lapack.cpp 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv
{
47 48 49 50 51
 
/****************************************************************************************\
*                     LU & Cholesky implementation for small matrices                    *
\****************************************************************************************/
    
52 53
template<typename _Tp> static inline int
LUImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n)
54 55
{
    int i, j, k, p = 1;
56 57
    astep /= sizeof(A[0]);
    bstep /= sizeof(b[0]);
58 59 60 61 62 63
    
    for( i = 0; i < m; i++ )
    {
        k = i;
        
        for( j = i+1; j < m; j++ )
64
            if( std::abs(A[j*astep + i]) > std::abs(A[k*astep + i]) )
65 66
                k = j;
        
67
        if( std::abs(A[k*astep + i]) < std::numeric_limits<_Tp>::epsilon() )
68 69 70 71 72
            return 0;
        
        if( k != i )
        {
            for( j = i; j < m; j++ )
73
                std::swap(A[i*astep + j], A[k*astep + j]);
74 75
            if( b )
                for( j = 0; j < n; j++ )
76
                    std::swap(b[i*bstep + j], b[k*bstep + j]);
77 78 79
            p = -p;
        }
        
80
        _Tp d = -1/A[i*astep + i];
81 82 83
        
        for( j = i+1; j < m; j++ )
        {
84
            _Tp alpha = A[j*astep + i]*d;
85 86
            
            for( k = i+1; k < m; k++ )
87
                A[j*astep + k] += alpha*A[i*astep + k];
88 89 90
            
            if( b )
                for( k = 0; k < n; k++ )
91
                    b[j*bstep + k] += alpha*b[i*bstep + k];
92 93
        }
        
94
        A[i*astep + i] = -d;
95 96 97 98 99 100 101
    }
    
    if( b )
    {
        for( i = m-1; i >= 0; i-- )
            for( j = 0; j < n; j++ )
            {
102
                _Tp s = b[i*bstep + j];
103
                for( k = i+1; k < m; k++ )
104 105
                    s -= A[i*astep + k]*b[k*bstep + j];
                b[i*bstep + j] = s*A[i*astep + i];
106 107 108 109 110 111 112
            }
    }
    
    return p;
}

    
113
int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n)
114
{
115
    return LUImpl(A, astep, m, b, bstep, n);
116
}
117

118
    
119
int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n)
120
{
121
    return LUImpl(A, astep, m, b, bstep, n);
122 123 124
}
   

125 126
template<typename _Tp> static inline bool
CholImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n)
127 128 129 130
{
    _Tp* L = A;
    int i, j, k;
    double s;
131 132
    astep /= sizeof(A[0]);
    bstep /= sizeof(b[0]);
133 134 135 136 137
    
    for( i = 0; i < m; i++ )
    {
        for( j = 0; j < i; j++ )
        {
138
            s = A[i*astep + j];
139
            for( k = 0; k < j; k++ )
140 141
                s -= L[i*astep + k]*L[j*astep + k];
            L[i*astep + j] = (_Tp)(s*L[j*astep + j]);
142
        }
143
        s = A[i*astep + i];
144 145
        for( k = 0; k < j; k++ )
        {
146
            double t = L[i*astep + k];
147 148 149
            s -= t*t;
        }
        if( s < std::numeric_limits<_Tp>::epsilon() )
150 151
            return false;
        L[i*astep + i] = (_Tp)(1./std::sqrt(s));
152 153 154
    }
    
    if( !b )
155
        return true;
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    
    // LLt x = b
    // 1: L y = b
    // 2. Lt x = y
    
    /*
     [ L00             ]  y0   b0
     [ L10 L11         ]  y1 = b1
     [ L20 L21 L22     ]  y2   b2
     [ L30 L31 L32 L33 ]  y3   b3
     
     [ L00 L10 L20 L30 ]  x0   y0
     [     L11 L21 L31 ]  x1 = y1
     [         L22 L32 ]  x2   y2
     [             L33 ]  x3   y3
    */
    
    for( i = 0; i < m; i++ )
    {
        for( j = 0; j < n; j++ )
        {
177
            s = b[i*bstep + j];
178
            for( k = 0; k < i; k++ )
179 180
                s -= L[i*astep + k]*b[k*bstep + j];
            b[i*bstep + j] = (_Tp)(s*L[i*astep + i]);
181 182 183 184 185 186 187
        }
    }
    
    for( i = m-1; i >= 0; i-- )
    {
        for( j = 0; j < n; j++ )
        {
188
            s = b[i*bstep + j];
189
            for( k = m-1; k > i; k-- )
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                s -= L[k*astep + i]*b[k*bstep + j];
            b[i*bstep + j] = (_Tp)(s*L[i*astep + i]);
        }
    }
    
    return true;
}
    
    
bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n)
{
    return CholImpl(A, astep, m, b, bstep, n);
}
    
bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n)
{
    return CholImpl(A, astep, m, b, bstep, n);
}

    
template<typename _Tp> static inline _Tp hypot(_Tp a, _Tp b)
{
    a = std::abs(a);
    b = std::abs(b);
    if( a > b )
    {
        b /= a;
        return a*std::sqrt(1 + b*b);
    }
    if( b > 0 )
    {
        a /= b;
        return b*std::sqrt(1 + a*a);
    }
    return 0;
}


template<typename _Tp> bool
JacobiImpl_( _Tp* A, size_t astep, _Tp* W, _Tp* V, size_t vstep, int n, uchar* buf )
{
    const _Tp eps = std::numeric_limits<_Tp>::epsilon();
    int i, j, k, m;
    
    astep /= sizeof(A[0]);
    if( V )
    {
        vstep /= sizeof(V[0]);
        for( i = 0; i < n; i++ )
        {
            for( j = 0; j < n; j++ )
                V[i*vstep + j] = (_Tp)0;
            V[i*vstep + i] = (_Tp)1;
        }
    }
    
    int iters, maxIters = n*n*30;
    
248
    int* indR = (int*)alignPtr(buf, sizeof(int));
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    int* indC = indR + n;
    _Tp mv = (_Tp)0;
    
    for( k = 0; k < n; k++ )
    {
        W[k] = A[(astep + 1)*k];
        if( k < n - 1 )
        {
            for( m = k+1, mv = std::abs(A[astep*k + m]), i = k+2; i < n; i++ )
            {
                _Tp val = std::abs(A[astep*k+i]);
                if( mv < val )
                    mv = val, m = i;
            }
            indR[k] = m;
        }
        if( k > 0 )
        {
            for( m = 0, mv = std::abs(A[k]), i = 1; i < k; i++ )
            {
                _Tp val = std::abs(A[astep*i+k]);
                if( mv < val )
                    mv = val, m = i;
            }
            indC[k] = m;
        }
    }
    
277
    if( n > 1 ) for( iters = 0; iters < maxIters; iters++ )
278 279
    {
        // find index (k,l) of pivot p
280
        for( k = 0, mv = std::abs(A[indR[0]]), i = 1; i < n-1; i++ )
281
        {
282
            _Tp val = std::abs(A[astep*i + indR[i]]);
283 284 285 286 287 288
            if( mv < val )
                mv = val, k = i;
        }
        int l = indR[k];
        for( i = 1; i < n; i++ )
        {
289
            _Tp val = std::abs(A[astep*indC[i] + i]);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            if( mv < val )
                mv = val, k = indC[i], l = i;
        }
        
        _Tp p = A[astep*k + l];
        if( std::abs(p) <= eps )
            break;
        _Tp y = (_Tp)((W[l] - W[k])*0.5);
        _Tp t = std::abs(y) + hypot(p, y);
        _Tp s = hypot(p, t);
        _Tp c = t/s;
        s = p/s; t = (p/t)*p;
        if( y < 0 )
            s = -s, t = -t;
        A[astep*k + l] = 0;
        
        W[k] -= t;
        W[l] += t;
        
