ba.cpp 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                         License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2009, PhaseSpace Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The names of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/calib3d/calib3d.hpp"
44
#include <iostream>
45

46
using namespace cv;
47

48 49 50 51 52 53
LevMarqSparse::LevMarqSparse() {
  Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL;
  U = ea = V = inv_V_star = eb = Yj = NULL;
  num_cams = 0,   num_points = 0,   num_err_param = 0;
  num_cam_param = 0,  num_point_param = 0;
  A = B = W = NULL;
54 55
}

56 57
LevMarqSparse::~LevMarqSparse() {
  clear();
58 59 60
} 

LevMarqSparse::LevMarqSparse(int npoints, // number of points
61 62 63 64 65 66 67 68 69 70
			     int ncameras, // number of cameras
			     int nPointParams, // number of params per one point  (3 in case of 3D points)
			     int nCameraParams, // number of parameters per one camera
			     int nErrParams, // number of parameters in measurement vector
			     // for 1 point at one camera (2 in case of 2D projections)
			     Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
			     // 1 - point is visible for the camera, 0 - invisible
			     Mat& P0, // starting vector of parameters, first cameras then points
			     Mat& X_, // measurements, in order of visibility. non visible cases are skipped 
			     TermCriteria criteria, // termination criteria
71
        
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
			     // callback for estimation of Jacobian matrices
			     void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
						    Mat& cam_params, Mat& A, Mat& B, void* data),
			     // callback for estimation of backprojection errors
			     void (CV_CDECL * func)(int i, int j, Mat& point_params,
						    Mat& cam_params, Mat& estim, void* data),
			     void* data, // user-specific data passed to the callbacks
			     BundleAdjustCallback _cb, void* _user_data
			     ) {
  Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL;
  U = ea = V = inv_V_star = eb = Yj = NULL;
  A = B = W = NULL;

  cb = _cb;
  user_data = _user_data;
87
    
88 89
  run(npoints, ncameras, nPointParams, nCameraParams, nErrParams, visibility,
      P0, X_, criteria, fjac, func, data);
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103
void LevMarqSparse::clear() {
  for( int i = 0; i < num_points; i++ ) {
    for(int j = 0; j < num_cams; j++ ) {
      //CvMat* tmp = ((CvMat**)(A->data.ptr + i * A->step))[j];
      CvMat* tmp = A[j+i*num_cams];
      if (tmp)
	cvReleaseMat( &tmp );

      //tmp = ((CvMat**)(B->data.ptr + i * B->step))[j];
      tmp  = B[j+i*num_cams];
      if (tmp)
	cvReleaseMat( &tmp );
104
                 
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
      //tmp = ((CvMat**)(W->data.ptr + j * W->step))[i];
      tmp  = W[j+i*num_cams];
      if (tmp)
	cvReleaseMat( &tmp ); 
    }
  }   
  delete A; //cvReleaseMat(&A);
  delete B;//cvReleaseMat(&B);
  delete W;//cvReleaseMat(&W);
  cvReleaseMat( &Vis_index);

  for( int j = 0; j < num_cams; j++ ) {
    cvReleaseMat( &U[j] );
  }
  delete U;

  for( int j = 0; j < num_cams; j++ ) {
    cvReleaseMat( &ea[j] );
  }
  delete ea;
125
     
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  //allocate V and inv_V_star
  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&V[i]);
    cvReleaseMat(&inv_V_star[i]);
  }
  delete V;
  delete inv_V_star;

  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&eb[i]);
  }
  delete eb;

  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&Yj[i]);
  }   
  delete Yj;
143
     
144 145 146 147
  cvReleaseMat(&X);
  cvReleaseMat(&prevP);
  cvReleaseMat(&P);
  cvReleaseMat(&deltaP);
148

149
  cvReleaseMat(&err);      
150
    
151 152 153
  cvReleaseMat(&JtJ_diag);
  cvReleaseMat(&S);
  cvReleaseMat(&hX);
154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

//A params correspond to  Cameras
//B params correspont to  Points

//num_cameras  - total number of cameras
//num_points   - total number of points

//num_par_per_camera - number of parameters per camera
//num_par_per_point - number of parameters per point

//num_errors - number of measurements.

void LevMarqSparse::run( int num_points_, //number of points
168 169 170 171 172 173 174 175 176 177 178 179 180 181
			 int num_cams_, //number of cameras
			 int num_point_param_, //number of params per one point  (3 in case of 3D points)
			 int num_cam_param_, //number of parameters per one camera
			 int num_err_param_, //number of parameters in measurement vector for 1 point at one camera (2 in case of 2D projections)
			 Mat& visibility,   //visibility matrix . rows correspond to points, columns correspond to cameras
			 // 0 - point is visible for the camera, 0 - invisible
			 Mat& P0, //starting vector of parameters, first cameras then points
			 Mat& X_init, //measurements, in order of visibility. non visible cases are skipped 
			 TermCriteria criteria_init,
			 void (*fjac_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data),
			 void (*func_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data),
			 void* data_
			 ) { //termination criteria
  //clear();
182
    
