofs[2] = 0;
                }

                new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
                new_dststep[0] = dststep[0]; new_dststep[1] = 0;
            }
            else
            {
                // we could check for dims == 3 here,
                // but from user perspective this one is more informative
                CV_Assert(dims <= 3);
                new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[2];
                    new_srcofs[1] = srcofs[1];
                    new_srcofs[2] = srcofs[0];
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[2];
                    new_dstofs[1] = dstofs[1];
                    new_dstofs[2] = dstofs[0];
                }

                new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
                new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
            }
        }
        return iscontinuous;
    }

    void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
                  const size_t srcofs[], const size_t srcstep[],
                  const size_t dststep[]) const
    {
        if(!u)
            return;
        UMatDataAutoLock autolock(u);

        if( u->data && !u->hostCopyObsolete() )
        {
            Mat::getStdAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
            return;
        }
        CV_Assert( u->handle != 0 );

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);
4783

4784 4785
#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
4786
        {
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
            CV_DbgAssert(u->data == NULL || u->data == u->handle);
            Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            CV_DbgAssert(svmFns->isValid());

            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
                        u->handle, u->size,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
            }
            clFinish(q);
            if( iscontinuous )
            {
                memcpy(dstptr, (uchar*)u->handle + srcrawofs, total);
            }
            else
            {
                // This code is from MatAllocator::download()
                int isz[CV_MAX_DIM];
                uchar* srcptr = (uchar*)u->handle;
                for( int i = 0; i < dims; i++ )
                {
                    CV_Assert( sz[i] <= (size_t)INT_MAX );
                    if( sz[i] == 0 )
                    return;
                    if( srcofs )
                    srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
                    isz[i] = (int)sz[i];
                }

                Mat src(dims, isz, CV_8U, srcptr, srcstep);
                Mat dst(dims, isz, CV_8U, dstptr, dststep);

                const Mat* arrays[] = { &src, &dst };
                uchar* ptrs[2];
                NAryMatIterator it(arrays, ptrs, 2);
                size_t j, planesz = it.size;

                for( j = 0; j < it.nplanes; j++, ++it )
                    memcpy(ptrs[1], ptrs[0], planesz);
            }
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
                clFinish(q);
            }
4840 4841
        }
        else
4842
#endif
4843
        {
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
            AlignedDataPtr<false, true> alignedPtr((uchar*)dstptr, sz[0] * dststep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
            if( iscontinuous )
            {
                CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                               srcrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
            else
            {
                CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                                new_srcofs, new_dstofs, new_sz, new_srcstep[0], new_srcstep[1],
                                new_dststep[0], new_dststep[1], alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
        }
    }

    void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
                const size_t dstofs[], const size_t dststep[],
                const size_t srcstep[]) const
    {
        if(!u)
            return;

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
4867
        CV_Assert(u->refcount == 0 || u->tempUMat());
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock autolock(u);

        // if there is cached CPU copy of the GPU matrix,
        // we could use it as a destination.
        // we can do it in 2 cases:
        //    1. we overwrite the whole content
        //    2. we overwrite part of the matrix, but the GPU copy is out-of-date
4885
        if( u->data && (u->hostCopyObsolete() < u->deviceCopyObsolete() || total == u->size))
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
        {
            Mat::getStdAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
            u->markHostCopyObsolete(false);
            u->markDeviceCopyObsolete(true);
            return;
        }

        CV_Assert( u->handle != 0 );
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

4896 4897
#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
4898
        {
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
            CV_DbgAssert(u->data == NULL || u->data == u->handle);
            Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            CV_DbgAssert(svmFns->isValid());

            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_WRITE,
                        u->handle, u->size,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
            }
            clFinish(q);
            if( iscontinuous )
            {
                memcpy((uchar*)u->handle + dstrawofs, srcptr, total);
            }
            else
            {
                // This code is from MatAllocator::upload()
                int isz[CV_MAX_DIM];
                uchar* dstptr = (uchar*)u->handle;
                for( int i = 0; i < dims; i++ )
                {
                    CV_Assert( sz[i] <= (size_t)INT_MAX );
                    if( sz[i] == 0 )
                    return;
                    if( dstofs )
                    dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
                    isz[i] = (int)sz[i];
                }

                Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep);
                Mat dst(dims, isz, CV_8U, dstptr, dststep);

                const Mat* arrays[] = { &src, &dst };
                uchar* ptrs[2];
                NAryMatIterator it(arrays, ptrs, 2);
                size_t j, planesz = it.size;

                for( j = 0; j < it.nplanes; j++, ++it )
                    memcpy(ptrs[1], ptrs[0], planesz);
            }
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
                clFinish(q);
            }
4952 4953
        }
        else
4954
#endif
4955
        {
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
            AlignedDataPtr<true, false> alignedPtr((uchar*)srcptr, sz[0] * srcstep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
            if( iscontinuous )
            {
                CV_Assert( clEnqueueWriteBuffer(q, (cl_mem)u->handle,
                    CL_TRUE, dstrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
            else
            {
                CV_Assert( clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                    new_dstofs, new_srcofs, new_sz, new_dststep[0], new_dststep[1],
                    new_srcstep[0], new_srcstep[1], alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
4968 4969
        }
        u->markHostCopyObsolete(true);
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
        {
            // nothing
        }
        else
#endif
        {
            u->markHostCopyObsolete(true);
        }
4981 4982 4983 4984 4985
        u->markDeviceCopyObsolete(false);
    }

    void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
              const size_t srcofs[], const size_t srcstep[],
4986
              const size_t dstofs[], const size_t dststep[], bool _sync) const
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
    {
        if(!src || !dst)
            return;

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock src_autolock(src);
        UMatDataAutoLock dst_autolock(dst);

5003
        if( !src->handle || (src->data && src->hostCopyObsolete() < src->deviceCopyObsolete()) )
5004 5005 5006 5007
        {
            upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
            return;
        }
5008
        if( !dst->handle || (dst->data && dst->hostCopyObsolete() < dst->deviceCopyObsolete()) )
5009 5010 5011
        {
            download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
            dst->markHostCopyObsolete(false);
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
#ifdef HAVE_OPENCL_SVM
            if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                    (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
            {
                // nothing
            }
            else
#endif
            {
                dst->markDeviceCopyObsolete(true);
            }
5023 5024 5025 5026 5027 5028 5029
            return;
        }

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
        CV_Assert(dst->refcount == 0);
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

5030 5031 5032 5033
        cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
        if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 ||
                (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
5034
        {
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
            if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 &&
                            (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                Context& ctx = Context::getDefault();
                const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                CV_DbgAssert(svmFns->isValid());

                if( iscontinuous )
                {
                    CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMemcpy: %p <-- %p (%d)\n",
                            (uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs, (int)total);
                    cl_int status = svmFns->fn_clEnqueueSVMMemcpy(q, CL_TRUE,
                            (uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs,
                            total, 0, NULL, NULL);
                    CV_Assert(status == CL_SUCCESS);
                }
                else
                {
                    clFinish(q);
                    // This code is from MatAllocator::download()/upload()
                    int isz[CV_MAX_DIM];
                    uchar* srcptr = (uchar*)src->handle;
                    for( int i = 0; i < dims; i++ )
                    {
                        CV_Assert( sz[i] <= (size_t)INT_MAX );
                        if( sz[i] == 0 )
                        return;
                        if( srcofs )
                        srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
                        isz[i] = (int)sz[i];
                    }
                    Mat m_src(dims, isz, CV_8U, srcptr, srcstep);

                    uchar* dstptr = (uchar*)dst->handle;
                    for( int i = 0; i < dims; i++ )
                    {
                        if( dstofs )
                        dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
                    }
                    Mat m_dst(dims, isz, CV_8U, dstptr, dststep);