        _Tp a0, b0;
        
#undef rotate
#define rotate(v0, v1) a0 = v0, b0 = v1, v0 = a0*c - b0*s, v1 = a0*s + b0*c
        
        // rotate rows and columns k and l
        for( i = 0; i < k; i++ )
            rotate(A[astep*i+k], A[astep*i+l]);
        for( i = k+1; i < l; i++ )
            rotate(A[astep*k+i], A[astep*i+l]);
        for( i = l+1; i < n; i++ )
            rotate(A[astep*k+i], A[astep*l+i]);
        
        // rotate eigenvectors
        if( V )
            for( i = 0; i < n; i++ )
                rotate(V[vstep*k+i], V[vstep*l+i]);
        
#undef rotate
        
        for( j = 0; j < 2; j++ )
        {
            int idx = j == 0 ? k : l;
            if( idx < n - 1 )
            {
                for( m = idx+1, mv = std::abs(A[astep*idx + m]), i = idx+2; i < n; i++ )
                {
                    _Tp val = std::abs(A[astep*idx+i]);
                    if( mv < val )
                        mv = val, m = i;
                }
                indR[idx] = m;
            }
            if( idx > 0 )
            {
                for( m = 0, mv = std::abs(A[idx]), i = 1; i < idx; i++ )
                {
                    _Tp val = std::abs(A[astep*i+idx]);
                    if( mv < val )
                        mv = val, m = i;
                }
                indC[idx] = m;
            }
        }
    }
    
    // sort eigenvalues & eigenvectors
    for( k = 0; k < n-1; k++ )
    {
        m = k;
        for( i = k+1; i < n; i++ )
        {
            if( W[m] < W[i] )
                m = i;
        }
        if( k != m )
        {
            std::swap(W[m], W[k]);
            if( V )
                for( i = 0; i < n; i++ )
                    std::swap(V[vstep*m + i], V[vstep*k + i]);
        }
    }
    
    return true;
}
    
static bool Jacobi( float* S, size_t sstep, float* e, float* E, size_t estep, int n, uchar* buf )
{
    return JacobiImpl_(S, sstep, e, E, estep, n, buf);
}

static bool Jacobi( double* S, size_t sstep, double* e, double* E, size_t estep, int n, uchar* buf )
{
    return JacobiImpl_(S, sstep, e, E, estep, n, buf);
}
    
    
template<typename T> struct VBLAS
{
    int dot(const T*, const T*, int, T*) const { return 0; }
    int givens(T*, T*, int, T, T) const { return 0; }
    int givensx(T*, T*, int, T, T, T*, T*) const { return 0; }
};

#if CV_SSE2
template<> inline int VBLAS<float>::dot(const float* a, const float* b, int n, float* result) const
{
    if( n < 8 )
        return 0;
    int k = 0;
    __m128 s0 = _mm_setzero_ps(), s1 = _mm_setzero_ps();
    for( ; k <= n - 8; k += 8 )
    {
        __m128 a0 = _mm_load_ps(a + k), a1 = _mm_load_ps(a + k + 4);
        __m128 b0 = _mm_load_ps(b + k), b1 = _mm_load_ps(b + k + 4);
        
        s0 = _mm_add_ps(s0, _mm_mul_ps(a0, b0));
        s1 = _mm_add_ps(s1, _mm_mul_ps(a1, b1));
    }
    s0 = _mm_add_ps(s0, s1);
    float sbuf[4];
    _mm_storeu_ps(sbuf, s0);
    *result = sbuf[0] + sbuf[1] + sbuf[2] + sbuf[3];
    return k;
}


template<> inline int VBLAS<float>::givens(float* a, float* b, int n, float c, float s) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128 c4 = _mm_set1_ps(c), s4 = _mm_set1_ps(s);
    for( ; k <= n - 4; k += 4 )
    {
        __m128 a0 = _mm_load_ps(a + k);
        __m128 b0 = _mm_load_ps(b + k);
        __m128 t0 = _mm_add_ps(_mm_mul_ps(a0, c4), _mm_mul_ps(b0, s4));
        __m128 t1 = _mm_sub_ps(_mm_mul_ps(b0, c4), _mm_mul_ps(a0, s4));
        _mm_store_ps(a + k, t0);
        _mm_store_ps(b + k, t1);
    }
    return k;
}


template<> inline int VBLAS<float>::givensx(float* a, float* b, int n, float c, float s,
                                             float* anorm, float* bnorm) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128 c4 = _mm_set1_ps(c), s4 = _mm_set1_ps(s);
    __m128 sa = _mm_setzero_ps(), sb = _mm_setzero_ps();
    for( ; k <= n - 4; k += 4 )
    {
        __m128 a0 = _mm_load_ps(a + k);
        __m128 b0 = _mm_load_ps(b + k);
        __m128 t0 = _mm_add_ps(_mm_mul_ps(a0, c4), _mm_mul_ps(b0, s4));
        __m128 t1 = _mm_sub_ps(_mm_mul_ps(b0, c4), _mm_mul_ps(a0, s4));
        _mm_store_ps(a + k, t0);
        _mm_store_ps(b + k, t1);
        sa = _mm_add_ps(sa, _mm_mul_ps(t0, t0));
        sb = _mm_add_ps(sb, _mm_mul_ps(t1, t1));
    }
    float abuf[4], bbuf[4];
    _mm_storeu_ps(abuf, sa);
    _mm_storeu_ps(bbuf, sb);
    *anorm = abuf[0] + abuf[1] + abuf[2] + abuf[3];
    *bnorm = bbuf[0] + bbuf[1] + bbuf[2] + bbuf[3];
    return k;
}


template<> inline int VBLAS<double>::dot(const double* a, const double* b, int n, double* result) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128d s0 = _mm_setzero_pd(), s1 = _mm_setzero_pd();
    for( ; k <= n - 4; k += 4 )
    {
        __m128d a0 = _mm_load_pd(a + k), a1 = _mm_load_pd(a + k + 2);
        __m128d b0 = _mm_load_pd(b + k), b1 = _mm_load_pd(b + k + 2);
        
        s0 = _mm_add_pd(s0, _mm_mul_pd(a0, b0));
        s1 = _mm_add_pd(s1, _mm_mul_pd(a1, b1));
    }
    s0 = _mm_add_pd(s0, s1);
    double sbuf[2];
    _mm_storeu_pd(sbuf, s0);
    *result = sbuf[0] + sbuf[1];
    return k;
}


template<> inline int VBLAS<double>::givens(double* a, double* b, int n, double c, double s) const
{
    int k = 0;
    __m128d c2 = _mm_set1_pd(c), s2 = _mm_set1_pd(s);
    for( ; k <= n - 2; k += 2 )
    {
        __m128d a0 = _mm_load_pd(a + k);
        __m128d b0 = _mm_load_pd(b + k);
        __m128d t0 = _mm_add_pd(_mm_mul_pd(a0, c2), _mm_mul_pd(b0, s2));
        __m128d t1 = _mm_sub_pd(_mm_mul_pd(b0, c2), _mm_mul_pd(a0, s2));
        _mm_store_pd(a + k, t0);
        _mm_store_pd(b + k, t1);
    }
    return k;
}


template<> inline int VBLAS<double>::givensx(double* a, double* b, int n, double c, double s,
                                              double* anorm, double* bnorm) const
{
    int k = 0;
    __m128d c2 = _mm_set1_pd(c), s2 = _mm_set1_pd(s);
    __m128d sa = _mm_setzero_pd(), sb = _mm_setzero_pd();
    for( ; k <= n - 2; k += 2 )
    {
        __m128d a0 = _mm_load_pd(a + k);
        __m128d b0 = _mm_load_pd(b + k);
        __m128d t0 = _mm_add_pd(_mm_mul_pd(a0, c2), _mm_mul_pd(b0, s2));
        __m128d t1 = _mm_sub_pd(_mm_mul_pd(b0, c2), _mm_mul_pd(a0, s2));
        _mm_store_pd(a + k, t0);
        _mm_store_pd(b + k, t1);
        sa = _mm_add_pd(sa, _mm_mul_pd(t0, t0));
        sb = _mm_add_pd(sb, _mm_mul_pd(t1, t1));
    }
    double abuf[2], bbuf[2];
    _mm_storeu_pd(abuf, sa);
    _mm_storeu_pd(bbuf, sb);
    *anorm = abuf[0] + abuf[1];
    *bnorm = bbuf[0] + bbuf[1];
    return k;
}
#endif

