slaed7.c 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#include "clapack.h"

/* Table of constant values */

static integer c__2 = 2;
static integer c__1 = 1;
static real c_b10 = 1.f;
static real c_b11 = 0.f;
static integer c_n1 = -1;

/* Subroutine */ int slaed7_(integer *icompq, integer *n, integer *qsiz, 
	integer *tlvls, integer *curlvl, integer *curpbm, real *d__, real *q, 
	integer *ldq, integer *indxq, real *rho, integer *cutpnt, real *
	qstore, integer *qptr, integer *prmptr, integer *perm, integer *
	givptr, integer *givcol, real *givnum, real *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, i__1, i__2;

    /* Builtin functions */
    integer pow_ii(integer *, integer *);

    /* Local variables */
    integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr, indxc;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    integer indxp;
    extern /* Subroutine */ int slaed8_(integer *, integer *, integer *, 
	    integer *, real *, real *, integer *, integer *, real *, integer *
, real *, real *, real *, integer *, real *, integer *, integer *, 
	     integer *, real *, integer *, integer *, integer *), slaed9_(
	    integer *, integer *, integer *, integer *, real *, real *, 
	    integer *, real *, real *, real *, real *, integer *, integer *), 
	    slaeda_(integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, real *, real *, integer *, real *
, real *, integer *);
    integer idlmda;
    extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
	    integer *, integer *, real *, integer *, integer *, integer *);
    integer coltyp;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAED7 computes the updated eigensystem of a diagonal */
/*  matrix after modification by a rank-one symmetric matrix. This */
/*  routine is used only for the eigenproblem which requires all */
/*  eigenvalues and optionally eigenvectors of a dense symmetric matrix */
/*  that has been reduced to tridiagonal form.  SLAED1 handles */
/*  the case in which all eigenvalues and eigenvectors of a symmetric */
/*  tridiagonal matrix are desired. */

/*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */

/*     where Z = Q'u, u is a vector of length N with ones in the */
/*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */

/*     The eigenvectors of the original matrix are stored in Q, and the */
/*     eigenvalues are in D.  The algorithm consists of three stages: */

/*        The first stage consists of deflating the size of the problem */
/*        when there are multiple eigenvalues or if there is a zero in */
/*        the Z vector.  For each such occurence the dimension of the */
/*        secular equation problem is reduced by one.  This stage is */
/*        performed by the routine SLAED8. */

/*        The second stage consists of calculating the updated */
/*        eigenvalues. This is done by finding the roots of the secular */
/*        equation via the routine SLAED4 (as called by SLAED9). */
/*        This routine also calculates the eigenvectors of the current */
/*        problem. */

/*        The final stage consists of computing the updated eigenvectors */
/*        directly using the updated eigenvalues.  The eigenvectors for */
/*        the current problem are multiplied with the eigenvectors from */
/*        the overall problem. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  TLVLS  (input) INTEGER */
/*         The total number of merging levels in the overall divide and */
/*         conquer tree. */

/*  CURLVL (input) INTEGER */
/*         The current level in the overall merge routine, */
/*         0 <= CURLVL <= TLVLS. */

/*  CURPBM (input) INTEGER */
/*         The current problem in the current level in the overall */
/*         merge routine (counting from upper left to lower right). */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry, the eigenvalues of the rank-1-perturbed matrix. */
/*         On exit, the eigenvalues of the repaired matrix. */

/*  Q      (input/output) REAL array, dimension (LDQ, N) */
/*         On entry, the eigenvectors of the rank-1-perturbed matrix. */
/*         On exit, the eigenvectors of the repaired tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (output) INTEGER array, dimension (N) */
/*         The permutation which will reintegrate the subproblem just */
/*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */
/*         will be in ascending order. */

/*  RHO    (input) REAL */
/*         The subdiagonal element used to create the rank-1 */
/*         modification. */

/*  CUTPNT (input) INTEGER */
/*         Contains the location of the last eigenvalue in the leading */
/*         sub-matrix.  min(1,N) <= CUTPNT <= N. */

