dlasyf.c 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlasyf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15 16 17 18 19 20 21 22

/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b8 = -1.;
static doublereal c_b9 = 1.;

/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb, 
23 24 25 26 27 28
	 doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
	ldw, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3;
29

30 31
    /* Builtin functions */
    double sqrt(doublereal);
32

33
    /* Local variables */
34 35 36 37
    integer j, k;
    doublereal t, r1, d11, d21, d22;
    integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
    doublereal alpha;
38 39 40 41 42 43 44 45 46 47
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
	    doublereal *, integer *, doublereal *, integer *), dswap_(integer 
	    *, doublereal *, integer *, doublereal *, integer *);
48 49
    integer kstep;
    doublereal absakk;
50
    extern integer idamax_(integer *, doublereal *, integer *);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    doublereal colmax, rowmax;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASYF computes a partial factorization of a real symmetric matrix A */
/*  using the Bunch-Kaufman diagonal pivoting method. The partial */
/*  factorization has the form: */

/*  A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or: */
/*        ( 0  U22 ) (  0   D  ) ( U12' U22' ) */

/*  A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L' */
/*        ( L21  I ) (  0  A22 ) (  0    I   ) */

/*  where the order of D is at most NB. The actual order is returned in */
/*  the argument KB, and is either NB or NB-1, or N if N <= NB. */

/*  DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
/*  (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
/*  A22 (if UPLO = 'L'). */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NB      (input) INTEGER */
/*          The maximum number of columns of the matrix A that should be */
/*          factored.  NB should be at least 2 to allow for 2-by-2 pivot */
/*          blocks. */

/*  KB      (output) INTEGER */
/*          The number of columns of A that were actually factored. */
/*          KB is either NB-1 or NB, or N if N <= NB. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n-by-n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n-by-n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */
/*          On exit, A contains details of the partial factorization. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D. */
/*          If UPLO = 'U', only the last KB elements of IPIV are set; */
/*          if UPLO = 'L', only the first KB elements are set. */

/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */

/*  W       (workspace) DOUBLE PRECISION array, dimension (LDW,NB) */

/*  LDW     (input) INTEGER */
/*          The leading dimension of the array W.  LDW >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
/*               has been completed, but the block diagonal matrix D is */
/*               exactly singular. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1;
    w -= w_offset;

    /* Function Body */
    *info = 0;

/*     Initialize ALPHA for use in choosing pivot block size. */

    alpha = (sqrt(17.) + 1.) / 8.;

    if (lsame_(uplo, "U")) {

173 174 175
/*        Factorize the trailing columns of A using the upper triangle */
/*        of A and working backwards, and compute the matrix W = U12*D */
/*        for use in updating A11 */
176

177
/*        K is the main loop index, decreasing from N in steps of 1 or 2 */
178

179
/*        KW is the column of W which corresponds to column K of A */
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

	k = *n;
L10:
	kw = *nb + k - *n;

/*        Exit from loop */

	if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
	    goto L30;
	}

/*        Copy column K of A to column KW of W and update it */

	dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
	if (k < *n) {
	    i__1 = *n - k;
	    dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1], 
		     lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw * 
		    w_dim1 + 1], &c__1);
	}

	kstep = 1;

203 204
/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */
205 206 207

	absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));

208 209
/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	if (k > 1) {
	    i__1 = k - 1;
	    imax = idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
	    colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column KW-1 of W and update it */

		dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * 
			w_dim1 + 1], &c__1);
		i__1 = k - imax;
		dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + 
			1 + (kw - 1) * w_dim1], &c__1);
		if (k < *n) {
		    i__1 = *n - k;
		    dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * 
			    a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], 
			    ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
		}

249 250
/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

		i__1 = k - imax;
		jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], 
			 &c__1);
		rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1));
		if (imax > 1) {
		    i__1 = imax - 1;
		    jmax = idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (kw - 1) * w_dim1],
			     abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >= 
			alpha * rowmax) {

273 274
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */
275 276 277 278 279 280 281 282 283

		    kp = imax;

/*                 copy column KW-1 of W to column KW */

		    dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * 
			    w_dim1 + 1], &c__1);
		} else {

284 285
/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
/*                 pivot block */
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k - kstep + 1;
	    kkw = *nb + kk - *n;