template<typename _Tp> void
530
JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep, int m, int n, int n1)
531 532
{
    VBLAS<_Tp> vblas;
533 534 535
    AutoBuffer<double> Wbuf(n);
    double* W = Wbuf;
    _Tp eps = DBL_EPSILON*10;
536 537 538 539 540 541 542 543
    int i, j, k, iter, max_iter = std::max(m, 30);
    _Tp c, s;
    double sd;
    astep /= sizeof(At[0]);
    vstep /= sizeof(Vt[0]);
    
    for( i = 0; i < n; i++ )
    {
544
        for( k = 0, sd = 0; k < m; k++ )
545 546
        {
            _Tp t = At[i*astep + k];
547
            sd += (double)t*t;
548
        }
549
        W[i] = sd;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        
        if( Vt )
        {
            for( k = 0; k < n; k++ )
                Vt[i*vstep + k] = 0;
            Vt[i*vstep + i] = 1;
        }
    }
    
    for( iter = 0; iter < max_iter; iter++ )
    {
        bool changed = false;
        
        for( i = 0; i < n-1; i++ )
            for( j = i+1; j < n; j++ )
            {
566 567
                _Tp *Ai = At + i*astep, *Aj = At + j*astep;
                double a = W[i], p = 0, b = W[j];
568
                
569 570
                for( k = 0; k < m; k++ )
                    p += (double)Ai[k]*Aj[k];
571 572 573 574 575 576 577 578
                
                if( std::abs(p) <= eps*std::sqrt((double)a*b) )
                    continue;           
                
                p *= 2;
                double beta = a - b, gamma = hypot((double)p, beta), delta;
                if( beta < 0 )
                {
579
                    delta = (gamma - beta)*0.5;
580 581 582 583 584 585 586
                    s = (_Tp)std::sqrt(delta/gamma);
                    c = (_Tp)(p/(gamma*s*2));
                }
                else
                {
                    c = (_Tp)std::sqrt((gamma + beta)/(gamma*2));
                    s = (_Tp)(p/(gamma*c*2));
587
                    delta = p*p*0.5/(gamma + beta);
588 589
                }
                
590
                if( iter % 2 )
591
                {
592 593
                    W[i] += delta;
                    W[j] -= delta;
594 595 596 597 598 599 600 601 602 603 604 605 606
                    
                    k = vblas.givens(Ai, Aj, m, c, s);
                    
                    for( ; k < m; k++ )
                    {
                        _Tp t0 = c*Ai[k] + s*Aj[k];
                        _Tp t1 = -s*Ai[k] + c*Aj[k];
                        Ai[k] = t0; Aj[k] = t1;
                    }
                }
                else
                {
                    a = b = 0;
607
                    for( k = 0; k < m; k++ )
608 609 610 611 612
                    {
                        _Tp t0 = c*Ai[k] + s*Aj[k];
                        _Tp t1 = -s*Ai[k] + c*Aj[k];
                        Ai[k] = t0; Aj[k] = t1;
                        
613
                        a += (double)t0*t0; b += (double)t1*t1;
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                    }
                    W[i] = a; W[j] = b;
                }
                
                changed = true;
                
                if( Vt )
                {
                    _Tp *Vi = Vt + i*vstep, *Vj = Vt + j*vstep;
                    k = vblas.givens(Vi, Vj, n, c, s);
                    
                    for( ; k < n; k++ )
                    {
                        _Tp t0 = c*Vi[k] + s*Vj[k];
                        _Tp t1 = -s*Vi[k] + c*Vj[k];
                        Vi[k] = t0; Vj[k] = t1;
                    }
                }
            }
        if( !changed )
            break;
    }
    
    for( i = 0; i < n; i++ )
    {
        for( k = 0, sd = 0; k < m; k++ )
        {
            _Tp t = At[i*astep + k];
            sd += (double)t*t;
        }
644
        W[i] = std::sqrt(sd);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    }
    
    for( i = 0; i < n-1; i++ )
    {
        j = i;
        for( k = i+1; k < n; k++ )
        {
            if( W[j] < W[k] )
                j = k;
        }
        if( i != j )
        {
            std::swap(W[i], W[j]);
            if( Vt )
            {
                for( k = 0; k < m; k++ )
                    std::swap(At[i*astep + k], At[j*astep + k]);
                
                for( k = 0; k < n; k++ )
                    std::swap(Vt[i*vstep + k], Vt[j*vstep + k]);
            }
        }
    }
    
669 670 671
    for( i = 0; i < n; i++ )
        _W[i] = (_Tp)W[i];
    
672 673
    if( !Vt )
        return;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
674
    RNG rng(0x12345678);
675 676
    for( i = 0; i < n1; i++ )
    {
677
        sd = i < n ? W[i] : 0;
678
        
679
        while( sd == 0 )
680 681 682 683 684 685 686
        {
            // if we got a zero singular value, then in order to get the corresponding left singular vector
            // we generate a random vector, project it to the previously computed left singular vectors,
            // subtract the projection and normalize the difference.
            const _Tp val0 = (_Tp)(1./m);
            for( k = 0; k < m; k++ )
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
687
                _Tp val = (rng.next() & 256) != 0 ? val0 : -val0;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
                At[i*astep + k] = val;
            }
            for( iter = 0; iter < 2; iter++ )
            {
                for( j = 0; j < i; j++ )
                {
                    sd = 0;
                    for( k = 0; k < m; k++ )
                        sd += At[i*astep + k]*At[j*astep + k];
                    _Tp asum = 0;
                    for( k = 0; k < m; k++ )
                    {
                        _Tp t = (_Tp)(At[i*astep + k] - sd*At[j*astep + k]);
                        At[i*astep + k] = t;
                        asum += std::abs(t);
                    }
                    asum = asum ? 1/asum : 0;
                    for( k = 0; k < m; k++ )
                        At[i*astep + k] *= asum;
                }
            }
            sd = 0;
            for( k = 0; k < m; k++ )
            {
                _Tp t = At[i*astep + k];
                sd += (double)t*t;
            }
715
            sd = std::sqrt(sd);
716 717
        }
        
718
        s = (_Tp)(1/sd);
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
        for( k = 0; k < m; k++ )
            At[i*astep + k] *= s;
    }
}

    
static void JacobiSVD(float* At, size_t astep, float* W, float* Vt, size_t vstep, int m, int n, int n1=-1)
{
    JacobiSVDImpl_(At, astep, W, Vt, vstep, m, n, !Vt ? 0 : n1 < 0 ? n : n1);
}

static void JacobiSVD(double* At, size_t astep, double* W, double* Vt, size_t vstep, int m, int n, int n1=-1)
{
    JacobiSVDImpl_(At, astep, W, Vt, vstep, m, n, !Vt ? 0 : n1 < 0 ? n : n1);
}
    