183 184 185
  func = func_; //assign evaluation function
  fjac = fjac_; //assign jacobian
  data = data_;
186

187 188 189 190 191
  num_cams = num_cams_;
  num_points = num_points_;
  num_err_param = num_err_param_; 
  num_cam_param = num_cam_param_;
  num_point_param = num_point_param_;
192

193 194 195
  //compute all sizes
  int Aij_width = num_cam_param;
  int Aij_height = num_err_param;
196

197 198
  int Bij_width = num_point_param;
  int Bij_height = num_err_param;
199

200 201
  int U_size = Aij_width;
  int V_size = Bij_width;
202

203 204
  int Wij_height = Aij_width;
  int Wij_width = Bij_width;
205

206
  //allocate memory for all Aij, Bij, U, V, W
207
    
208
  //allocate num_points*num_cams matrices A
209
    
210 211 212 213 214 215 216 217 218 219 220 221 222 223
  //Allocate matrix A whose elements are nointers to Aij
  //if Aij is zero (point i is not visible in camera j) then A(i,j) contains NULL
  //A = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ );
  //B = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ );
  //W = cvCreateMat( num_cams, num_points, CV_32S /*pointer is stored here*/ );

  A = new CvMat* [num_points * num_cams];
  B = new CvMat* [num_points * num_cams];
  W = new CvMat* [num_cams * num_points];
  Vis_index = cvCreateMat( num_points, num_cams, CV_32S /*integer index is stored here*/ );
  //cvSetZero( A );
  //cvSetZero( B );
  //cvSetZero( W );
  cvSet( Vis_index, cvScalar(-1) );
224
    
225 226 227 228 229 230 231 232
  //fill matrices A and B based on visibility
  CvMat _vis = visibility;
  int index = 0;
  for (int i = 0; i < num_points; i++ ) {
    for (int j = 0; j < num_cams; j++ ) {
      if (((int*)(_vis.data.ptr+ i * _vis.step))[j] ) {
	((int*)(Vis_index->data.ptr + i * Vis_index->step))[j] = index;
	index += num_err_param;
233
    
234 235 236 237 238 239 240 241 242 243
	//create matrices Aij, Bij
	CvMat* tmp = cvCreateMat(Aij_height, Aij_width, CV_64F );
	//((CvMat**)(A->data.ptr + i * A->step))[j] = tmp;
	cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
	A[j+i*num_cams] = tmp;

	tmp = cvCreateMat( Bij_height, Bij_width, CV_64F );
	//((CvMat**)(B->data.ptr + i * B->step))[j] = tmp;
	cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
	B[j+i*num_cams] = tmp;
244
    
245 246 247 248 249 250 251 252 253 254 255
	tmp = cvCreateMat( Wij_height, Wij_width, CV_64F );
	//((CvMat**)(W->data.ptr + j * W->step))[i] = tmp;  //note indices i and j swapped
	cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
	W[j+i*num_cams] = tmp;
      } else{
	A[j+i*num_cams] = NULL;
	B[j+i*num_cams] = NULL;
	W[j+i*num_cams] = NULL;
      }
    }                
  }
256
    
257 258 259 260 261 262 263 264 265 266 267 268 269
  //allocate U
  U = new CvMat* [num_cams];
  for (int j = 0; j < num_cams; j++ ) {
    U[j] = cvCreateMat( U_size, U_size, CV_64F );
    cvSetZero(U[j]);

  }
  //allocate ea
  ea = new CvMat* [num_cams];
  for (int j = 0; j < num_cams; j++ ) {
    ea[j] = cvCreateMat( U_size, 1, CV_64F );
    cvSetZero(ea[j]);
  }
270
    
271 272 273 274 275 276 277 278 279
  //allocate V and inv_V_star
  V = new CvMat* [num_points];
  inv_V_star = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    V[i] = cvCreateMat( V_size, V_size, CV_64F );
    inv_V_star[i] = cvCreateMat( V_size, V_size, CV_64F );
    cvSetZero(V[i]);
    cvSetZero(inv_V_star[i]);
  }
280
    
281 282 283 284 285 286
  //allocate eb
  eb = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    eb[i] = cvCreateMat( V_size, 1, CV_64F );
    cvSetZero(eb[i]);
  }   
287
    
288 289 290 291 292 293
  //allocate Yj
  Yj = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    Yj[i] = cvCreateMat( Wij_height, Wij_width, CV_64F );  //Yij has the same size as Wij
    cvSetZero(Yj[i]);
  }        
294
    
295 296 297 298 299
  //allocate matrix S
  S = cvCreateMat( num_cams * num_cam_param, num_cams * num_cam_param, CV_64F);
  cvSetZero(S);
  JtJ_diag = cvCreateMat( num_cams * num_cam_param + num_points * num_point_param, 1, CV_64F );
  cvSetZero(JtJ_diag);
300
    