/*           Updated column KP is already stored in column KKW of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		a[kp + k * a_dim1] = a[kk + k * a_dim1];
		i__1 = k - 1 - kp;
		dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
			1) * a_dim1], lda);
		dcopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
			c__1);

/*              Interchange rows KK and KP in last KK columns of A and W */

		i__1 = *n - kk + 1;
		dswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1], 
			 lda);
		i__1 = *n - kk + 1;
		dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * 
			w_dim1], ldw);
	    }

	    if (kstep == 1) {

320
/*              1-by-1 pivot block D(k): column KW of W now holds */
321

322
/*              W(k) = U(k)*D(k) */
323

324
/*              where U(k) is the k-th column of U */
325

326
/*              Store U(k) in column k of A */
327 328 329 330 331 332 333 334

		dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
			c__1);
		r1 = 1. / a[k + k * a_dim1];
		i__1 = k - 1;
		dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
	    } else {

335 336
/*              2-by-2 pivot block D(k): columns KW and KW-1 of W now */
/*              hold */
337

338
/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
339

340 341
/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/*              of U */
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

		if (k > 2) {

/*                 Store U(k) and U(k-1) in columns k and k-1 of A */

		    d21 = w[k - 1 + kw * w_dim1];
		    d11 = w[k + kw * w_dim1] / d21;
		    d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
		    t = 1. / (d11 * d22 - 1.);
		    d21 = t / d21;
		    i__1 = k - 2;
		    for (j = 1; j <= i__1; ++j) {
			a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1) 
				* w_dim1] - w[j + kw * w_dim1]);
			a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] - 
				w[j + (kw - 1) * w_dim1]);
/* L20: */
		    }
		}

/*              Copy D(k) to A */

		a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
		a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
		a[k + k * a_dim1] = w[k + kw * w_dim1];
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k - 1] = -kp;
	}

/*        Decrease K and return to the start of the main loop */

	k -= kstep;
	goto L10;

L30:

386
/*        Update the upper triangle of A11 (= A(1:k,1:k)) as */
387

388
/*        A11 := A11 - U12*D*U12' = A11 - U12*W' */
389

390
/*        computing blocks of NB columns at a time */
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

	i__1 = -(*nb);
	for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += 
		i__1) {
/* Computing MIN */
	    i__2 = *nb, i__3 = k - j + 1;
	    jb = min(i__2,i__3);

/*           Update the upper triangle of the diagonal block */

	    i__2 = j + jb - 1;
	    for (jj = j; jj <= i__2; ++jj) {
		i__3 = jj - j + 1;
		i__4 = *n - k;
		dgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) * 
			a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9, 
			&a[j + jj * a_dim1], &c__1);
/* L40: */
	    }

/*           Update the rectangular superdiagonal block */

	    i__2 = j - 1;
	    i__3 = *n - k;
	    dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
		    k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw, 
		     &c_b9, &a[j * a_dim1 + 1], lda);
/* L50: */
	}

421 422
/*        Put U12 in standard form by partially undoing the interchanges */
/*        in columns k+1:n */
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	j = k + 1;
L60:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    ++j;
	}
	++j;
	if (jp != jj && j <= *n) {
	    i__1 = *n - j + 1;
	    dswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
	}
	if (j <= *n) {
	    goto L60;
	}

/*        Set KB to the number of columns factorized */

	*kb = *n - k;

    } else {

447 448 449
/*        Factorize the leading columns of A using the lower triangle */
/*        of A and working forwards, and compute the matrix W = L21*D */
/*        for use in updating A22 */
450

451
/*        K is the main loop index, increasing from 1 in steps of 1 or 2 */
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

	k = 1;
L70:

/*        Exit from loop */

	if (k >= *nb && *nb < *n || k > *n) {
	    goto L90;
	}

/*        Copy column K of A to column K of W and update it */

	i__1 = *n - k + 1;
	dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
	i__1 = *n - k + 1;
	i__2 = k - 1;
	dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k 
		+ w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);

	kstep = 1;

473 474
/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */
475 476 477

	absakk = (d__1 = w[k + k * w_dim1], abs(d__1));