/* y[0:m,0:n] += diag(a[0:1,0:m]) * x[0:m,0:n] */
template<typename T1, typename T2, typename T3> static void
MatrAXPY( int m, int n, const T1* x, int dx,
         const T2* a, int inca, T3* y, int dy )
{
    int i, j;
    for( i = 0; i < m; i++, x += dx, y += dy )
    {
        T2 s = a[i*inca];
Victoria Zhislina's avatar
Victoria Zhislina committed
744 745 746
		j=0;
		 #if CV_ENABLE_UNROLLED
        for(; j <= n - 4; j += 4 )
747 748 749 750 751 752 753 754 755 756
        {
            T3 t0 = (T3)(y[j]   + s*x[j]);
            T3 t1 = (T3)(y[j+1] + s*x[j+1]);
            y[j]   = t0;
            y[j+1] = t1;
            t0 = (T3)(y[j+2] + s*x[j+2]);
            t1 = (T3)(y[j+3] + s*x[j+3]);
            y[j+2] = t0;
            y[j+3] = t1;
        }
Victoria Zhislina's avatar
Victoria Zhislina committed
757
        #endif
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        for( ; j < n; j++ )
            y[j] = (T3)(y[j] + s*x[j]);
    }
}

template<typename T> static void
SVBkSbImpl_( int m, int n, const T* w, int incw,
       const T* u, int ldu, bool uT,
       const T* v, int ldv, bool vT,
       const T* b, int ldb, int nb,
       T* x, int ldx, double* buffer, T eps )
{
    double threshold = 0;
    int udelta0 = uT ? ldu : 1, udelta1 = uT ? 1 : ldu;
    int vdelta0 = vT ? ldv : 1, vdelta1 = vT ? 1 : ldv;
    int i, j, nm = std::min(m, n);
    
    if( !b )
        nb = m;
    
    for( i = 0; i < n; i++ )
        for( j = 0; j < nb; j++ )
            x[i*ldx + j] = 0;
    
    for( i = 0; i < nm; i++ )
        threshold += w[i*incw];
    threshold *= eps;
    
    // v * inv(w) * uT * b
    for( i = 0; i < nm; i++, u += udelta0, v += vdelta0 )
    {
        double wi = w[i*incw];
        if( (double)std::abs(wi) <= threshold )
            continue;
        wi = 1/wi;
        
        if( nb == 1 )
        {
            double s = 0;
            if( b )
                for( j = 0; j < m; j++ )
                    s += u[j*udelta1]*b[j*ldb];
            else
                s = u[0];
            s *= wi;
            
            for( j = 0; j < n; j++ )
                x[j*ldx] = (T)(x[j*ldx] + s*v[j*vdelta1]);
        }
        else
        {
            if( b )
            {
                for( j = 0; j < nb; j++ )
                    buffer[j] = 0;
                MatrAXPY( m, nb, b, ldb, u, udelta1, buffer, 0 );
                for( j = 0; j < nb; j++ )
                    buffer[j] *= wi;
            }
            else
            {
                for( j = 0; j < nb; j++ )
                    buffer[j] = u[j*udelta1]*wi;
            }
            MatrAXPY( n, nb, buffer, 0, v, vdelta1, x, ldx );
823 824 825 826
        }
    }
}
    
827 828 829 830 831 832
static void
SVBkSb( int m, int n, const float* w, size_t wstep,
        const float* u, size_t ustep, bool uT,
        const float* v, size_t vstep, bool vT,
        const float* b, size_t bstep, int nb,
        float* x, size_t xstep, uchar* buffer )
833
{
834 835 836 837 838
    SVBkSbImpl_(m, n, w, wstep ? (int)(wstep/sizeof(w[0])) : 1,
                u, (int)(ustep/sizeof(u[0])), uT,
                v, (int)(vstep/sizeof(v[0])), vT,
                b, (int)(bstep/sizeof(b[0])), nb,
                x, (int)(xstep/sizeof(x[0])),
839
                (double*)alignPtr(buffer, sizeof(double)), (float)(DBL_EPSILON*2) );
840
}
841 842 843 844 845 846 847

static void
SVBkSb( int m, int n, const double* w, size_t wstep,
       const double* u, size_t ustep, bool uT,
       const double* v, size_t vstep, bool vT,
       const double* b, size_t bstep, int nb,
       double* x, size_t xstep, uchar* buffer )
848
{
849 850 851 852 853 854 855
    SVBkSbImpl_(m, n, w, wstep ? (int)(wstep/sizeof(w[0])) : 1,
                u, (int)(ustep/sizeof(u[0])), uT,
                v, (int)(vstep/sizeof(v[0])), vT,
                b, (int)(bstep/sizeof(b[0])), nb,
                x, (int)(xstep/sizeof(x[0])),
                (double*)alignPtr(buffer, sizeof(double)), DBL_EPSILON*2 );
}    
856 857

}
858
    
859 860 861 862
/****************************************************************************************\
*                                 Determinant of the matrix                              *
\****************************************************************************************/

863 864 865 866
#define det2(m)   ((double)m(0,0)*m(1,1) - (double)m(0,1)*m(1,0))
#define det3(m)   (m(0,0)*((double)m(1,1)*m(2,2) - (double)m(1,2)*m(2,1)) -  \
                   m(0,1)*((double)m(1,0)*m(2,2) - (double)m(1,2)*m(2,0)) +  \
                   m(0,2)*((double)m(1,0)*m(2,1) - (double)m(1,1)*m(2,0)))
867

868
double cv::determinant( InputArray _mat )
869
{
870
    Mat mat = _mat.getMat();
871 872 873 874 875
    double result = 0;
    int type = mat.type(), rows = mat.rows;
    size_t step = mat.step;
    const uchar* m = mat.data;

876
    CV_Assert( mat.rows == mat.cols && (type == CV_32F || type == CV_64F));
877 878 879 880

    #define Mf(y, x) ((float*)(m + y*step))[x]
    #define Md(y, x) ((double*)(m + y*step))[x]

881
    if( type == CV_32F )
882
    {
883 884 885 886 887 888
        if( rows == 2 )
            result = det2(Mf);
        else if( rows == 3 )
            result = det3(Mf);
        else if( rows == 1 )
            result = Mf(0,0);
889 890
        else
        {
891 892 893 894 895 896 897
            size_t bufSize = rows*rows*sizeof(float);
            AutoBuffer<uchar> buffer(bufSize);
            Mat a(rows, rows, CV_32F, (uchar*)buffer);
            mat.copyTo(a);
            
            result = LU((float*)a.data, a.step, rows, 0, 0, 0);
            if( result )
898
            {
899 900 901
                for( int i = 0; i < rows; i++ )
                    result *= ((const float*)(a.data + a.step*i))[i];
                result = 1./result;
902 903 904
            }
        }
    }
905
    else
906
    {
907 908 909 910 911 912 913
        if( rows == 2 )
            result = det2(Md);
        else if( rows == 3 )
            result = det3(Md);
        else if( rows == 1 )
            result = Md(0,0);
        else
914
        {
915 916 917 918 919 920 921
            size_t bufSize = rows*rows*sizeof(double);
            AutoBuffer<uchar> buffer(bufSize);
            Mat a(rows, rows, CV_64F, (uchar*)buffer);
            mat.copyTo(a);
            
            result = LU((double*)a.data, a.step, rows, 0, 0, 0);
            if( result )
922
            {
923 924 925
                for( int i = 0; i < rows; i++ )
                    result *= ((const double*)(a.data + a.step*i))[i];
                result = 1./result;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            }
        }
    }

    #undef Mf
    #undef Md

    return result;
}

/****************************************************************************************\
*                          Inverse (or pseudo-inverse) of a matrix                       *
\****************************************************************************************/

#define Sf( y, x ) ((float*)(srcdata + y*srcstep))[x]
#define Sd( y, x ) ((double*)(srcdata + y*srcstep))[x]
#define Df( y, x ) ((float*)(dstdata + y*dststep))[x]
#define Dd( y, x ) ((double*)(dstdata + y*dststep))[x]

945
double cv::invert( InputArray _src, OutputArray _dst, int method )
946
{
947
    bool result = false;
948
    Mat src = _src.getMat();
949
    int type = src.type();
950 951
    size_t esz = CV_ELEM_SIZE(type);
    int m = src.rows, n = src.cols;
952
    
