slasq2.c 15 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slasq2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;

/* Subroutine */ int slasq2_(integer *n, real *z__, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
31
    real d__, e, g;
32 33 34 35 36
    integer k;
    real s, t;
    integer i0, i4, n0;
    real dn;
    integer pp;
37
    real dn1, dn2, dee, eps, tau, tol;
38 39 40 41 42
    integer ipn4;
    real tol2;
    logical ieee;
    integer nbig;
    real dmin__, emin, emax;
43
    integer kmin, ndiv, iter;
44 45 46 47 48 49
    real qmin, temp, qmax, zmax;
    integer splt;
    real dmin1, dmin2;
    integer nfail;
    real desig, trace, sigma;
    integer iinfo, ttype;
50
    extern /* Subroutine */ int slasq3_(integer *, integer *, real *, integer 
51 52
	    *, real *, real *, real *, real *, integer *, integer *, integer *
, logical *, integer *, real *, real *, real *, real *, real *, 
53 54
	    real *, real *);
    real deemin;
55 56 57
    extern doublereal slamch_(char *);
    integer iwhila, iwhilb;
    real oldemn, safmin;
58 59 60
    extern /* Subroutine */ int xerbla_(char *, integer *), slasrt_(
	    char *, integer *, real *, integer *);

61

62
/*  -- LAPACK routine (version 3.2)                                    -- */
63

64 65 66 67
/*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
/*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
/*  -- Berkeley                                                        -- */
/*  -- November 2008                                                   -- */
68

69 70
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASQ2 computes all the eigenvalues of the symmetric positive */
/*  definite tridiagonal matrix associated with the qd array Z to high */
/*  relative accuracy are computed to high relative accuracy, in the */
/*  absence of denormalization, underflow and overflow. */

/*  To see the relation of Z to the tridiagonal matrix, let L be a */
/*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
/*  let U be an upper bidiagonal matrix with 1's above and diagonal */
/*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
/*  symmetric tridiagonal to which it is similar. */

/*  Note : SLASQ2 defines a logical variable, IEEE, which is true */
/*  on machines which follow ieee-754 floating-point standard in their */
/*  handling of infinities and NaNs, and false otherwise. This variable */
94
/*  is passed to SLASQ3. */
95 96 97 98 99 100 101

/*  Arguments */
/*  ========= */

/*  N     (input) INTEGER */
/*        The number of rows and columns in the matrix. N >= 0. */

102
/*  Z     (input/output) REAL array, dimension ( 4*N ) */
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*        On entry Z holds the qd array. On exit, entries 1 to N hold */
/*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
/*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
/*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
/*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
/*        shifts that failed. */

/*  INFO  (output) INTEGER */
/*        = 0: successful exit */
/*        < 0: if the i-th argument is a scalar and had an illegal */
/*             value, then INFO = -i, if the i-th argument is an */
/*             array and the j-entry had an illegal value, then */
/*             INFO = -(i*100+j) */
/*        > 0: the algorithm failed */
/*              = 1, a split was marked by a positive value in E */
/*              = 2, current block of Z not diagonalized after 30*N */
/*                   iterations (in inner while loop) */
/*              = 3, termination criterion of outer while loop not met */
/*                   (program created more than N unreduced blocks) */

/*  Further Details */
/*  =============== */
/*  Local Variables: I0:N0 defines a current unreduced segment of Z. */
/*  The shifts are accumulated in SIGMA. Iteration count is in ITER. */
/*  Ping-pong is controlled by PP (alternates between 0 and 1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */
/*     (in case SLASQ2 is not called by SLASQ1) */

    /* Parameter adjustments */
    --z__;

    /* Function Body */
    *info = 0;
    eps = slamch_("Precision");
    safmin = slamch_("Safe minimum");
    tol = eps * 100.f;
/* Computing 2nd power */
    r__1 = tol;
    tol2 = r__1 * r__1;

    if (*n < 0) {
	*info = -1;
	xerbla_("SLASQ2", &c__1);
	return 0;
    } else if (*n == 0) {
	return 0;
    } else if (*n == 1) {

/*        1-by-1 case. */

	if (z__[1] < 0.f) {
	    *info = -201;
	    xerbla_("SLASQ2", &c__2);
	}
	return 0;
    } else if (*n == 2) {