301 302 303 304 305
  //set starting parameters
  CvMat _tmp_ = CvMat(P0); 
  prevP = cvCloneMat( &_tmp_ );          
  P = cvCloneMat( &_tmp_ );
  deltaP = cvCloneMat( &_tmp_ );
306
    
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  //set measurements
  _tmp_ = CvMat(X_init);
  X = cvCloneMat( &_tmp_ );  
  //create vector for estimated measurements
  hX = cvCreateMat( X->rows, X->cols, CV_64F );
  cvSetZero(hX);
  //create error vector
  err = cvCreateMat( X->rows, X->cols, CV_64F );
  cvSetZero(err);
  ask_for_proj(_vis);
  //compute initial error
  cvSub(X, hX, err );

  /*
    assert(X->rows == hX->rows);
    std::cerr<<"X size = "<<X->rows<<" "<<X->cols<<std::endl;
    std::cerr<<"hX size = "<<hX->rows<<" "<<hX->cols<<std::endl;
    for (int j=0;j<X->rows;j+=2) {
    double Xj1 = *(double*)(X->data.ptr + j * X->step);
    double hXj1 = *(double*)(hX->data.ptr + j * hX->step);
    double err1 = *(double*)(err->data.ptr + j * err->step);
    double Xj2 = *(double*)(X->data.ptr + (j+1) * X->step);
    double hXj2 = *(double*)(hX->data.ptr + (j+1) * hX->step);
    double err2 = *(double*)(err->data.ptr + (j+1) * err->step);
    std::cerr<<"("<<Xj1<<","<<Xj2<<") -> ("<<hXj1<<","<<hXj2<<"). err = ("<<err1<<","<<err2<<")"<<std::endl;
    }
  */

  prevErrNorm = cvNorm( err, 0,  CV_L2 );
  //    std::cerr<<"prevErrNorm = "<<prevErrNorm<<std::endl;
  iters = 0; 
  criteria = criteria_init;
339
    
340 341 342 343 344
  optimize(_vis);

  ask_for_proj(_vis,true);
  cvSub(X, hX, err );
  errNorm = cvNorm( err, 0,  CV_L2 );
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
void LevMarqSparse::ask_for_proj(CvMat &/*_vis*/,bool once) {
    (void)once;
    //given parameter P, compute measurement hX
    int ind = 0;
    for (int i = 0; i < num_points; i++ ) {
        CvMat point_mat;
        cvGetSubRect( P, &point_mat, cvRect( 0, num_cams * num_cam_param + num_point_param * i, 1, num_point_param ));
        for (int j = 0; j < num_cams; j++ ) {
            //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
            CvMat* Aij = A[j+i*num_cams];
            if (Aij ) { //visible
                CvMat cam_mat;
                cvGetSubRect( P, &cam_mat, cvRect( 0, j * num_cam_param, 1, num_cam_param ));
                CvMat measur_mat;
                cvGetSubRect( hX, &measur_mat, cvRect( 0, ind * num_err_param, 1, num_err_param ));
                Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _measur_mat(&measur_mat);
                func( i, j, _point_mat, _cam_mat, _measur_mat, data);
                assert( ind*num_err_param == ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j]);
                ind+=1;
            }  
        } 
    }
369
}
370

371
//iteratively asks for Jacobians for every camera_point pair
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
void LevMarqSparse::ask_for_projac(CvMat &/*_vis*/)   //should be evaluated at point prevP
{
    // compute jacobians Aij and Bij
    for (int i = 0; i < num_points; i++ ) 
    {
        CvMat point_mat;
        cvGetSubRect( prevP, &point_mat, cvRect( 0, num_cams * num_cam_param + num_point_param * i, 1, num_point_param ));

        //CvMat** A_line = (CvMat**)(A->data.ptr + A->step * i);
        //CvMat** B_line = (CvMat**)(B->data.ptr + B->step * i);
        for( int j = 0; j < num_cams; j++ ) 
        {
            //CvMat* Aij = A_line[j];
            //if( Aij ) //Aij is not zero
            CvMat* Aij = A[j+i*num_cams];
            CvMat* Bij = B[j+i*num_cams];
            if(Aij) 
            {
                //CvMat** A_line = (CvMat**)(A->data.ptr + A->step * i);
                //CvMat** B_line = (CvMat**)(B->data.ptr + B->step * i);

                //CvMat* Aij = A_line[j];
                //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];

                CvMat cam_mat;
                cvGetSubRect( prevP, &cam_mat, cvRect( 0, j * num_cam_param, 1, num_cam_param ));

                //CvMat* Bij = B_line[j];
                //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
                Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _Aij(Aij), _Bij(Bij);
                (*fjac)(i, j, _point_mat, _cam_mat, _Aij, _Bij, data);
            }
        }
405 406 407
    }
}  

408 409
void LevMarqSparse::optimize(CvMat &_vis) { //main function that runs minimization
  bool done = false;
410
    