                    const Mat* arrays[] = { &m_src, &m_dst };
                    uchar* ptrs[2];
                    NAryMatIterator it(arrays, ptrs, 2);
                    size_t j, planesz = it.size;

                    for( j = 0; j < it.nplanes; j++, ++it )
                        memcpy(ptrs[1], ptrs[0], planesz);
                }
            }
            else
            {
                if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
                {
                    map(src, ACCESS_READ);
                    upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
                    unmap(src);
                }
                else
                {
                    map(dst, ACCESS_WRITE);
                    download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
                    unmap(dst);
                }
            }
5100 5101
        }
        else
5102
#endif
5103
        {
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
            if( iscontinuous )
            {
                CV_Assert( (retval = clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                               srcrawofs, dstrawofs, total, 0, 0, 0)) == CL_SUCCESS );
            }
            else
            {
                CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                                   new_srcofs, new_dstofs, new_sz,
                                                   new_srcstep[0], new_srcstep[1],
                                                   new_dststep[0], new_dststep[1],
                                                   0, 0, 0)) == CL_SUCCESS );
            }
5117
        }
5118
        if (retval == CL_SUCCESS)
5119 5120 5121
        {
            CV_IMPL_ADD(CV_IMPL_OCL)
        }
5122

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
#ifdef HAVE_OPENCL_SVM
        if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
        {
            // nothing
        }
        else
#endif
        {
            dst->markHostCopyObsolete(true);
        }
5134 5135
        dst->markDeviceCopyObsolete(false);

5136
        if( _sync )
5137 5138 5139
        {
            CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
        }
5140
    }
5141

5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
    BufferPoolController* getBufferPoolController(const char* id) const {
#ifdef HAVE_OPENCL_SVM
        if ((svm::checkForceSVMUmatUsage() && (id == NULL || strcmp(id, "OCL") == 0)) || (id != NULL && strcmp(id, "SVM") == 0))
        {
            return &bufferPoolSVM;
        }
#endif
        if (id != NULL && strcmp(id, "HOST_ALLOC") == 0)
        {
            return &bufferPoolHostPtr;
        }
        if (id != NULL && strcmp(id, "OCL") != 0)
        {
            CV_ErrorNoReturn(cv::Error::StsBadArg, "getBufferPoolController(): unknown BufferPool ID\n");
        }
        return &bufferPool;
    }
5159

5160
    MatAllocator* matStdAllocator;
5161 5162 5163 5164
};

MatAllocator* getOpenCLAllocator()
{
5165 5166
    static MatAllocator * allocator = new OpenCLAllocator();
    return allocator;
5167 5168
}

5169
///////////////////////////////////////////// Utility functions /////////////////////////////////////////////////
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5170

5171
static void getDevices(std::vector<cl_device_id>& devices, cl_platform_id platform)
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5172 5173
{
    cl_uint numDevices = 0;
5174 5175 5176
    CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
                                0, NULL, &numDevices) == CL_SUCCESS);

Konstantin Matskevich's avatar
Konstantin Matskevich committed
5177
    if (numDevices == 0)
5178 5179
    {
        devices.clear();
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5180
        return;
5181 5182
    }

Konstantin Matskevich's avatar
Konstantin Matskevich committed
5183
    devices.resize((size_t)numDevices);
5184 5185
    CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
                                numDevices, &devices[0], &numDevices) == CL_SUCCESS);
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5186 5187
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5188
struct PlatformInfo::Impl
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5189 5190 5191
{
    Impl(void* id)
    {
5192
        refcount = 1;
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5193 5194 5195 5196 5197 5198 5199 5200
        handle = *(cl_platform_id*)id;
        getDevices(devices, handle);
    }

    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
5201
        return clGetPlatformInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5202 5203 5204 5205 5206 5207 5208 5209
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    std::vector<cl_device_id> devices;
    cl_platform_id handle;
};