/*        2-by-2 case. */

	if (z__[2] < 0.f || z__[3] < 0.f) {
	    *info = -2;
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	} else if (z__[3] > z__[1]) {
	    d__ = z__[3];
	    z__[3] = z__[1];
	    z__[1] = d__;
	}
	z__[5] = z__[1] + z__[2] + z__[3];
	if (z__[2] > z__[3] * tol2) {
	    t = (z__[1] - z__[3] + z__[2]) * .5f;
	    s = z__[3] * (z__[2] / t);
	    if (s <= t) {
		s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f)));
	    } else {
		s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
	    }
	    t = z__[1] + (s + z__[2]);
	    z__[3] *= z__[1] / t;
	    z__[1] = t;
	}
	z__[2] = z__[3];
	z__[6] = z__[2] + z__[1];
	return 0;
    }

/*     Check for negative data and compute sums of q's and e's. */

    z__[*n * 2] = 0.f;
    emin = z__[2];
    qmax = 0.f;
    zmax = 0.f;
    d__ = 0.f;
    e = 0.f;

    i__1 = *n - 1 << 1;
    for (k = 1; k <= i__1; k += 2) {
	if (z__[k] < 0.f) {
	    *info = -(k + 200);
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	} else if (z__[k + 1] < 0.f) {
	    *info = -(k + 201);
	    xerbla_("SLASQ2", &c__2);
	    return 0;
	}
	d__ += z__[k];
	e += z__[k + 1];
/* Computing MAX */
	r__1 = qmax, r__2 = z__[k];
	qmax = dmax(r__1,r__2);
/* Computing MIN */
	r__1 = emin, r__2 = z__[k + 1];
	emin = dmin(r__1,r__2);
/* Computing MAX */
	r__1 = max(qmax,zmax), r__2 = z__[k + 1];
	zmax = dmax(r__1,r__2);
/* L10: */
    }
    if (z__[(*n << 1) - 1] < 0.f) {
	*info = -((*n << 1) + 199);
	xerbla_("SLASQ2", &c__2);
	return 0;
    }
    d__ += z__[(*n << 1) - 1];
/* Computing MAX */
    r__1 = qmax, r__2 = z__[(*n << 1) - 1];
    qmax = dmax(r__1,r__2);
    zmax = dmax(qmax,zmax);

/*     Check for diagonality. */

    if (e == 0.f) {
	i__1 = *n;
	for (k = 2; k <= i__1; ++k) {
	    z__[k] = z__[(k << 1) - 1];
/* L20: */
	}
	slasrt_("D", n, &z__[1], &iinfo);
	z__[(*n << 1) - 1] = d__;
	return 0;
    }

    trace = d__ + e;

/*     Check for zero data. */

    if (trace == 0.f) {
	z__[(*n << 1) - 1] = 0.f;
	return 0;
    }

/*     Check whether the machine is IEEE conformable. */

272 273 274 275 276 277 278
/*     IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */
/*    $       ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */

/*     [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */
/*     some the test matrices of type 16. The double precision code is fine. */

    ieee = FALSE_;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

/*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */

    for (k = *n << 1; k >= 2; k += -2) {
	z__[k * 2] = 0.f;
	z__[(k << 1) - 1] = z__[k];
	z__[(k << 1) - 2] = 0.f;
	z__[(k << 1) - 3] = z__[k - 1];
/* L30: */
    }

    i0 = 1;
    n0 = *n;

/*     Reverse the qd-array, if warranted. */

    if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) {
	ipn4 = i0 + n0 << 2;
	i__1 = i0 + n0 - 1 << 1;
	for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
	    temp = z__[i4 - 3];
	    z__[i4 - 3] = z__[ipn4 - i4 - 3];
	    z__[ipn4 - i4 - 3] = temp;
	    temp = z__[i4 - 1];
	    z__[i4 - 1] = z__[ipn4 - i4 - 5];
	    z__[ipn4 - i4 - 5] = temp;
/* L40: */
	}
    }