411 412 413 414
  CvMat* YWt = cvCreateMat( num_cam_param, num_cam_param, CV_64F ); //this matrix used to store Yij*Wik' 
  CvMat* E = cvCreateMat( S->height, 1 , CV_64F ); //this is right part of system with S       
  cvSetZero(YWt);
  cvSetZero(E);
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  while(!done) {
    // compute jacobians Aij and Bij
    ask_for_projac(_vis);
    int invisible_count=0;
    //compute U_j  and  ea_j
    for (int j = 0; j < num_cams; j++ ) {
      cvSetZero(U[j]); 
      cvSetZero(ea[j]);
      //summ by i (number of points)
      for (int i = 0; i < num_points; i++ ) {
	//get Aij
	//CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
	CvMat* Aij = A[j+i*num_cams];
	if (Aij ) {
	  //Uj+= AijT*Aij
	  cvGEMM( Aij, Aij, 1, U[j], 1, U[j], CV_GEMM_A_T );
	  //ea_j += AijT * e_ij
	  CvMat eij;

	  int index = ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j];

	  cvGetSubRect( err, &eij, cvRect( 0, index, 1, Aij->height  ) ); //width of transposed Aij
	  cvGEMM( Aij, &eij, 1, ea[j], 1, ea[j], CV_GEMM_A_T );
	}
	else
	  invisible_count++;
      }
    } //U_j and ea_j computed for all j

    //    if (!(iters%100))
    int nviz = X->rows / num_err_param;
    double e2 = prevErrNorm*prevErrNorm, e2n = e2 / nviz;
    std::cerr<<"Iteration: "<<iters<<", normError: "<<e2<<" ("<<e2n<<")"<<std::endl;
    if (cb)
      cb(iters, prevErrNorm, user_data);
    //compute V_i  and  eb_i
    for (int i = 0; i < num_points; i++ ) {
      cvSetZero(V[i]); 
      cvSetZero(eb[i]);
455
            
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
      //summ by i (number of points)
      for( int j = 0; j < num_cams; j++ ) {
	//get Bij
	//CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
	CvMat* Bij = B[j+i*num_cams];
	if (Bij ) {
	  //Vi+= BijT*Bij
	  cvGEMM( Bij, Bij, 1, V[i], 1, V[i], CV_GEMM_A_T );

	  //eb_i += BijT * e_ij
	  int index = ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j];

	  CvMat eij;
	  cvGetSubRect( err, &eij, cvRect( 0, index, 1, Bij->height  ) ); //width of transposed Bij
	  cvGEMM( Bij, &eij, 1, eb[i], 1, eb[i], CV_GEMM_A_T );
	}
      }
    } //V_i and eb_i computed for all i

      //compute W_ij
    for( int i = 0; i < num_points; i++ ) {
      for( int j = 0; j < num_cams; j++ ) {
	//CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
	CvMat* Aij = A[j+i*num_cams];
	if( Aij ) { //visible
	  //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
	  CvMat* Bij = B[j+i*num_cams];
	  //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
	  CvMat* Wij = W[j+i*num_cams];

	  //multiply
	  cvGEMM( Aij, Bij, 1, NULL, 0, Wij, CV_GEMM_A_T );                     
	}
      }
    } //Wij computed

      //backup diagonal of JtJ before we start augmenting it
    {               
      CvMat dia;
      CvMat subr;
      for( int j = 0; j < num_cams; j++ ) {
	cvGetDiag(U[j], &dia);
	cvGetSubRect(JtJ_diag, &subr, 
		     cvRect(0, j*num_cam_param, 1, num_cam_param ));
	cvCopy( &dia, &subr );
      } 
      for( int i = 0; i < num_points; i++ ) {
	cvGetDiag(V[i], &dia);
	cvGetSubRect(JtJ_diag, &subr, 
		     cvRect(0, num_cams*num_cam_param + i * num_point_param, 1, num_point_param ));
	cvCopy( &dia, &subr );
      }   
    } 

    if( iters == 0 ) {
      //initialize lambda. It is set to 1e-3 * average diagonal element in JtJ
      double average_diag = 0;
      for( int j = 0; j < num_cams; j++ ) {
	average_diag += cvTrace( U[j] ).val[0];
      }
      for( int i = 0; i < num_points; i++ ) {
	average_diag += cvTrace( V[i] ).val[0];
      }
      average_diag /= (num_cams*num_cam_param + num_points * num_point_param );
520
                        
521 522 523 524
      //      lambda = 1e-3 * average_diag;        
      lambda = 1e-3 * average_diag;        
      lambda = 0.245560;
    }
525
       