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5210
PlatformInfo::PlatformInfo()
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5211 5212 5213 5214
{
    p = 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5215
PlatformInfo::PlatformInfo(void* platform_id)
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5216 5217 5218 5219
{
    p = new Impl(platform_id);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5220
PlatformInfo::~PlatformInfo()
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5221 5222 5223 5224 5225
{
    if(p)
        p->release();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5226
PlatformInfo::PlatformInfo(const PlatformInfo& i)
5227 5228 5229
{
    if (i.p)
        i.p->addref();
5230
    p = i.p;
5231 5232
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5233
PlatformInfo& PlatformInfo::operator =(const PlatformInfo& i)
5234
{
5235
    if (i.p != p)
5236 5237 5238
    {
        if (i.p)
            i.p->addref();
5239 5240 5241
        if (p)
            p->release();
        p = i.p;
5242 5243 5244 5245
    }
    return *this;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5246
int PlatformInfo::deviceNumber() const
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5247 5248 5249 5250
{
    return p ? (int)p->devices.size() : 0;
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5251
void PlatformInfo::getDevice(Device& device, int d) const
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5252
{
5253
    CV_Assert(p && d < (int)p->devices.size() );
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5254 5255 5256 5257
    if(p)
        device.set(p->devices[d]);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5258
String PlatformInfo::name() const
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5259 5260 5261 5262
{
    return p ? p->getStrProp(CL_PLATFORM_NAME) : String();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5263
String PlatformInfo::vendor() const
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5264 5265 5266 5267
{
    return p ? p->getStrProp(CL_PLATFORM_VENDOR) : String();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5268
String PlatformInfo::version() const
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5269 5270 5271 5272 5273 5274 5275
{
    return p ? p->getStrProp(CL_PLATFORM_VERSION) : String();
}

static void getPlatforms(std::vector<cl_platform_id>& platforms)
{
    cl_uint numPlatforms = 0;
5276 5277
    CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);

Konstantin Matskevich's avatar
Konstantin Matskevich committed
5278
    if (numPlatforms == 0)
5279 5280
    {
        platforms.clear();
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5281
        return;
5282 5283
    }

Konstantin Matskevich's avatar
Konstantin Matskevich committed
5284
    platforms.resize((size_t)numPlatforms);
5285
    CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5286 5287
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5288
void getPlatfomsInfo(std::vector<PlatformInfo>& platformsInfo)
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5289 5290 5291
{
    std::vector<cl_platform_id> platforms;
    getPlatforms(platforms);
5292

Konstantin Matskevich's avatar
Konstantin Matskevich committed
5293
    for (size_t i = 0; i < platforms.size(); i++)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5294
        platformsInfo.push_back( PlatformInfo((void*)&platforms[i]) );
Konstantin Matskevich's avatar
Konstantin Matskevich committed
5295 5296
}

5297
const char* typeToStr(int type)
5298 5299 5300
{
    static const char* tab[]=
    {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5301 5302 5303 5304 5305 5306 5307 5308
        "uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
        "char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
        "ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
        "short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "float", "float2", "float3", "float4", 0, 0, 0, "float8", 0, 0, 0, 0, 0, 0, 0, "float16",
        "double", "double2", "double3", "double4", 0, 0, 0, "double8", 0, 0, 0, 0, 0, 0, 0, "double16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
5309
    };
5310
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5311
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
5312 5313
}

5314
const char* memopTypeToStr(int type)
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
{
    static const char* tab[] =
    {
        "uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
        "char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
        "ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
        "short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
}

const char* vecopTypeToStr(int type)
5332
{
5333
    static const char* tab[] =
5334
    {
5335 5336 5337 5338
        "uchar", "short", "uchar3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
        "char", "short", "char3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
        "ushort", "int", "ushort3", "int2",0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
        "short", "int", "short3", "int2", 0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5339 5340 5341 5342
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
5343
    };
5344
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5345
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
}

const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
    if( sdepth == ddepth )
        return "noconvert";
    const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
    if( ddepth >= CV_32F ||
        (ddepth == CV_32S && sdepth < CV_32S) ||
        (ddepth == CV_16S && sdepth <= CV_8S) ||
        (ddepth == CV_16U && sdepth == CV_8U))
    {
        sprintf(buf, "convert_%s", typestr);
    }
    else if( sdepth >= CV_32F )
        sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
    else
        sprintf(buf, "convert_%s_sat", typestr);
5364