/*     Initial split checking via dqd and Li's test. */

    pp = 0;

    for (k = 1; k <= 2; ++k) {

	d__ = z__[(n0 << 2) + pp - 3];
	i__1 = (i0 << 2) + pp;
	for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.f;
		d__ = z__[i4 - 3];
	    } else {
		d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
	    }
/* L50: */
	}

/*        dqd maps Z to ZZ plus Li's test. */

	emin = z__[(i0 << 2) + pp + 1];
	d__ = z__[(i0 << 2) + pp - 3];
	i__1 = (n0 - 1 << 2) + pp;
	for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
	    z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
	    if (z__[i4 - 1] <= tol2 * d__) {
		z__[i4 - 1] = -0.f;
		z__[i4 - (pp << 1) - 2] = d__;
		z__[i4 - (pp << 1)] = 0.f;
		d__ = z__[i4 + 1];
	    } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && 
		    safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
		temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
		z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
		d__ *= temp;
	    } else {
		z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
			pp << 1) - 2]);
		d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
	    }
/* Computing MIN */
	    r__1 = emin, r__2 = z__[i4 - (pp << 1)];
	    emin = dmin(r__1,r__2);
/* L60: */
	}
	z__[(n0 << 2) - pp - 2] = d__;

/*        Now find qmax. */

	qmax = z__[(i0 << 2) - pp - 2];
	i__1 = (n0 << 2) - pp - 2;
	for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
/* Computing MAX */
	    r__1 = qmax, r__2 = z__[i4];
	    qmax = dmax(r__1,r__2);
/* L70: */
	}

/*        Prepare for the next iteration on K. */

	pp = 1 - pp;
/* L80: */
    }

373
/*     Initialise variables to pass to SLASQ3. */
374 375 376 377 378 379 380

    ttype = 0;
    dmin1 = 0.f;
    dmin2 = 0.f;
    dn = 0.f;
    dn1 = 0.f;
    dn2 = 0.f;
381
    g = 0.f;
382 383 384 385 386 387 388 389 390
    tau = 0.f;

    iter = 2;
    nfail = 0;
    ndiv = n0 - i0 << 1;

    i__1 = *n + 1;
    for (iwhila = 1; iwhila <= i__1; ++iwhila) {
	if (n0 < 1) {
391
	    goto L170;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	}

/*        While array unfinished do */

/*        E(N0) holds the value of SIGMA when submatrix in I0:N0 */
/*        splits from the rest of the array, but is negated. */

	desig = 0.f;
	if (n0 == *n) {
	    sigma = 0.f;
	} else {
	    sigma = -z__[(n0 << 2) - 1];
	}
	if (sigma < 0.f) {
	    *info = 1;
	    return 0;
	}

/*        Find last unreduced submatrix's top index I0, find QMAX and */
/*        EMIN. Find Gershgorin-type bound if Q's much greater than E's. */

	emax = 0.f;
	if (n0 > i0) {
	    emin = (r__1 = z__[(n0 << 2) - 5], dabs(r__1));
	} else {
	    emin = 0.f;
	}
	qmin = z__[(n0 << 2) - 3];
	qmax = qmin;
	for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
	    if (z__[i4 - 5] <= 0.f) {
		goto L100;
	    }
	    if (qmin >= emax * 4.f) {
/* Computing MIN */
		r__1 = qmin, r__2 = z__[i4 - 3];
		qmin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = emax, r__2 = z__[i4 - 5];
		emax = dmax(r__1,r__2);
	    }
/* Computing MAX */
	    r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5];
	    qmax = dmax(r__1,r__2);
/* Computing MIN */
	    r__1 = emin, r__2 = z__[i4 - 5];
	    emin = dmin(r__1,r__2);
/* L90: */
	}
	i4 = 4;