953 954
    if( method == DECOMP_SVD )
    {
955 956 957 958 959 960 961 962 963 964
        int nm = std::min(m, n);
        
        AutoBuffer<uchar> _buf((m*nm + nm + nm*n)*esz + sizeof(double));
        uchar* buf = alignPtr((uchar*)_buf, (int)esz);
        Mat u(m, nm, type, buf);
        Mat w(nm, 1, type, u.data + m*nm*esz);
        Mat vt(nm, n, type, w.data + nm*esz);
        
        SVD::compute(src, w, u, vt);
        SVD::backSubst(w, u, vt, Mat(), _dst);
965
        return type == CV_32F ?
966 967 968 969
            (((float*)w.data)[0] >= FLT_EPSILON ?
             ((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
            (((double*)w.data)[0] >= DBL_EPSILON ?
             ((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
970
    }
971
    
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    CV_Assert( m == n && (type == CV_32F || type == CV_64F));
    
    if( method == DECOMP_EIG )
    {
        AutoBuffer<uchar> _buf((n*n*2 + n)*esz + sizeof(double));
        uchar* buf = alignPtr((uchar*)_buf, (int)esz);
        Mat u(n, n, type, buf);
        Mat w(n, 1, type, u.data + n*n*esz);
        Mat vt(n, n, type, w.data + n*esz);
        
        eigen(src, w, vt);
        transpose(vt, u);
        SVD::backSubst(w, u, vt, Mat(), _dst);
        return type == CV_32F ?
        (((float*)w.data)[0] >= FLT_EPSILON ?
         ((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
        (((double*)w.data)[0] >= DBL_EPSILON ?
         ((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
    }
    
    CV_Assert( method == DECOMP_LU || method == DECOMP_CHOLESKY );
    
    _dst.create( n, n, type );
    Mat dst = _dst.getMat();

    if( n <= 3 )
998
    {
999 1000 1001 1002
        uchar* srcdata = src.data;
        uchar* dstdata = dst.data;
        size_t srcstep = src.step;
        size_t dststep = dst.step;
1003

1004
        if( n == 2 )
1005 1006
        {
            if( type == CV_32FC1 )
1007
            {
1008 1009
                double d = det2(Sf);
                if( d != 0. )
1010
                {
1011
                    double t0, t1;
1012
                    result = true;
1013 1014 1015 1016 1017 1018 1019 1020 1021
                    d = 1./d;
                    t0 = Sf(0,0)*d;
                    t1 = Sf(1,1)*d;
                    Df(1,1) = (float)t0;
                    Df(0,0) = (float)t1;
                    t0 = -Sf(0,1)*d;
                    t1 = -Sf(1,0)*d;
                    Df(0,1) = (float)t0;
                    Df(1,0) = (float)t1;
1022 1023
                }
            }
1024
            else
1025
            {
1026 1027
                double d = det2(Sd);
                if( d != 0. )
1028
                {
1029
                    double t0, t1;
1030
                    result = true;
1031 1032 1033 1034 1035 1036 1037 1038 1039
                    d = 1./d;
                    t0 = Sd(0,0)*d;
                    t1 = Sd(1,1)*d;
                    Dd(1,1) = t0;
                    Dd(0,0) = t1;
                    t0 = -Sd(0,1)*d;
                    t1 = -Sd(1,0)*d;
                    Dd(0,1) = t0;
                    Dd(1,0) = t1;
1040
                }
1041 1042
            }
        }
1043
        else if( n == 3 )
1044 1045 1046 1047 1048
        {
            if( type == CV_32FC1 )
            {
                double d = det3(Sf);
                if( d != 0. )
1049
                {
1050
                    float t[9];
1051
                    result = true;
1052 1053
                    d = 1./d;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                    t[0] = (float)(((double)Sf(1,1) * Sf(2,2) - (double)Sf(1,2) * Sf(2,1)) * d);
                    t[1] = (float)(((double)Sf(0,2) * Sf(2,1) - (double)Sf(0,1) * Sf(2,2)) * d);
                    t[2] = (float)(((double)Sf(0,1) * Sf(1,2) - (double)Sf(0,2) * Sf(1,1)) * d);
                           
                    t[3] = (float)(((double)Sf(1,2) * Sf(2,0) - (double)Sf(1,0) * Sf(2,2)) * d);
                    t[4] = (float)(((double)Sf(0,0) * Sf(2,2) - (double)Sf(0,2) * Sf(2,0)) * d);
                    t[5] = (float)(((double)Sf(0,2) * Sf(1,0) - (double)Sf(0,0) * Sf(1,2)) * d);
                           
                    t[6] = (float)(((double)Sf(1,0) * Sf(2,1) - (double)Sf(1,1) * Sf(2,0)) * d);
                    t[7] = (float)(((double)Sf(0,1) * Sf(2,0) - (double)Sf(0,0) * Sf(2,1)) * d);
                    t[8] = (float)(((double)Sf(0,0) * Sf(1,1) - (double)Sf(0,1) * Sf(1,0)) * d);
1065 1066 1067 1068

                    Df(0,0) = t[0]; Df(0,1) = t[1]; Df(0,2) = t[2];
                    Df(1,0) = t[3]; Df(1,1) = t[4]; Df(1,2) = t[5];
                    Df(2,0) = t[6]; Df(2,1) = t[7]; Df(2,2) = t[8];
1069 1070 1071 1072
                }
            }
            else
            {
1073 1074
                double d = det3(Sd);
                if( d != 0. )
1075
                {
1076
                    double t[9];
1077
                    result = true;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                    d = 1./d;

                    t[0] = (Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1)) * d;
                    t[1] = (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2)) * d;
                    t[2] = (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1)) * d;
                           
                    t[3] = (Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2)) * d;
                    t[4] = (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0)) * d;
                    t[5] = (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2)) * d;
                           
                    t[6] = (Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0)) * d;
                    t[7] = (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1)) * d;
                    t[8] = (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0)) * d;

                    Dd(0,0) = t[0]; Dd(0,1) = t[1]; Dd(0,2) = t[2];
                    Dd(1,0) = t[3]; Dd(1,1) = t[4]; Dd(1,2) = t[5];
                    Dd(2,0) = t[6]; Dd(2,1) = t[7]; Dd(2,2) = t[8];
1095 1096 1097
                }
            }
        }
1098
        else
1099
        {
1100
            assert( n == 1 );
1101

1102
            if( type == CV_32FC1 )
1103
            {
1104 1105 1106
                double d = Sf(0,0);
                if( d != 0. )
                {
1107
                    result = true;
1108 1109
                    Df(0,0) = (float)(1./d);
                }
1110 1111 1112
            }
            else
            {
1113 1114 1115
                double d = Sd(0,0);
                if( d != 0. )
                {
1116
                    result = true;
1117 1118
                    Dd(0,0) = 1./d;
                }
1119
            }
1120
        }
1121 1122
        if( !result )
            dst = Scalar(0);
1123 1124
        return result;
    }
1125

1126
    int elem_size = CV_ELEM_SIZE(type);
1127 1128 1129 1130 1131 1132
    AutoBuffer<uchar> buf(n*n*elem_size);
    Mat src1(n, n, type, (uchar*)buf);
    src.copyTo(src1);
    setIdentity(dst);
    
    if( method == DECOMP_LU && type == CV_32F )
1133
        result = LU((float*)src1.data, src1.step, n, (float*)dst.data, dst.step, n) != 0;
1134
    else if( method == DECOMP_LU && type == CV_64F )
1135
        result = LU((double*)src1.data, src1.step, n, (double*)dst.data, dst.step, n) != 0;
1136 1137
    else if( method == DECOMP_CHOLESKY && type == CV_32F )
        result = Cholesky((float*)src1.data, src1.step, n, (float*)dst.data, dst.step, n);
1138
    else
1139
        result = Cholesky((double*)src1.data, src1.step, n, (double*)dst.data, dst.step, n);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    if( !result )
        dst = Scalar(0);

    return result;
}

/****************************************************************************************\
*                              Solving a linear system                                   *
\****************************************************************************************/