5365 5366 5367
    return buf;
}

5368 5369 5370 5371
template <typename T>
static std::string kerToStr(const Mat & k)
{
    int width = k.cols - 1, depth = k.depth();
5372
    const T * const data = k.ptr<T>();
5373 5374 5375 5376 5377 5378 5379

    std::ostringstream stream;
    stream.precision(10);

    if (depth <= CV_8S)
    {
        for (int i = 0; i < width; ++i)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5380 5381
            stream << "DIG(" << (int)data[i] << ")";
        stream << "DIG(" << (int)data[width] << ")";
5382 5383 5384 5385 5386
    }
    else if (depth == CV_32F)
    {
        stream.setf(std::ios_base::showpoint);
        for (int i = 0; i < width; ++i)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5387 5388
            stream << "DIG(" << data[i] << "f)";
        stream << "DIG(" << data[width] << "f)";
5389 5390 5391 5392
    }
    else
    {
        for (int i = 0; i < width; ++i)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5393 5394
            stream << "DIG(" << data[i] << ")";
        stream << "DIG(" << data[width] << ")";
5395 5396 5397 5398 5399
    }

    return stream.str();
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5400
String kernelToStr(InputArray _kernel, int ddepth, const char * name)
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
{
    Mat kernel = _kernel.getMat().reshape(1, 1);

    int depth = kernel.depth();
    if (ddepth < 0)
        ddepth = depth;

    if (ddepth != depth)
        kernel.convertTo(kernel, ddepth);

5411 5412
    typedef std::string (* func_t)(const Mat &);
    static const func_t funcs[] = { kerToStr<uchar>, kerToStr<char>, kerToStr<ushort>, kerToStr<short>,
5413
                                    kerToStr<int>, kerToStr<float>, kerToStr<double>, 0 };
5414
    const func_t func = funcs[ddepth];
5415 5416
    CV_Assert(func != 0);

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5417
    return cv::format(" -D %s=%s", name ? name : "COEFF", func(kernel).c_str());
5418 5419
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5420 5421 5422 5423 5424 5425 5426
#define PROCESS_SRC(src) \
    do \
    { \
        if (!src.empty()) \
        { \
            CV_Assert(src.isMat() || src.isUMat()); \
            Size csize = src.size(); \
5427 5428 5429 5430 5431 5432
            int ctype = src.type(), ccn = CV_MAT_CN(ctype), cdepth = CV_MAT_DEPTH(ctype), \
                ckercn = vectorWidths[cdepth], cwidth = ccn * csize.width; \
            if (cwidth < ckercn || ckercn <= 0) \
                return 1; \
            cols.push_back(cwidth); \
            if (strat == OCL_VECTOR_OWN && ctype != ref_type) \
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5433 5434 5435
                return 1; \
            offsets.push_back(src.offset()); \
            steps.push_back(src.step()); \
5436
            dividers.push_back(ckercn * CV_ELEM_SIZE1(ctype)); \
5437
            kercns.push_back(ckercn); \
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5438 5439 5440 5441 5442 5443
        } \
    } \
    while ((void)0, 0)

int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
                              InputArray src4, InputArray src5, InputArray src6,
5444 5445
                              InputArray src7, InputArray src8, InputArray src9,
                              OclVectorStrategy strat)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5446 5447 5448 5449 5450 5451
{
    const ocl::Device & d = ocl::Device::getDefault();

    int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
        d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
        d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
5452
        d.preferredVectorWidthDouble(), -1 };
5453 5454 5455

