dlaeda.c 8.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlaeda.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Table of constant values */

static integer c__2 = 2;
static integer c__1 = 1;
static doublereal c_b24 = 1.;
static doublereal c_b26 = 0.;

/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, 
	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 
	integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, 
	doublereal *z__, doublereal *ztemp, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;

    /* Builtin functions */
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);

    /* Local variables */
    integer i__, k, mid, ptr;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, 
	     integer *);


47
/*  -- LAPACK routine (version 3.2) -- */
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAEDA computes the Z vector corresponding to the merge step in the */
/*  CURLVLth step of the merge process with TLVLS steps for the CURPBMth */
/*  problem. */

/*  Arguments */
/*  ========= */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  TLVLS  (input) INTEGER */
/*         The total number of merging levels in the overall divide and */
/*         conquer tree. */

/*  CURLVL (input) INTEGER */
/*         The current level in the overall merge routine, */
/*         0 <= curlvl <= tlvls. */

/*  CURPBM (input) INTEGER */
/*         The current problem in the current level in the overall */
/*         merge routine (counting from upper left to lower right). */

/*  PRMPTR (input) INTEGER array, dimension (N lg N) */
/*         Contains a list of pointers which indicate where in PERM a */
/*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
/*         indicates the size of the permutation and incidentally the */
/*         size of the full, non-deflated problem. */

/*  PERM   (input) INTEGER array, dimension (N lg N) */
/*         Contains the permutations (from deflation and sorting) to be */
/*         applied to each eigenblock. */

/*  GIVPTR (input) INTEGER array, dimension (N lg N) */
/*         Contains a list of pointers which indicate where in GIVCOL a */
/*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
/*         indicates the number of Givens rotations. */

/*  GIVCOL (input) INTEGER array, dimension (2, N lg N) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. */

/*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */
/*         Each number indicates the S value to be used in the */
/*         corresponding Givens rotation. */

/*  Q      (input) DOUBLE PRECISION array, dimension (N**2) */
/*         Contains the square eigenblocks from previous levels, the */
/*         starting positions for blocks are given by QPTR. */

/*  QPTR   (input) INTEGER array, dimension (N+2) */
/*         Contains a list of pointers which indicate where in Q an */
/*         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates */
/*         the size of the block. */

/*  Z      (output) DOUBLE PRECISION array, dimension (N) */
/*         On output this vector contains the updating vector (the last */
/*         row of the first sub-eigenvector matrix and the first row of */
/*         the second sub-eigenvector matrix). */

/*  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ztemp;
    --z__;
    --qptr;
    --q;
    givnum -= 3;
    givcol -= 3;
    --givptr;
    --perm;
    --prmptr;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -1;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAEDA", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine location of first number in second half. */

    mid = *n / 2 + 1;

/*     Gather last/first rows of appropriate eigenblocks into center of Z */

    ptr = 1;

/*     Determine location of lowest level subproblem in the full storage */
/*     scheme */

    i__1 = *curlvl - 1;
    curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;

/*     Determine size of these matrices.  We add HALF to the value of */
/*     the SQRT in case the machine underestimates one of these square */
/*     roots. */

    bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
    bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + 
	    .5);
    i__1 = mid - bsiz1 - 1;
    for (k = 1; k <= i__1; ++k) {
	z__[k] = 0.;
/* L10: */
    }
    dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
	    c__1);
    dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
    i__1 = *n;
    for (k = mid + bsiz2; k <= i__1; ++k) {
	z__[k] = 0.;
/* L20: */
    }

/*     Loop thru remaining levels 1 -> CURLVL applying the Givens */
/*     rotations and permutation and then multiplying the center matrices */
/*     against the current Z. */

    ptr = pow_ii(&c__2, tlvls) + 1;
    i__1 = *curlvl - 1;
    for (k = 1; k <= i__1; ++k) {
	i__2 = *curlvl - k;
	i__3 = *curlvl - k - 1;
	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 
		1;
	psiz1 = prmptr[curr + 1] - prmptr[curr];
	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
	zptr1 = mid - psiz1;

/*       Apply Givens at CURR and CURR+1 */

	i__2 = givptr[curr + 1] - 1;
	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
	    drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
/* L30: */
	}
	i__2 = givptr[curr + 2] - 1;
	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
	    drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 
		    1) + 1], &givnum[(i__ << 1) + 2]);
/* L40: */
	}
	psiz1 = prmptr[curr + 1] - prmptr[curr];
	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
	i__2 = psiz1 - 1;
	for (i__ = 0; i__ <= i__2; ++i__) {
	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
/* L50: */
	}
	i__2 = psiz2 - 1;
	for (i__ = 0; i__ <= i__2; ++i__) {
	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 
		    1];
/* L60: */
	}

/*        Multiply Blocks at CURR and CURR+1 */

/*        Determine size of these matrices.  We add HALF to the value of */
/*        the SQRT in case the machine underestimates one of these */
/*        square roots. */

	bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + 
		.5);
	bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
		) + .5);
	if (bsiz1 > 0) {
	    dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
	}
	i__2 = psiz1 - bsiz1;
	dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
	if (bsiz2 > 0) {
	    dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
	}
	i__2 = psiz2 - bsiz2;
	dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
		c__1);

	i__2 = *tlvls - k;
	ptr += pow_ii(&c__2, &i__2);
/* L70: */
    }

    return 0;

/*     End of DLAEDA */

} /* dlaeda_ */