526 527 528 529 530 531
    //now we are going to find good step and make it
    for(;;) {
      //augmentation of diagonal
      for(int j = 0; j < num_cams; j++ ) {
	CvMat diag;
	cvGetDiag( U[j], &diag );
532
#if 1
533
	cvAddS( &diag, cvScalar( lambda ), &diag );
534
#else
535
	cvScale( &diag, &diag, 1 + lambda );
536
#endif
537 538 539 540
      }
      for(int i = 0; i < num_points; i++ ) {
	CvMat diag;
	cvGetDiag( V[i], &diag );
541
#if 1
542
	cvAddS( &diag, cvScalar( lambda ), &diag );
543
#else
544
	cvScale( &diag, &diag, 1 + lambda );
545
#endif
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
      }                              
      bool error = false;
      //compute inv(V*)
      bool inverted_ok = true;
      for(int i = 0; i < num_points; i++ ) {
	double det = cvInvert( V[i], inv_V_star[i] );

	if( fabs(det) <= FLT_EPSILON )  {
	  inverted_ok = false;
	  std::cerr<<"V["<<i<<"] failed"<<std::endl;
	  break;
	} //means we did wrong augmentation, try to choose different lambda
      }

      if( inverted_ok ) {
	cvSetZero( E ); 
	//loop through cameras, compute upper diagonal blocks of matrix S 
	for( int j = 0; j < num_cams; j++ ) {
	  //compute Yij = Wij (V*_i)^-1  for all i   (if Wij exists/nonzero)
	  for( int i = 0; i < num_points; i++ ) {
	    //
	    //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
	    CvMat* Wij = W[j+i*num_cams];
	    if( Wij ) {
	      cvMatMul( Wij, inv_V_star[i], Yj[i] );
	    }
	  }

	  //compute Sjk   for k>=j  (because Sjk = Skj)
	  for( int k = j; k < num_cams; k++ ) {
	    cvSetZero( YWt );
	    for( int i = 0; i < num_points; i++ ) {
	      //check that both Wij and Wik exist
	      // CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
	      CvMat* Wij = W[j+i*num_cams];
	      //CvMat* Wik = ((CvMat**)(W->data.ptr + W->step * k))[i];
	      CvMat* Wik = W[k+i*num_cams];

	      if( Wij && Wik ) {
		//multiply YWt += Yj[i]*Wik'
		cvGEMM( Yj[i], Wik, 1, YWt, 1, YWt, CV_GEMM_B_T  ); ///*transpose Wik
	      }
	    }

	    //copy result to matrix S

	    CvMat Sjk;
	    //extract submat
	    cvGetSubRect( S, &Sjk, cvRect( k * num_cam_param, j * num_cam_param, num_cam_param, num_cam_param ));  
595 596
                        

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	    //if j==k, add diagonal
	    if( j != k ) {
	      //just copy with minus
	      cvScale( YWt, &Sjk, -1 ); //if we set initial S to zero then we can use cvSub( Sjk, YWt, Sjk);
	    } else {
	      //add diagonal value

	      //subtract YWt from augmented Uj
	      cvSub( U[j], YWt, &Sjk );
	    }                
	  }

	  //compute right part of equation involving matrix S
	  // e_j=ea_j - \sum_i Y_ij eb_i 
	  {
	    CvMat e_j; 
613
                    
614 615
	    //select submat
	    cvGetSubRect( E, &e_j, cvRect( 0, j * num_cam_param, 1, num_cam_param ) ); 
616
                    
617 618 619 620 621 622 623 624 625 626 627 628 629
	    for( int i = 0; i < num_points; i++ ) {
	      //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
	      CvMat* Wij = W[j+i*num_cams];
	      if( Wij )
		cvMatMulAdd( Yj[i], eb[i], &e_j, &e_j );
	    }

	    cvSub( ea[j], &e_j, &e_j );
	  }

	} 
	//fill below diagonal elements of matrix S
	cvCompleteSymm( S,  0  ); ///*from upper to low //operation may be done by nonzero blocks or during upper diagonal computation
630
                
631 632 633 634
	//Solve linear system  S * deltaP_a = E
	CvMat dpa;
	cvGetSubRect( deltaP, &dpa, cvRect(0, 0, 1, S->width ) );
	int res = cvSolve( S, E, &dpa, CV_CHOLESKY );
635
            
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	if( res ) { //system solved ok
	  //compute db_i
	  for( int i = 0; i < num_points; i++ ) {
	    CvMat dbi;
	    cvGetSubRect( deltaP, &dbi, cvRect( 0, dpa.height + i * num_point_param, 1, num_point_param ) );   

	    // compute \sum_j W_ij^T da_j
	    for( int j = 0; j < num_cams; j++ ) {
	      //get Wij
	      //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
	      CvMat* Wij = W[j+i*num_cams];
	      if( Wij ) {
		//get da_j
		CvMat daj;
		cvGetSubRect( &dpa, &daj, cvRect( 0, j * num_cam_param, 1, num_cam_param ));  
		cvGEMM( Wij, &daj, 1, &dbi, 1, &dbi, CV_GEMM_A_T  ); ///* transpose Wij
	      }  
	    }
	    //finalize dbi
	    cvSub( eb[i], &dbi, &dbi );
	    cvMatMul(inv_V_star[i], &dbi, &dbi );  //here we get final dbi  
	  }  //now we computed whole deltaP

	  //add deltaP to delta 
	  cvAdd( prevP, deltaP, P );
661
                                        
662 663
	  //evaluate  function with new parameters
	  ask_for_proj(_vis); // func( P, hX );
664

