dmtx.py 6.28 KB
Newer Older
1 2
#!/usr/bin/python

3
import cv2.cv as cv
James Bowman's avatar
James Bowman committed
4 5 6 7 8 9
import time
from pydmtx import DataMatrix
import numpy
import sys
import math

10 11 12 13
'''
Find 2 D barcode based on up to 3 channel datamatrix
'''

James Bowman's avatar
James Bowman committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def absnorm8(im, im8):
    """ im may be any single-channel image type.  Return an 8-bit version, absolute value, normalized so that max is 255 """
    (minVal, maxVal, _, _) = cv.MinMaxLoc(im)
    cv.ConvertScaleAbs(im, im8, 255 / max(abs(minVal), abs(maxVal)), 0)
    return im8

font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, thickness = 2, lineType = cv.CV_AA)
if 0:
    started = time.time()
    print dm_write.decode(bg.width, bg.height, buffer(bg.tostring()), max_count = 1, min_edge = 12, max_edge = 13, shape = DataMatrix.DmtxSymbol10x10) # , timeout = 10)
    print "took", time.time() - started

class DmtxFinder:
    def __init__(self):
        self.cache = {}
        self.dm = DataMatrix()

    def Cached(self, name, rows, cols, type):
        key = (name, rows, cols)
        if not key in self.cache:
            self.cache[key] = cv.CreateMat(rows, cols, type)
        return self.cache[key]

    def find0(self, img):
        started = time.time()
        self.dm.decode(img.width,
                       img.height,
                       buffer(img.tostring()),
                       max_count = 4,
                       #min_edge = 6,
                       #max_edge = 19      # Units of 2 pixels
                       )
        print "brute", time.time() - started
        found = {}
        for i in range(self.dm.count()):
            stats = dm_read.stats(i + 1)
            print stats
            found[stats[0]] = stats[1]
        return found

    def find(self, img):
        started = time.time()
        gray = self.Cached('gray', img.height, img.width, cv.CV_8UC1)
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

        sobel = self.Cached('sobel', img.height, img.width, cv.CV_16SC1)
        sobely = self.Cached('sobely', img.height, img.width, cv.CV_16SC1)

        cv.Sobel(gray, sobel, 1, 0)
        cv.Sobel(gray, sobely, 0, 1)
        cv.Add(sobel, sobely, sobel)

        sobel8 = self.Cached('sobel8', sobel.height, sobel.width, cv.CV_8UC1)
        absnorm8(sobel, sobel8)
        cv.Threshold(sobel8, sobel8, 128.0, 255.0, cv.CV_THRESH_BINARY)

        sobel_integral = self.Cached('sobel_integral', img.height + 1, img.width + 1, cv.CV_32SC1)
        cv.Integral(sobel8, sobel_integral)

        d = 16
        _x1y1 = cv.GetSubRect(sobel_integral, (0, 0, sobel_integral.cols - d, sobel_integral.rows - d))
        _x1y2 = cv.GetSubRect(sobel_integral, (0, d, sobel_integral.cols - d, sobel_integral.rows - d))
        _x2y1 = cv.GetSubRect(sobel_integral, (d, 0, sobel_integral.cols - d, sobel_integral.rows - d))
        _x2y2 = cv.GetSubRect(sobel_integral, (d, d, sobel_integral.cols - d, sobel_integral.rows - d))

        summation = cv.CloneMat(_x2y2)
        cv.Sub(summation, _x1y2, summation)
        cv.Sub(summation, _x2y1, summation)
        cv.Add(summation, _x1y1, summation)
        sum8 = self.Cached('sum8', summation.height, summation.width, cv.CV_8UC1)
        absnorm8(summation, sum8)
        cv.Threshold(sum8, sum8, 32.0, 255.0, cv.CV_THRESH_BINARY)

        cv.ShowImage("sum8", sum8)
        seq = cv.FindContours(sum8, cv.CreateMemStorage(), cv.CV_RETR_EXTERNAL)
        subimg = cv.GetSubRect(img, (d / 2, d / 2, sum8.cols, sum8.rows))
        t_cull = time.time() - started

        seqs = []
        while seq:
            seqs.append(seq)
            seq = seq.h_next()

        started = time.time()
        found = {}
        print 'seqs', len(seqs)
        for seq in seqs:
            area = cv.ContourArea(seq)
            if area > 1000:
                rect = cv.BoundingRect(seq)
                edge = int((14 / 14.) * math.sqrt(area) / 2 + 0.5)
                candidate = cv.GetSubRect(subimg, rect)
                sym = self.dm.decode(candidate.width,
                                     candidate.height,
                                     buffer(candidate.tostring()),
                                     max_count = 1,
                                     #min_edge = 6,
                                     #max_edge = int(edge)      # Units of 2 pixels
                                     )
                if sym:
                    onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y) for (x, y) in self.dm.stats(1)[1]]
                    found[sym] = onscreen
                else:
                    print "FAILED"
        t_brute = time.time() - started
        print "cull took", t_cull, "brute", t_brute
        return found

bg = cv.CreateMat(1024, 1024, cv.CV_8UC3)
cv.Set(bg, cv.RGB(0, 0, 0))
df = DmtxFinder()

cv.NamedWindow("camera", 1)

def mkdmtx(msg):
    dm_write = DataMatrix()
    dm_write.encode(msg)
    pi = dm_write.image # .resize((14, 14))
    cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3)
    cv.SetData(cv_im, pi.tostring())
    return cv_im

# test = [('WIL', (100,100))]: # , ('LOW', (250,100)), ('GAR', (300, 300)), ('AGE', (500, 300))]:

test = []
y = 10
for j in range(7):
    r = 28 + j * 4
    mr = r * math.sqrt(2)
    y += mr * 1.8
    test += [(str(deg) + "abcdefgh"[j], (50 + deg * 11, y), math.pi * deg / 180, r) for deg in range(0, 90, 10)]

for (msg, (x, y), angle, r) in test:
    map = cv.CreateMat(2, 3, cv.CV_32FC1)
    corners = [(x + r * math.cos(angle + th), y + r * math.sin(angle + th)) for th in [0, math.pi / 2, math.pi, 3 * math.pi / 4]]
    src = mkdmtx(msg)
    (sx, sy) = cv.GetSize(src)
    cv.GetAffineTransform([(0,0), (sx, 0), (sx, sy)], corners[:3], map)
    temp = cv.CreateMat(bg.rows, bg.cols, cv.CV_8UC3)
    cv.Set(temp, cv.RGB(0, 0, 0))
    cv.WarpAffine(src, temp, map)
    cv.Or(temp, bg, bg)


cv.ShowImage("comp", bg)
scribble = cv.CloneMat(bg)

if 0:
    for i in range(10):
        df.find(bg)

for (sym, coords) in df.find(bg).items():
    print sym
    cv.PolyLine(scribble, [coords], 1, cv.CV_RGB(255, 0,0), 1, lineType = cv.CV_AA)
    Xs = [x for (x, y) in coords]
    Ys = [y for (x, y) in coords]
    where = ((min(Xs) + max(Xs)) / 2, max(Ys) - 50)
    cv.PutText(scribble, sym, where, font, cv.RGB(0,255, 0))

cv.ShowImage("results", scribble)
cv.WaitKey()
175
cv.DestroyAllWindows()
James Bowman's avatar
James Bowman committed
176 177 178 179 180 181 182 183 184

sys.exit(0)

capture = cv.CaptureFromCAM(0)
while True:
    img = cv.QueryFrame(capture)
    cv.ShowImage("capture", img)
    print df.find(img)
    cv.WaitKey(6)