1151
bool cv::solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int method )
1152 1153
{
    bool result = true;
1154
    Mat src = _src.getMat(), _src2 = _src2arg.getMat();
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    int type = src.type();
    bool is_normal = (method & DECOMP_NORMAL) != 0;

    CV_Assert( type == _src2.type() && (type == CV_32F || type == CV_64F) );

    method &= ~DECOMP_NORMAL;
    CV_Assert( (method != DECOMP_LU && method != DECOMP_CHOLESKY) ||
        is_normal || src.rows == src.cols );

    // check case of a single equation and small matrix
1165
    if( (method == DECOMP_LU || method == DECOMP_CHOLESKY) && !is_normal &&
1166 1167
        src.rows <= 3 && src.rows == src.cols && _src2.cols == 1 )
    {
1168 1169
        _dst.create( src.cols, _src2.cols, src.type() );
        Mat dst = _dst.getMat();
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        
        #define bf(y) ((float*)(bdata + y*src2step))[0]
        #define bd(y) ((double*)(bdata + y*src2step))[0]

        uchar* srcdata = src.data;
        uchar* bdata = _src2.data;
        uchar* dstdata = dst.data;
        size_t srcstep = src.step;
        size_t src2step = _src2.step;
        size_t dststep = dst.step;

        if( src.rows == 2 )
        {
            if( type == CV_32FC1 )
            {
                double d = det2(Sf);
                if( d != 0. )
                {
1188
                    double t;
1189
                    d = 1./d;
1190 1191
                    t = (float)(((double)bf(0)*Sf(1,1) - (double)bf(1)*Sf(0,1))*d);
                    Df(1,0) = (float)(((double)bf(1)*Sf(0,0) - (double)bf(0)*Sf(1,0))*d);
1192
                    Df(0,0) = (float)t;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
                }
                else
                    result = false;
            }
            else
            {
                double d = det2(Sd);
                if( d != 0. )
                {
                    double t;
                    d = 1./d;
                    t = (bd(0)*Sd(1,1) - bd(1)*Sd(0,1))*d;
                    Dd(1,0) = (bd(1)*Sd(0,0) - bd(0)*Sd(1,0))*d;
                    Dd(0,0) = t;
                }
                else
                    result = false;
            }
        }
        else if( src.rows == 3 )
        {
            if( type == CV_32FC1 )
            {
                double d = det3(Sf);
                if( d != 0. )
                {
                    float t[3];
                    d = 1./d;

                    t[0] = (float)(d*
1223 1224 1225
                           (bf(0)*((double)Sf(1,1)*Sf(2,2) - (double)Sf(1,2)*Sf(2,1)) -
                            Sf(0,1)*((double)bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) +
                            Sf(0,2)*((double)bf(1)*Sf(2,1) - (double)Sf(1,1)*bf(2))));
1226 1227

                    t[1] = (float)(d*
1228 1229 1230
                           (Sf(0,0)*(double)(bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) -
                            bf(0)*((double)Sf(1,0)*Sf(2,2) - (double)Sf(1,2)*Sf(2,0)) +
                            Sf(0,2)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0))));
1231 1232

                    t[2] = (float)(d*
1233 1234 1235
                           (Sf(0,0)*((double)Sf(1,1)*bf(2) - (double)bf(1)*Sf(2,1)) -
                            Sf(0,1)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0)) +
                            bf(0)*((double)Sf(1,0)*Sf(2,1) - (double)Sf(1,1)*Sf(2,0))));
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

                    Df(0,0) = t[0];
                    Df(1,0) = t[1];
                    Df(2,0) = t[2];
                }
                else
                    result = false;
            }
            else
            {
                double d = det3(Sd);
                if( d != 0. )
                {
                    double t[9];

                    d = 1./d;
                    
                    t[0] = ((Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1))*bd(0) +
                            (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2))*bd(1) +
                            (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1))*bd(2))*d;

                    t[1] = ((Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2))*bd(0) +
                            (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0))*bd(1) +
                            (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2))*bd(2))*d;

                    t[2] = ((Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0))*bd(0) +
                            (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1))*bd(1) +
                            (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0))*bd(2))*d;

                    Dd(0,0) = t[0];
                    Dd(1,0) = t[1];
                    Dd(2,0) = t[2];
                }
                else
                    result = false;
            }
        }
        else
        {
            assert( src.rows == 1 );

            if( type == CV_32FC1 )
            {
1279 1280 1281 1282 1283
                double d = Sf(0,0);
                if( d != 0. )
                    Df(0,0) = (float)(bf(0)/d);
                else
                    result = false;
1284
            }
1285
            else
1286
            {
1287 1288 1289 1290 1291
                double d = Sd(0,0);
                if( d != 0. )
                    Dd(0,0) = (bd(0)/d);
                else
                    result = false;
1292 1293
            }
        }
1294
        return result;
1295
    }
1296 1297 1298

    if( method == DECOMP_QR )
        method = DECOMP_SVD;
1299
    
1300 1301 1302 1303 1304 1305 1306 1307 1308
    int m = src.rows, m_ = m, n = src.cols, nb = _src2.cols;
    size_t esz = CV_ELEM_SIZE(type), bufsize = 0;
    size_t vstep = alignSize(n*esz, 16);
    size_t astep = method == DECOMP_SVD && !is_normal ? alignSize(m*esz, 16) : vstep;
    AutoBuffer<uchar> buffer;

    Mat src2 = _src2;
    _dst.create( src.cols, src2.cols, src.type() );
    Mat dst = _dst.getMat();
1309
    
1310 1311
    if( m < n )
        CV_Error(CV_StsBadArg, "The function can not solve under-determined linear systems" );
1312
    
1313 1314 1315 1316 1317 1318 1319 1320
    if( m == n )
        is_normal = false;
    else if( is_normal )
    {
        m_ = n;
        if( method == DECOMP_SVD )
            method = DECOMP_EIG;
    }
1321
    
1322
    size_t asize = astep*(method == DECOMP_SVD || is_normal ? n : m);
1323
    bufsize += asize + 32;
1324

1325 1326
    if( is_normal )
        bufsize += n*nb*esz;
1327

1328 1329
    if( method == DECOMP_SVD || method == DECOMP_EIG )
        bufsize += n*5*esz + n*vstep + nb*sizeof(double) + 32;
1330
    
1331
    buffer.allocate(bufsize);
1332
    uchar* ptr = alignPtr((uchar*)buffer, 16);
1333 1334

    Mat a(m_, n, type, ptr, astep);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    if( is_normal )
        mulTransposed(src, a, true);
    else if( method != DECOMP_SVD )
        src.copyTo(a);
    else
    {
        a = Mat(n, m_, type, ptr, astep);
        transpose(src, a);
    }
    ptr += asize;
1346
    
1347
    if( !is_normal )
1348
    {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
            src2.copyTo(dst);
    }
    else
    {
        // a'*b
        if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
            gemm( src, src2, 1, Mat(), 0, dst, GEMM_1_T );
        else
        {
            Mat tmp(n, nb, type, ptr);
            ptr += n*nb*esz;
            gemm( src, src2, 1, Mat(), 0, tmp, GEMM_1_T );
            src2 = tmp;
        }
1364
    }
1365
    