/*  QSTORE (input/output) REAL array, dimension (N**2+1) */
/*         Stores eigenvectors of submatrices encountered during */
/*         divide and conquer, packed together. QPTR points to */
/*         beginning of the submatrices. */

/*  QPTR   (input/output) INTEGER array, dimension (N+2) */
/*         List of indices pointing to beginning of submatrices stored */
/*         in QSTORE. The submatrices are numbered starting at the */
/*         bottom left of the divide and conquer tree, from left to */
/*         right and bottom to top. */

/*  PRMPTR (input) INTEGER array, dimension (N lg N) */
/*         Contains a list of pointers which indicate where in PERM a */
/*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
/*         indicates the size of the permutation and also the size of */
/*         the full, non-deflated problem. */

/*  PERM   (input) INTEGER array, dimension (N lg N) */
/*         Contains the permutations (from deflation and sorting) to be */
/*         applied to each eigenblock. */

/*  GIVPTR (input) INTEGER array, dimension (N lg N) */
/*         Contains a list of pointers which indicate where in GIVCOL a */
/*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
/*         indicates the number of Givens rotations. */

/*  GIVCOL (input) INTEGER array, dimension (2, N lg N) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. */

/*  GIVNUM (input) REAL array, dimension (2, N lg N) */
/*         Each number indicates the S value to be used in the */
/*         corresponding Givens rotation. */

/*  WORK   (workspace) REAL array, dimension (3*N+QSIZ*N) */

/*  IWORK  (workspace) INTEGER array, dimension (4*N) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an eigenvalue did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --qstore;
    --qptr;
    --prmptr;
    --perm;
    --givptr;
    givcol -= 3;
    givnum -= 3;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*icompq == 1 && *qsiz < *n) {
	*info = -4;
    } else if (*ldq < max(1,*n)) {
	*info = -9;
    } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED7", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     The following values are for bookkeeping purposes only.  They are */
/*     integer pointers which indicate the portion of the workspace */
/*     used by a particular array in SLAED8 and SLAED9. */

    if (*icompq == 1) {
	ldq2 = *qsiz;
    } else {
	ldq2 = *n;
    }

    iz = 1;
    idlmda = iz + *n;
    iw = idlmda + *n;
    iq2 = iw + *n;
    is = iq2 + *n * ldq2;

    indx = 1;
    indxc = indx + *n;
    coltyp = indxc + *n;
    indxp = coltyp + *n;

/*     Form the z-vector which consists of the last row of Q_1 and the */
/*     first row of Q_2. */

    ptr = pow_ii(&c__2, tlvls) + 1;
    i__1 = *curlvl - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = *tlvls - i__;
	ptr += pow_ii(&c__2, &i__2);
/* L10: */
    }
    curr = ptr + *curpbm;
    slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
	    givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz 
	    + *n], info);

/*     When solving the final problem, we no longer need the stored data, */
/*     so we will overwrite the data from this level onto the previously */
/*     used storage space. */

    if (*curlvl == *tlvls) {
	qptr[curr] = 1;
	prmptr[curr] = 1;
	givptr[curr] = 1;
    }

/*     Sort and Deflate eigenvalues. */

    slaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, 
	    cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
	    perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1)
	     + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[
	    indx], info);
    prmptr[curr + 1] = prmptr[curr] + *n;
    givptr[curr + 1] += givptr[curr];

/*     Solve Secular Equation. */

    if (k != 0) {
	slaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], 
		&work[iw], &qstore[qptr[curr]], &k, info);
	if (*info != 0) {
	    goto L30;
	}
	if (*icompq == 1) {
	    sgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[
		    qptr[curr]], &k, &c_b11, &q[q_offset], ldq);
	}
/* Computing 2nd power */
	i__1 = k;
	qptr[curr + 1] = qptr[curr] + i__1 * i__1;

/*     Prepare the INDXQ sorting permutation. */

	n1 = k;
	n2 = *n - k;
	slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
    } else {
	qptr[curr + 1] = qptr[curr];
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    indxq[i__] = i__;
/* L20: */
	}
    }

L30:
    return 0;

/*     End of SLAED7 */

} /* slaed7_ */