    // if the device says don't use vectors
    if (vectorWidths[0] == 1)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5456 5457
    {
        // it's heuristic
5458 5459
        vectorWidths[CV_8U] = vectorWidths[CV_8S] = 4;
        vectorWidths[CV_16U] = vectorWidths[CV_16S] = 2;
5460
        vectorWidths[CV_32S] = vectorWidths[CV_32F] = vectorWidths[CV_64F] = 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5461
    }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5462

5463 5464 5465
    return checkOptimalVectorWidth(vectorWidths, src1, src2, src3, src4, src5, src6, src7, src8, src9, strat);
}

5466
int checkOptimalVectorWidth(const int *vectorWidths,
5467 5468 5469 5470 5471
                            InputArray src1, InputArray src2, InputArray src3,
                            InputArray src4, InputArray src5, InputArray src6,
                            InputArray src7, InputArray src8, InputArray src9,
                            OclVectorStrategy strat)
{
5472 5473
    CV_Assert(vectorWidths);

5474 5475
    int ref_type = src1.type();

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5476
    std::vector<size_t> offsets, steps, cols;
5477
    std::vector<int> dividers, kercns;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
    PROCESS_SRC(src1);
    PROCESS_SRC(src2);
    PROCESS_SRC(src3);
    PROCESS_SRC(src4);
    PROCESS_SRC(src5);
    PROCESS_SRC(src6);
    PROCESS_SRC(src7);
    PROCESS_SRC(src8);
    PROCESS_SRC(src9);

    size_t size = offsets.size();

    for (size_t i = 0; i < size; ++i)
5491 5492
        while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % kercns[i] != 0)
            dividers[i] >>= 1, kercns[i] >>= 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5493 5494

    // default strategy
5495
    int kercn = *std::min_element(kercns.begin(), kercns.end());
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5496

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5497
    return kercn;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
5498 5499
}

5500 5501 5502 5503 5504 5505 5506
int predictOptimalVectorWidthMax(InputArray src1, InputArray src2, InputArray src3,
                                 InputArray src4, InputArray src5, InputArray src6,
                                 InputArray src7, InputArray src8, InputArray src9)
{
    return predictOptimalVectorWidth(src1, src2, src3, src4, src5, src6, src7, src8, src9, OCL_VECTOR_MAX);
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5507 5508
#undef PROCESS_SRC

5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

// TODO Make this as a method of OpenCL "BuildOptions" class
void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m)
{
    if (!buildOptions.empty())
        buildOptions += " ";
    int type = _m.type(), depth = CV_MAT_DEPTH(type);
    buildOptions += format(
            "-D %s_T=%s -D %s_T1=%s -D %s_CN=%d -D %s_TSIZE=%d -D %s_T1SIZE=%d -D %s_DEPTH=%d",
            name.c_str(), ocl::typeToStr(type),
            name.c_str(), ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
            name.c_str(), (int)CV_MAT_CN(type),
            name.c_str(), (int)CV_ELEM_SIZE(type),
            name.c_str(), (int)CV_ELEM_SIZE1(type),
            name.c_str(), (int)depth
            );
}

5527 5528 5529

struct Image2D::Impl
{
5530
    Impl(const UMat &src, bool norm, bool alias)
5531
    {
5532 5533
        handle = 0;
        refcount = 1;
5534
        init(src, norm, alias);
5535
    }
5536

5537 5538 5539 5540 5541
    ~Impl()
    {
        if (handle)
            clReleaseMemObject(handle);
    }
5542

5543
    static cl_image_format getImageFormat(int depth, int cn, bool norm)
5544 5545
    {
        cl_image_format format;
5546 5547
        static const int channelTypes[] = { CL_UNSIGNED_INT8, CL_SIGNED_INT8, CL_UNSIGNED_INT16,
                                       CL_SIGNED_INT16, CL_SIGNED_INT32, CL_FLOAT, -1, -1 };
5548 5549
        static const int channelTypesNorm[] = { CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16,
                                                CL_SNORM_INT16, -1, -1, -1, -1 };
5550 5551
        static const int channelOrders[] = { -1, CL_R, CL_RG, -1, CL_RGBA };