1366
    if( method == DECOMP_LU )
1367 1368
    {
        if( type == CV_32F )
1369
            result = LU(a.ptr<float>(), a.step, n, dst.ptr<float>(), dst.step, nb) != 0;
1370
        else
1371
            result = LU(a.ptr<double>(), a.step, n, dst.ptr<double>(), dst.step, nb) != 0;
1372
    }
1373
    else if( method == DECOMP_CHOLESKY )
1374
    {
1375 1376
        if( type == CV_32F )
            result = Cholesky(a.ptr<float>(), a.step, n, dst.ptr<float>(), dst.step, nb);
1377
        else
1378
            result = Cholesky(a.ptr<double>(), a.step, n, dst.ptr<double>(), dst.step, nb);
1379 1380 1381
    }
    else
    {
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        ptr = alignPtr(ptr, 16);
        Mat v(n, n, type, ptr, vstep), w(n, 1, type, ptr + vstep*n), u;
        ptr += n*(vstep + esz);
        
        if( method == DECOMP_EIG )
        {
            if( type == CV_32F )
                Jacobi(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, n, ptr);
            else
                Jacobi(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, n, ptr);
            u = v;
        }
        else
        {
            if( type == CV_32F )
                JacobiSVD(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, m_, n);
            else
                JacobiSVD(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, m_, n);
            u = a;
        }
        
        if( type == CV_32F )
        {
            SVBkSb(m_, n, w.ptr<float>(), 0, u.ptr<float>(), u.step, true,
                   v.ptr<float>(), v.step, true, src2.ptr<float>(),
                   src2.step, nb, dst.ptr<float>(), dst.step, ptr);
        }
1409
        else
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        {
            SVBkSb(m_, n, w.ptr<double>(), 0, u.ptr<double>(), u.step, true,
                   v.ptr<double>(), v.step, true, src2.ptr<double>(),
                   src2.step, nb, dst.ptr<double>(), dst.step, ptr);
        }
        result = true;
    }
    
    if( !result )
        dst = Scalar(0);
1420

1421 1422
    return result;
}
1423 1424


1425
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix ///////////////
1426

1427
bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputArray _evects )
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
{
    Mat src = _src.getMat();
    int type = src.type();
    int n = src.rows;

    CV_Assert( src.rows == src.cols );
    CV_Assert (type == CV_32F || type == CV_64F);

    Mat v;
    if( computeEvects )
    {
        _evects.create(n, n, type);
        v = _evects.getMat();
    }
    
1443 1444 1445 1446 1447
    size_t elemSize = src.elemSize(), astep = alignSize(n*elemSize, 16);
    AutoBuffer<uchar> buf(n*astep + n*5*elemSize + 32);
    uchar* ptr = alignPtr((uchar*)buf, 16);
    Mat a(n, n, type, ptr, astep), w(n, 1, type, ptr + astep*n);
    ptr += astep*n + elemSize*n;
1448 1449 1450 1451 1452 1453 1454
    src.copyTo(a);
    bool ok = type == CV_32F ?
        Jacobi(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, n, ptr) :
        Jacobi(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, n, ptr);
    
    w.copyTo(_evals);
    return ok;
1455 1456
}

1457
bool cv::eigen( InputArray src, OutputArray evals, int, int )
1458
{
1459
    return eigen(src, false, evals, noArray());
1460 1461
}

1462
bool cv::eigen( InputArray src, OutputArray evals, OutputArray evects, int, int)
1463
{
1464
    return eigen(src, true, evals, evects);
1465 1466
}

1467 1468
namespace cv
{
1469

1470
static void _SVDcompute( InputArray _aarr, OutputArray _w,
1471
                         OutputArray _u, OutputArray _vt, int flags )
1472
{
1473 1474 1475
    Mat src = _aarr.getMat();
    int m = src.rows, n = src.cols;
    int type = src.type();
1476
    bool compute_uv = _u.needed() || _vt.needed();
1477
    bool full_uv = (flags & SVD::FULL_UV) != 0;
1478 1479
    
    CV_Assert( type == CV_32F || type == CV_64F );
1480
    
1481
    if( flags & SVD::NO_UV )
1482
    {
1483 1484
        _u.release();
        _vt.release();
1485
        compute_uv = full_uv = false;
1486
    }
1487
    
1488 1489
    bool at = false;
    if( m < n )
1490
    {
1491 1492
        std::swap(m, n);
        at = true;
1493
    }
1494
    
1495 1496 1497
    int urows = full_uv ? m : n;
    size_t esz = src.elemSize(), astep = alignSize(m*esz, 16), vstep = alignSize(n*esz, 16);
    AutoBuffer<uchar> _buf(urows*astep + n*vstep + n*esz + 32);
1498
    uchar* buf = alignPtr((uchar*)_buf, 16);
1499 1500 1501
    Mat temp_a(n, m, type, buf, astep);
    Mat temp_w(n, 1, type, buf + urows*astep);
    Mat temp_u(urows, m, type, buf, astep), temp_v;
1502
    
1503 1504
    if( compute_uv )
        temp_v = Mat(n, n, type, alignPtr(buf + urows*astep + n*esz, 16), vstep);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1505 1506 1507 1508
    
    if( urows > n )
        temp_u = Scalar::all(0);
    
1509 1510 1511 1512
    if( !at )
        transpose(src, temp_a);
    else
        src.copyTo(temp_a);
1513
    
1514 1515
    if( type == CV_32F )
    {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1516
        JacobiSVD(temp_a.ptr<float>(), temp_u.step, temp_w.ptr<float>(),
1517
              temp_v.ptr<float>(), temp_v.step, m, n, compute_uv ? urows : 0);
1518 1519 1520
    }
    else
    {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1521
        JacobiSVD(temp_a.ptr<double>(), temp_u.step, temp_w.ptr<double>(),
1522
              temp_v.ptr<double>(), temp_v.step, m, n, compute_uv ? urows : 0);
1523
    }
1524 1525
    temp_w.copyTo(_w);
    if( compute_uv )
1526
    {
1527
        if( !at )
1528
        {
1529 1530
            transpose(temp_u, _u);
            temp_v.copyTo(_vt);
1531
        }
1532
        else
1533
        {
1534 1535
            transpose(temp_v, _u);
            temp_u.copyTo(_vt);
1536 1537
        }
    }
1538 1539 1540
}       
    
    
1541
void SVD::compute( InputArray a, OutputArray w, OutputArray u, OutputArray vt, int flags )
1542
{
1543
    _SVDcompute(a, w, u, vt, flags);
1544 1545
}

1546
void SVD::compute( InputArray a, OutputArray w, int flags )
1547
{
1548
    _SVDcompute(a, w, noArray(), noArray(), flags);
1549 1550
}
    
1551 1552
void SVD::backSubst( InputArray _w, InputArray _u, InputArray _vt,
                     InputArray _rhs, OutputArray _dst )
1553
{
1554
    Mat w = _w.getMat(), u = _u.getMat(), vt = _vt.getMat(), rhs = _rhs.getMat();
1555
    int type = w.type(), esz = (int)w.elemSize();
1556 1557 1558 1559 1560 1561
    int m = u.rows, n = vt.cols, nb = rhs.data ? rhs.cols : m, nm = std::min(m, n);
    size_t wstep = w.rows == 1 ? esz : w.cols == 1 ? (size_t)w.step : (size_t)w.step + esz;
    AutoBuffer<uchar> buffer(nb*sizeof(double) + 16);
    CV_Assert( w.type() == u.type() && u.type() == vt.type() && u.data && vt.data && w.data );
    CV_Assert( u.cols >= nm && vt.rows >= nm &&
              (w.size() == Size(nm, 1) || w.size() == Size(1, nm) || w.size() == Size(vt.rows, u.cols)) );
1562
    CV_Assert( rhs.data == 0 || (rhs.type() == type && rhs.rows == m) );
1563
    