665 666
	  //compute error
	  errNorm = cvNorm( X, hX, CV_L2 );
667
                                        
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	} else {
	  error = true;
	}                
      } else {
	error = true;
      }
      //check solution
      if( error || ///* singularities somewhere
	  errNorm > prevErrNorm )  { //step was not accepted
	//increase lambda and reject change 
	lambda *= 10;
	int nviz = X->rows / num_err_param;
	double e2 = errNorm*errNorm, e2_prev = prevErrNorm*prevErrNorm;
	double e2n = e2/nviz, e2n_prev = e2_prev/nviz;
	std::cerr<<"move failed: lambda = "<<lambda<<", e2 = "<<e2<<" ("<<e2n<<") > "<<e2_prev<<" ("<<e2n_prev<<")"<<std::endl;

	//restore diagonal from backup
	{               
	  CvMat dia;
	  CvMat subr;
	  for( int j = 0; j < num_cams; j++ ) {
	    cvGetDiag(U[j], &dia);
	    cvGetSubRect(JtJ_diag, &subr, 
			 cvRect(0, j*num_cam_param, 1, num_cam_param ));
	    cvCopy( &subr, &dia );
	  } 
	  for( int i = 0; i < num_points; i++ ) {
	    cvGetDiag(V[i], &dia);
	    cvGetSubRect(JtJ_diag, &subr, 
			 cvRect(0, num_cams*num_cam_param + i * num_point_param, 1, num_point_param ));
	    cvCopy( &subr, &dia );
	  }   
	}                  
      } else {  //all is ok
	//accept change and decrease lambda
	lambda /= 10;
	lambda = MAX(lambda, 1e-16);
	std::cerr<<"decreasing lambda to "<<lambda<<std::endl;
	prevErrNorm = errNorm;

	//compute new projection error vector
	cvSub(  X, hX, err );
	break;
      }
    }      
    iters++;

    double param_change_norm = cvNorm(P, prevP, CV_RELATIVE_L2);
    //check termination criteria
    if( (criteria.type&CV_TERMCRIT_ITER && iters > criteria.max_iter ) || 
	(criteria.type&CV_TERMCRIT_EPS && param_change_norm < criteria.epsilon) ) {
      //      std::cerr<<"relative norm change "<<param_change_norm<<" lower than eps "<<criteria.epsilon<<", stopping"<<std::endl;
      done = true;
      break;
    } else {
      //copy new params and continue iterations
      cvCopy( P, prevP );
    }
  }   
  cvReleaseMat(&YWt); 
  cvReleaseMat(&E);
729 730 731 732
} 

//Utilities

733 734 735
void fjac(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* A, CvMat* B, void* /*data*/) {
  //compute jacobian per camera parameters (i.e. Aij)
  //take i-th point 3D current coordinates
736
    
737 738
  CvMat _Mi;
  cvReshape(point_params, &_Mi, 3, 1 );
739

740
  CvMat* _mp = cvCreateMat(1, 1, CV_64FC2 ); //projection of the point
741

742 743 744 745
  //split camera params into different matrices
  CvMat _ri, _ti, _k;
  cvGetRows( cam_params, &_ri, 0, 3 );
  cvGetRows( cam_params, &_ti, 3, 6 );
746

747 748 749 750 751
  double intr_data[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
  intr_data[0] = cam_params->data.db[6];
  intr_data[4] = cam_params->data.db[7];
  intr_data[2] = cam_params->data.db[8];
  intr_data[5] = cam_params->data.db[9];
752

753
  CvMat _A = cvMat(3,3, CV_64F, intr_data ); 
754

755
  CvMat _dpdr, _dpdt, _dpdf, _dpdc, _dpdk;
756
    
757
  bool have_dk = cam_params->height - 10 ? true : false;
758

759 760 761 762
  cvGetCols( A, &_dpdr, 0, 3 );
  cvGetCols( A, &_dpdt, 3, 6 );
  cvGetCols( A, &_dpdf, 6, 8 );
  cvGetCols( A, &_dpdc, 8, 10 );
763
    
764 765 766 767 768 769
  if( have_dk ) {
    cvGetRows( cam_params, &_k, 10, cam_params->height );
    cvGetCols( A, &_dpdk, 10, A->width );
  }
  cvProjectPoints2(&_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, &_dpdr, &_dpdt,
		   &_dpdf, &_dpdc, have_dk ? &_dpdk : NULL, 0);   
770

771
  cvReleaseMat( &_mp );                                 
772

773 774
  //compute jacobian for point params
  //compute dMeasure/dPoint3D
775

776 777 778
  // x = (r11 * X + r12 * Y + r13 * Z + t1)
  // y = (r21 * X + r22 * Y + r23 * Z + t2)
  // z = (r31 * X + r32 * Y + r33 * Z + t3)
779