478 479
/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

	if (k < *n) {
	    i__1 = *n - k;
	    imax = k + idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
	    colmax = (d__1 = w[imax + k * w_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column K+1 of W and update it */

		i__1 = imax - k;
		dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * 
			w_dim1], &c__1);
		i__1 = *n - imax + 1;
		dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k + 
			1) * w_dim1], &c__1);
		i__1 = *n - k + 1;
		i__2 = k - 1;
		dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], 
			lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) * 
			w_dim1], &c__1);

519 520
/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

		i__1 = imax - k;
		jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
			;
		rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1));
		if (imax < *n) {
		    i__1 = *n - imax;
		    jmax = imax + idamax_(&i__1, &w[imax + 1 + (k + 1) * 
			    w_dim1], &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (k + 1) * w_dim1], 
			    abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >= 
			alpha * rowmax) {

544 545
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */
546 547 548 549 550 551 552 553 554 555

		    kp = imax;

/*                 copy column K+1 of W to column K */

		    i__1 = *n - k + 1;
		    dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * 
			    w_dim1], &c__1);
		} else {

556 557
/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
/*                 pivot block */
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k + kstep - 1;

/*           Updated column KP is already stored in column KK of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		a[kp + k * a_dim1] = a[kk + k * a_dim1];
		i__1 = kp - k - 1;
		dcopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1) 
			* a_dim1], lda);
		i__1 = *n - kp + 1;
		dcopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp * 
			a_dim1], &c__1);

/*              Interchange rows KK and KP in first KK columns of A and W */

		dswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
		dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
	    }

	    if (kstep == 1) {

588
/*              1-by-1 pivot block D(k): column k of W now holds */
589

590
/*              W(k) = L(k)*D(k) */
591

592
/*              where L(k) is the k-th column of L */
593

594
/*              Store L(k) in column k of A */
595 596 597 598 599 600 601 602 603 604 605

		i__1 = *n - k + 1;
		dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
			c__1);
		if (k < *n) {
		    r1 = 1. / a[k + k * a_dim1];
		    i__1 = *n - k;
		    dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
		}
	    } else {

606
/*              2-by-2 pivot block D(k): columns k and k+1 of W now hold */
607

608
/*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
609

610 611
/*              where L(k) and L(k+1) are the k-th and (k+1)-th columns */
/*              of L */
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

		if (k < *n - 1) {

/*                 Store L(k) and L(k+1) in columns k and k+1 of A */

		    d21 = w[k + 1 + k * w_dim1];
		    d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
		    d22 = w[k + k * w_dim1] / d21;
		    t = 1. / (d11 * d22 - 1.);
		    d21 = t / d21;
		    i__1 = *n;
		    for (j = k + 2; j <= i__1; ++j) {
			a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] - 
				w[j + (k + 1) * w_dim1]);
			a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
				 w_dim1] - w[j + k * w_dim1]);
/* L80: */
		    }
		}

/*              Copy D(k) to A */

		a[k + k * a_dim1] = w[k + k * w_dim1];
		a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
		a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k + 1] = -kp;
	}

/*        Increase K and return to the start of the main loop */

	k += kstep;
	goto L70;

L90:

656
/*        Update the lower triangle of A22 (= A(k:n,k:n)) as */
657

658
/*        A22 := A22 - L21*D*L21' = A22 - L21*W' */
659

660
/*        computing blocks of NB columns at a time */
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	i__1 = *n;
	i__2 = *nb;
	for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = *nb, i__4 = *n - j + 1;
	    jb = min(i__3,i__4);

/*           Update the lower triangle of the diagonal block */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= i__3; ++jj) {
		i__4 = j + jb - jj;
		i__5 = k - 1;
		dgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1], 
			lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
, &c__1);
/* L100: */
	    }

/*           Update the rectangular subdiagonal block */

	    if (j + jb <= *n) {
		i__3 = *n - j - jb + 1;
		i__4 = k - 1;
		dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8, 
			&a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9, 
			&a[j + jb + j * a_dim1], lda);
	    }
/* L110: */
	}

693 694
/*        Put L21 in standard form by partially undoing the interchanges */
/*        in columns 1:k-1 */
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	j = k - 1;
L120:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    --j;
	}
	--j;
	if (jp != jj && j >= 1) {
	    dswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
	}
	if (j >= 1) {
	    goto L120;
	}

/*        Set KB to the number of columns factorized */

	*kb = k - 1;

    }
    return 0;

/*     End of DLASYF */

} /* dlasyf_ */