5552 5553
        int channelType = norm ? channelTypesNorm[depth] : channelTypes[depth];
        int channelOrder = channelOrders[cn];
5554 5555
        format.image_channel_data_type = (cl_channel_type)channelType;
        format.image_channel_order = (cl_channel_order)channelOrder;
5556 5557 5558 5559 5560
        return format;
    }

    static bool isFormatSupported(cl_image_format format)
    {
5561 5562 5563
        if (!haveOpenCL())
            CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
        cl_context context = (cl_context)Context::getDefault().ptr();
        // Figure out how many formats are supported by this context.
        cl_uint numFormats = 0;
        cl_int err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
                                                CL_MEM_OBJECT_IMAGE2D, numFormats,
                                                NULL, &numFormats);
        AutoBuffer<cl_image_format> formats(numFormats);
        err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
                                         CL_MEM_OBJECT_IMAGE2D, numFormats,
                                         formats, NULL);
        CV_OclDbgAssert(err == CL_SUCCESS);
        for (cl_uint i = 0; i < numFormats; ++i)
        {
            if (!memcmp(&formats[i], &format, sizeof(format)))
            {
                return true;
            }
        }
        return false;
    }

    void init(const UMat &src, bool norm, bool alias)
    {
5587 5588 5589 5590
        if (!haveOpenCL())
            CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");

        CV_Assert(!src.empty());
5591 5592 5593 5594 5595 5596 5597 5598
        CV_Assert(ocl::Device::getDefault().imageSupport());

        int err, depth = src.depth(), cn = src.channels();
        CV_Assert(cn <= 4);
        cl_image_format format = getImageFormat(depth, cn, norm);

        if (!isFormatSupported(format))
            CV_Error(Error::OpenCLApiCallError, "Image format is not supported");
5599

5600 5601 5602
        if (alias && !src.handle(ACCESS_RW))
            CV_Error(Error::OpenCLApiCallError, "Incorrect UMat, handle is null");

Ilya Lavrenov's avatar
Ilya Lavrenov committed
5603
        cl_context context = (cl_context)Context::getDefault().ptr();
5604
        cl_command_queue queue = (cl_command_queue)Queue::getDefault().ptr();
5605 5606

#ifdef CL_VERSION_1_2
5607 5608 5609 5610
        // this enables backwards portability to
        // run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
        const Device & d = ocl::Device::getDefault();
        int minor = d.deviceVersionMinor(), major = d.deviceVersionMajor();
5611
        CV_Assert(!alias || canCreateAlias(src));
5612
        if (1 < major || (1 == major && 2 <= minor))
5613 5614 5615 5616 5617 5618 5619
        {
            cl_image_desc desc;
            desc.image_type       = CL_MEM_OBJECT_IMAGE2D;
            desc.image_width      = src.cols;
            desc.image_height     = src.rows;
            desc.image_depth      = 0;
            desc.image_array_size = 1;
5620
            desc.image_row_pitch  = alias ? src.step[0] : 0;
5621
            desc.image_slice_pitch = 0;
5622
            desc.buffer           = alias ? (cl_mem)src.handle(ACCESS_RW) : 0;
5623 5624
            desc.num_mip_levels   = 0;
            desc.num_samples      = 0;
5625
            handle = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
5626 5627 5628 5629
        }
        else
#endif
        {
5630
            CV_SUPPRESS_DEPRECATED_START
5631
            CV_Assert(!alias);  // This is an OpenCL 1.2 extension
5632
            handle = clCreateImage2D(context, CL_MEM_READ_WRITE, &format, src.cols, src.rows, 0, NULL, &err);
5633
            CV_SUPPRESS_DEPRECATED_END
5634
        }
5635 5636
        CV_OclDbgAssert(err == CL_SUCCESS);