L100:
	i0 = i4 / 4;
445
	pp = 0;
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	if (n0 - i0 > 1) {
	    dee = z__[(i0 << 2) - 3];
	    deemin = dee;
	    kmin = i0;
	    i__2 = (n0 << 2) - 3;
	    for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
		dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
		if (dee <= deemin) {
		    deemin = dee;
		    kmin = (i4 + 3) / 4;
		}
/* L110: */
	    }
	    if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * 
		    .5f) {
		ipn4 = i0 + n0 << 2;
		pp = 2;
		i__2 = i0 + n0 - 1 << 1;
		for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
		    temp = z__[i4 - 3];
		    z__[i4 - 3] = z__[ipn4 - i4 - 3];
		    z__[ipn4 - i4 - 3] = temp;
		    temp = z__[i4 - 2];
		    z__[i4 - 2] = z__[ipn4 - i4 - 2];
		    z__[ipn4 - i4 - 2] = temp;
		    temp = z__[i4 - 1];
		    z__[i4 - 1] = z__[ipn4 - i4 - 5];
		    z__[ipn4 - i4 - 5] = temp;
		    temp = z__[i4];
		    z__[i4] = z__[ipn4 - i4 - 4];
		    z__[ipn4 - i4 - 4] = temp;
/* L120: */
		}
	    }
	}
482 483 484 485 486 487 488

/*        Put -(initial shift) into DMIN. */

/* Computing MAX */
	r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax);
	dmin__ = -dmax(r__1,r__2);

489 490 491 492 493
/*        Now I0:N0 is unreduced. */
/*        PP = 0 for ping, PP = 1 for pong. */
/*        PP = 2 indicates that flipping was applied to the Z array and */
/*               and that the tests for deflation upon entry in SLASQ3 */
/*               should not be performed. */
494 495 496 497 498

	nbig = (n0 - i0 + 1) * 30;
	i__2 = nbig;
	for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
	    if (i0 > n0) {
499
		goto L150;
500 501 502 503
	    }

/*           While submatrix unfinished take a good dqds step. */

504
	    slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
505
		    nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
506
		    dn1, &dn2, &g, &tau);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	    pp = 1 - pp;

/*           When EMIN is very small check for splits. */

	    if (pp == 0 && n0 - i0 >= 3) {
		if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
			 sigma) {
		    splt = i0 - 1;
		    qmax = z__[(i0 << 2) - 3];
		    emin = z__[(i0 << 2) - 1];
		    oldemn = z__[i0 * 4];
		    i__3 = n0 - 3 << 2;
		    for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
			if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= 
				tol2 * sigma) {
			    z__[i4 - 1] = -sigma;
			    splt = i4 / 4;
			    qmax = 0.f;
			    emin = z__[i4 + 3];
			    oldemn = z__[i4 + 4];
			} else {
/* Computing MAX */
			    r__1 = qmax, r__2 = z__[i4 + 1];
			    qmax = dmax(r__1,r__2);
/* Computing MIN */
			    r__1 = emin, r__2 = z__[i4 - 1];
			    emin = dmin(r__1,r__2);
/* Computing MIN */
			    r__1 = oldemn, r__2 = z__[i4];
			    oldemn = dmin(r__1,r__2);
			}
539
/* L130: */
540 541 542 543 544 545 546
		    }
		    z__[(n0 << 2) - 1] = emin;
		    z__[n0 * 4] = oldemn;
		    i0 = splt + 1;
		}
	    }

547
/* L140: */
548 549 550 551 552 553 554
	}

	*info = 2;
	return 0;

/*        end IWHILB */

555
L150:
556

557
/* L160: */
558 559 560 561 562 563 564 565
	;
    }

    *info = 3;
    return 0;

/*     end IWHILA */

566
L170:
567 568 569 570 571 572

/*     Move q's to the front. */

    i__1 = *n;
    for (k = 2; k <= i__1; ++k) {
	z__[k] = z__[(k << 2) - 3];
573
/* L180: */
574 575 576 577 578 579 580 581 582
    }

/*     Sort and compute sum of eigenvalues. */

    slasrt_("D", n, &z__[1], &iinfo);

    e = 0.f;
    for (k = *n; k >= 1; --k) {
	e += z__[k];
583
/* L190: */
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    }

/*     Store trace, sum(eigenvalues) and information on performance. */

    z__[(*n << 1) + 1] = trace;
    z__[(*n << 1) + 2] = e;
    z__[(*n << 1) + 3] = (real) iter;
/* Computing 2nd power */
    i__1 = *n;
    z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1);
    z__[(*n << 1) + 5] = nfail * 100.f / (real) iter;
    return 0;

/*     End of SLASQ2 */

} /* slasq2_ */