1564 1565
    _dst.create( n, nb, type );
    Mat dst = _dst.getMat();
1566
    if( type == CV_32F )
1567 1568 1569
        SVBkSb(m, n, w.ptr<float>(), wstep, u.ptr<float>(), u.step, false,
               vt.ptr<float>(), vt.step, true, rhs.ptr<float>(), rhs.step, nb,
               dst.ptr<float>(), dst.step, buffer);
1570
    else if( type == CV_64F )
1571 1572 1573
        SVBkSb(m, n, w.ptr<double>(), wstep, u.ptr<double>(), u.step, false,
               vt.ptr<double>(), vt.step, true, rhs.ptr<double>(), rhs.step, nb,
               dst.ptr<double>(), dst.step, buffer);
1574 1575 1576 1577
    else
        CV_Error( CV_StsUnsupportedFormat, "" );
}

1578
    
1579
SVD& SVD::operator ()(InputArray a, int flags)
1580
{
1581
    _SVDcompute(a, w, u, vt, flags);
1582 1583 1584 1585
    return *this;
}


1586
void SVD::backSubst( InputArray rhs, OutputArray dst ) const
1587 1588 1589 1590
{
    backSubst( w, u, vt, rhs, dst );
}

1591 1592 1593
}


1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
void cv::SVDecomp(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags)
{
    SVD::compute(src, w, u, vt, flags);
}

void cv::SVBackSubst(InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst)
{
    SVD::backSubst(w, u, vt, rhs, dst);
}


1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
CV_IMPL double
cvDet( const CvArr* arr )
{
    if( CV_IS_MAT(arr) && ((CvMat*)arr)->rows <= 3 )
    {
        CvMat* mat = (CvMat*)arr;
        int type = CV_MAT_TYPE(mat->type);
        int rows = mat->rows;
        uchar* m = mat->data.ptr;
        int step = mat->step;
        CV_Assert( rows == mat->cols );

        #define Mf(y, x) ((float*)(m + y*step))[x]
        #define Md(y, x) ((double*)(m + y*step))[x]

        if( type == CV_32F )
        {
            if( rows == 2 )
                return det2(Mf);
            if( rows == 3 )
                return det3(Mf);
        }
        else if( type == CV_64F )
        {
            if( rows == 2 )
                return det2(Md);
            if( rows == 3 )
                return det3(Md);
        }
        return cv::determinant(cv::Mat(mat));
    }
    return cv::determinant(cv::cvarrToMat(arr));
}


CV_IMPL double
cvInvert( const CvArr* srcarr, CvArr* dstarr, int method )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.type() == dst.type() && src.rows == dst.cols && src.cols == dst.rows );
    return cv::invert( src, dst, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
1647 1648
                      method == CV_SVD ? cv::DECOMP_SVD :
                      method == CV_SVD_SYM ? cv::DECOMP_EIG : cv::DECOMP_LU );
1649 1650 1651 1652 1653 1654 1655 1656 1657
}


CV_IMPL int
cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method )
{
    cv::Mat A = cv::cvarrToMat(Aarr), b = cv::cvarrToMat(barr), x = cv::cvarrToMat(xarr);

    CV_Assert( A.type() == x.type() && A.cols == x.rows && x.cols == b.cols );
1658 1659 1660
    bool is_normal = (method & CV_NORMAL) != 0;
    method &= ~CV_NORMAL;
    return cv::solve( A, b, x, (method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
1661 1662
                                method == CV_SVD ? cv::DECOMP_SVD :
                                method == CV_SVD_SYM ? cv::DECOMP_EIG :
1663
        A.rows > A.cols ? cv::DECOMP_QR : cv::DECOMP_LU) + (is_normal ? cv::DECOMP_NORMAL : 0) );
1664 1665 1666 1667 1668 1669 1670
}


CV_IMPL void
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
           int lowindex, int highindex)
{
1671
    cv::Mat src = cv::cvarrToMat(srcarr), evals0 = cv::cvarrToMat(evalsarr), evals = evals0;
1672 1673
    if( evectsarr )
    {
1674
        cv::Mat evects0 = cv::cvarrToMat(evectsarr), evects = evects0;
1675
        eigen(src, evals, evects, lowindex, highindex);
1676 1677 1678 1679 1680 1681
        if( evects0.data != evects.data )
        {
            uchar* p = evects0.data;
            evects.convertTo(evects0, evects0.type());
            CV_Assert( p == evects0.data );
        }
1682 1683 1684
    }
    else
        eigen(src, evals, lowindex, highindex);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    if( evals0.data != evals.data )
    {
        uchar* p = evals0.data;
        if( evals0.size() == evals.size() )
            evals.convertTo(evals0, evals0.type());
        else if( evals0.type() == evals.type() )
            cv::transpose(evals, evals0);
        else
            cv::Mat(evals.t()).convertTo(evals0, evals0.type());
        CV_Assert( p == evals0.data );
    }
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
}


CV_IMPL void
cvSVD( CvArr* aarr, CvArr* warr, CvArr* uarr, CvArr* varr, int flags )
{
    cv::Mat a = cv::cvarrToMat(aarr), w = cv::cvarrToMat(warr), u, v;
    int m = a.rows, n = a.cols, type = a.type(), mn = std::max(m, n), nm = std::min(m, n);

    CV_Assert( w.type() == type &&
        (w.size() == cv::Size(nm,1) || w.size() == cv::Size(1, nm) ||
        w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m)) );

    cv::SVD svd;

    if( w.size() == cv::Size(nm, 1) )
        svd.w = cv::Mat(nm, 1, type, w.data );
    else if( w.isContinuous() )
        svd.w = w;

    if( uarr )
    {
        u = cv::cvarrToMat(uarr);
        CV_Assert( u.type() == type );
        svd.u = u;
    }

    if( varr )
    {
        v = cv::cvarrToMat(varr);
        CV_Assert( v.type() == type );
        svd.vt = v;
    }

    svd(a, ((flags & CV_SVD_MODIFY_A) ? cv::SVD::MODIFY_A : 0) |
        ((!svd.u.data && !svd.vt.data) ? cv::SVD::NO_UV : 0) |
        ((m != n && (svd.u.size() == cv::Size(mn, mn) ||
        svd.vt.size() == cv::Size(mn, mn))) ? cv::SVD::FULL_UV : 0));

    if( u.data )
    {
        if( flags & CV_SVD_U_T )
            cv::transpose( svd.u, u );
        else if( u.data != svd.u.data )
        {
            CV_Assert( u.size() == svd.u.size() );
            svd.u.copyTo(u);
        }
    }

    if( v.data )
    {
        if( !(flags & CV_SVD_V_T) )
            cv::transpose( svd.vt, v );
        else if( v.data != svd.vt.data )
        {
            CV_Assert( v.size() == svd.vt.size() );
            svd.vt.copyTo(v);
        }
    }

    if( w.data != svd.w.data )
    {
        if( w.size() == svd.w.size() )
            svd.w.copyTo(w);
        else
        {
            w = cv::Scalar(0);
            cv::Mat wd = w.diag();
            svd.w.copyTo(wd);
        }
    }
}


CV_IMPL void
cvSVBkSb( const CvArr* warr, const CvArr* uarr,
          const CvArr* varr, const CvArr* rhsarr,
          CvArr* dstarr, int flags )
{
    cv::Mat w = cv::cvarrToMat(warr), u = cv::cvarrToMat(uarr),
1777 1778 1779
        v = cv::cvarrToMat(varr), rhs,
        dst = cv::cvarrToMat(dstarr), dst0 = dst;
    if( flags & CV_SVD_U_T )
1780
    {
1781 1782 1783
        cv::Mat tmp;
        transpose(u, tmp);
        u = tmp;
1784
    }
1785 1786 1787 1788 1789 1790 1791 1792
    if( !(flags & CV_SVD_V_T) )
    {
        cv::Mat tmp;
        transpose(v, tmp);
        v = tmp;
    }
    if( rhsarr )
        rhs = cv::cvarrToMat(rhsarr);
1793
    
1794 1795
    cv::SVD::backSubst(w, u, v, rhs, dst);
    CV_Assert( dst.data == dst0.data );
1796
}