5637
        size_t origin[] = { 0, 0, 0 };
5638
        size_t region[] = { static_cast<size_t>(src.cols), static_cast<size_t>(src.rows), 1 };
5639 5640

        cl_mem devData;
5641
        if (!alias && !src.isContinuous())
5642
        {
5643 5644 5645
            devData = clCreateBuffer(context, CL_MEM_READ_ONLY, src.cols * src.rows * src.elemSize(), NULL, &err);
            CV_OclDbgAssert(err == CL_SUCCESS);

5646
            const size_t roi[3] = {static_cast<size_t>(src.cols) * src.elemSize(), static_cast<size_t>(src.rows), 1};
5647 5648 5649
            CV_Assert(clEnqueueCopyBufferRect(queue, (cl_mem)src.handle(ACCESS_READ), devData, origin, origin,
                roi, src.step, 0, src.cols * src.elemSize(), 0, 0, NULL, NULL) == CL_SUCCESS);
            CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
5650 5651
        }
        else
5652
        {
5653
            devData = (cl_mem)src.handle(ACCESS_READ);
5654
        }
5655
        CV_Assert(devData != NULL);
5656

5657
        if (!alias)
5658
        {
5659 5660 5661 5662 5663 5664
            CV_OclDbgAssert(clEnqueueCopyBufferToImage(queue, devData, handle, 0, origin, region, 0, NULL, 0) == CL_SUCCESS);
            if (!src.isContinuous())
            {
                CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
                CV_OclDbgAssert(clReleaseMemObject(devData) == CL_SUCCESS);
            }
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_mem handle;
};

Image2D::Image2D()
{
    p = NULL;
}
5677

5678
Image2D::Image2D(const UMat &src, bool norm, bool alias)
5679
{
5680 5681 5682 5683 5684 5685 5686
    p = new Impl(src, norm, alias);
}

bool Image2D::canCreateAlias(const UMat &m)
{
    bool ret = false;
    const Device & d = ocl::Device::getDefault();
5687
    if (d.imageFromBufferSupport() && !m.empty())
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
    {
        // This is the required pitch alignment in pixels
        uint pitchAlign = d.imagePitchAlignment();
        if (pitchAlign && !(m.step % (pitchAlign * m.elemSize())))
        {
            // We don't currently handle the case where the buffer was created
            // with CL_MEM_USE_HOST_PTR
            if (!m.u->tempUMat())
            {
                ret = true;
            }
        }
    }
    return ret;
}

bool Image2D::isFormatSupported(int depth, int cn, bool norm)
{
    cl_image_format format = Impl::getImageFormat(depth, cn, norm);

    return Impl::isFormatSupported(format);
5709
}
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730

Image2D::Image2D(const Image2D & i)
{
    p = i.p;
    if (p)
        p->addref();
}

Image2D & Image2D::operator = (const Image2D & i)
{
    if (i.p != p)
    {
        if (i.p)
            i.p->addref();
        if (p)
            p->release();
        p = i.p;
    }
    return *this;
}

5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
Image2D::~Image2D()
{
    if (p)
        p->release();
}

void* Image2D::ptr() const
{
    return p ? p->handle : 0;
}

5742
bool internal::isPerformanceCheckBypassed()
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
{
    static bool initialized = false;
    static bool value = false;
    if (!initialized)
    {
        value = getBoolParameter("OPENCV_OPENCL_PERF_CHECK_BYPASS", false);
        initialized = true;
    }
    return value;
}

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
bool internal::isCLBuffer(UMat& u)
{
    void* h = u.handle(ACCESS_RW);
    if (!h)
        return true;
    CV_DbgAssert(u.u->currAllocator == getOpenCLAllocator());
#if 1
    if ((u.u->allocatorFlags_ & 0xffff0000) != 0) // OpenCL SVM flags are stored here
        return false;
#else
    cl_mem_object_type type = 0;
    cl_int ret = clGetMemObjectInfo((cl_mem)h, CL_MEM_TYPE, sizeof(type), &type, NULL);
    if (ret != CL_SUCCESS || type != CL_MEM_OBJECT_BUFFER)
        return false;
#endif
    return true;
}

5772
}}