780 781
  // x' = x/z
  // y' = y/z
782

783 784
  //d(x') = ( dx*z - x*dz)/(z*z)
  //d(y') = ( dy*z - y*dz)/(z*z) 
785

786 787
  //g = 1 + k1*r_2 + k2*r_4 + k3*r_6
  //r_2 = x'*x' + y'*y'
788

789
  //d(r_2) = 2*x'*dx' + 2*y'*dy'
790

791
  //dg = k1* d(r_2) + k2*2*r_2*d(r_2) + k3*3*r_2*r_2*d(r_2) 
792

793 794
  //x" = x'*g + 2*p1*x'*y' + p2(r_2+2*x'_2)
  //y" = y'*g + p1(r_2+2*y'_2) + 2*p2*x'*y'
795
               
796 797
  //d(x") = d(x') * g + x' * d(g) + 2*p1*( d(x')*y' + x'*dy) + p2*(d(r_2) + 2*2*x'* dx')
  //d(y") = d(y') * g + y' * d(g) + 2*p2*( d(x')*y' + x'*dy) + p1*(d(r_2) + 2*2*y'* dy')  
798

799 800
  // u = fx*( x") + cx
  // v = fy*( y") + cy
801
    
802 803
  // du = fx * d(x")  = fx * ( dx*z - x*dz)/ (z*z)
  // dv = fy * d(y")  = fy * ( dy*z - y*dz)/ (z*z)
804

805 806 807
  // dx/dX = r11,  dx/dY = r12, dx/dZ = r13 
  // dy/dX = r21,  dy/dY = r22, dy/dZ = r23
  // dz/dX = r31,  dz/dY = r32, dz/dZ = r33 
808

809 810 811
  // du/dX = fx*(r11*z-x*r31)/(z*z)
  // du/dY = fx*(r12*z-x*r32)/(z*z)
  // du/dZ = fx*(r13*z-x*r33)/(z*z)
812

813 814 815
  // dv/dX = fy*(r21*z-y*r31)/(z*z)
  // dv/dY = fy*(r22*z-y*r32)/(z*z)
  // dv/dZ = fy*(r23*z-y*r33)/(z*z)
816

817 818 819 820
  //get rotation matrix
  double R[9], t[3], fx = intr_data[0], fy = intr_data[4];
  CvMat _R = cvMat( 3, 3, CV_64F, R );
  cvRodrigues2(&_ri, &_R);
821

822 823 824 825
  double X,Y,Z;
  X = point_params->data.db[0];
  Y = point_params->data.db[1];
  Z = point_params->data.db[2];
826

827 828 829
  t[0] = _ti.data.db[0];
  t[1] = _ti.data.db[1];
  t[2] = _ti.data.db[2];
830

831 832 833 834
  //compute x,y,z
  double x = R[0] * X + R[1] * Y + R[2] * Z + t[0];
  double y = R[3] * X + R[4] * Y + R[5] * Z + t[1];
  double z = R[6] * X + R[7] * Y + R[8] * Z + t[2];
835 836

#if 1    
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
  //compute x',y'
  double x_strike = x/z;
  double y_strike = y/z;   
  //compute dx',dy'  matrix
  //
  //    dx'/dX  dx'/dY dx'/dZ    =    
  //    dy'/dX  dy'/dY dy'/dZ

  double coeff[6] = { z, 0, -x,
		      0, z, -y };
  CvMat coeffmat = cvMat( 2, 3, CV_64F, coeff );

  CvMat* dstrike_dbig = cvCreateMat(2,3,CV_64F);
  cvMatMul(&coeffmat, &_R, dstrike_dbig);
  cvScale(dstrike_dbig, dstrike_dbig, 1/(z*z) );      
852
    
853 854 855
  if( have_dk ) {
    double strike_[2] = {x_strike, y_strike};
    CvMat strike = cvMat(1, 2, CV_64F, strike_);       
856
        
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    //compute r_2
    double r_2 = x_strike*x_strike + y_strike*y_strike;
    double r_4 = r_2*r_2;
    double r_6 = r_4*r_2;

    //compute d(r_2)/dbig
    CvMat* dr2_dbig = cvCreateMat(1,3,CV_64F);
    cvMatMul( &strike, dstrike_dbig, dr2_dbig);
    cvScale( dr2_dbig, dr2_dbig, 2 );

    double& k1 = _k.data.db[0];
    double& k2 = _k.data.db[1];
    double& p1 = _k.data.db[2];
    double& p2 = _k.data.db[3];          
    double k3 = 0;

    if( _k.cols*_k.rows == 5 ) {
      k3 = _k.data.db[4];
    }    
    //compute dg/dbig
    double dg_dr2 = k1 + k2*2*r_2 + k3*3*r_4;
    double g = 1+k1*r_2+k2*r_4+k3*r_6;

    CvMat* dg_dbig = cvCreateMat(1,3,CV_64F);
    cvScale( dr2_dbig, dg_dbig, dg_dr2 ); 

    CvMat* tmp = cvCreateMat( 2, 3, CV_64F );
    CvMat* dstrike2_dbig = cvCreateMat( 2, 3, CV_64F );
885
                                  
