dgelq2.c 4.32 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dgelq2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26
/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *
	lda, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, k;
    doublereal aii;
    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
27
	    doublereal *), dlarfp_(integer *, doublereal *, 
28 29 30
	    doublereal *, integer *, doublereal *), xerbla_(char *, integer *);


31
/*  -- LAPACK routine (version 3.2) -- */
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGELQ2 computes an LQ factorization of a real m by n matrix A: */
/*  A = L * Q. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the m by n matrix A. */
/*          On exit, the elements on and below the diagonal of the array */
/*          contain the m by min(m,n) lower trapezoidal matrix L (L is */
/*          lower triangular if m <= n); the elements above the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(k) . . . H(2) H(1), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELQ2", &i__1);
	return 0;
    }

    k = min(*m,*n);

    i__1 = k;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Generate elementary reflector H(i) to annihilate A(i,i+1:n) */

	i__2 = *n - i__ + 1;
/* Computing MIN */
	i__3 = i__ + 1;
137
	dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* a_dim1]
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
, lda, &tau[i__]);
	if (i__ < *m) {

/*           Apply H(i) to A(i+1:m,i:n) from the right */

	    aii = a[i__ + i__ * a_dim1];
	    a[i__ + i__ * a_dim1] = 1.;
	    i__2 = *m - i__;
	    i__3 = *n - i__ + 1;
	    dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
		    i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
	    a[i__ + i__ * a_dim1] = aii;
	}
/* L10: */
    }
    return 0;

/*     End of DGELQ2 */

} /* dgelq2_ */