886 887
    double c[4] = { g+2*p1*y_strike+4*p2*x_strike,       2*p1*x_strike,
		    2*p2*y_strike,                 g+2*p2*x_strike + 4*p1*y_strike };
888

889
    CvMat coeffmat = cvMat(2,2,CV_64F, c );
890

891
    cvMatMul(&coeffmat, dstrike_dbig, dstrike2_dbig );
892

893 894
    cvGEMM( &strike, dg_dbig, 1, NULL, 0, tmp, CV_GEMM_A_T );
    cvAdd( dstrike2_dbig, tmp, dstrike2_dbig );
895

896 897
    double p[2] = { p2, p1 };
    CvMat pmat = cvMat(2, 1, CV_64F, p );
898

899 900
    cvMatMul( &pmat, dr2_dbig ,tmp);
    cvAdd( dstrike2_dbig, tmp, dstrike2_dbig );   
901

902
    cvCopy( dstrike2_dbig, B );
903

904 905
    cvReleaseMat(&dr2_dbig);
    cvReleaseMat(&dg_dbig);
906

907 908 909 910 911 912 913 914 915 916
    cvReleaseMat(&tmp);
    cvReleaseMat(&dstrike2_dbig);
    cvReleaseMat(&tmp);  
  } else {
    cvCopy(dstrike_dbig, B);
  }
  //multiply by fx, fy
  CvMat row;
  cvGetRows( B, &row, 0, 1 );
  cvScale( &row, &row, fx );    
917
    
918 919
  cvGetRows( B, &row, 1, 2 );
  cvScale( &row, &row, fy );
920 921 922

#else

923
  double k = fx/(z*z);
924

925 926 927
  cvmSet( B, 0, 0, k*(R[0]*z-x*R[6]));
  cvmSet( B, 0, 1, k*(R[1]*z-x*R[7]));
  cvmSet( B, 0, 2, k*(R[2]*z-x*R[8]));
928
    
929
  k = fy/(z*z);        
930
    
931 932 933
  cvmSet( B, 1, 0, k*(R[3]*z-y*R[6]));
  cvmSet( B, 1, 1, k*(R[4]*z-y*R[7]));
  cvmSet( B, 1, 2, k*(R[5]*z-y*R[8]));
934 935 936 937
    
#endif
    
};
938 939 940 941
void func(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* estim, void* /*data*/) {
  //just do projections
  CvMat _Mi;
  cvReshape( point_params, &_Mi, 3, 1 );
942

943 944
  CvMat* _mp = cvCreateMat(1, 1, CV_64FC2 ); //projection of the point
  CvMat* _mp2 = cvCreateMat(1, 2, CV_64F ); //projection of the point
945

946 947
  //split camera params into different matrices
  CvMat _ri, _ti, _k;
948

949 950
  cvGetRows( cam_params, &_ri, 0, 3 );
  cvGetRows( cam_params, &_ti, 3, 6 );
951

952 953 954 955 956
  double intr_data[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
  intr_data[0] = cam_params->data.db[6];
  intr_data[4] = cam_params->data.db[7];
  intr_data[2] = cam_params->data.db[8];
  intr_data[5] = cam_params->data.db[9];
957

958
  CvMat _A = cvMat(3,3, CV_64F, intr_data ); 
959

960
  //int cn = CV_MAT_CN(_Mi.type);
961

962
  bool have_dk = cam_params->height - 10 ? true : false;
963
           
964 965 966 967 968 969 970 971 972 973 974 975
  if( have_dk ) {
    cvGetRows( cam_params, &_k, 10, cam_params->height );        
  }  
  cvProjectPoints2( &_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, NULL, NULL,
		    NULL, NULL, NULL, 0);   
  //    std::cerr<<"_mp = "<<_mp->data.db[0]<<","<<_mp->data.db[1]<<std::endl;
  //    
  _mp2->data.db[0] = _mp->data.db[0];
  _mp2->data.db[1] = _mp->data.db[1];
  cvTranspose( _mp2, estim );
  cvReleaseMat( &_mp );
  cvReleaseMat( &_mp2 );
976 977
};

978
void fjac_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data) {
Andrey Kamaev's avatar
Andrey Kamaev committed
979 980
  CvMat _point_params = point_params, _cam_params = cam_params, _Al = A, _Bl = B;
  fjac(i,j, &_point_params, &_cam_params, &_Al, &_Bl, data);
981 982
};

983 984 985
void func_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data)  {
  CvMat _point_params = point_params, _cam_params = cam_params, _estim = estim;
  func(i,j,&_point_params,&_cam_params,&_estim,data);
986 987 988
};                                                 

void LevMarqSparse::bundleAdjust( vector<Point3d>& points, //positions of points in global coordinate system (input and output)
989 990 991 992 993 994 995 996 997
				  const vector<vector<Point2d> >& imagePoints, //projections of 3d points for every camera
				  const vector<vector<int> >& visibility, //visibility of 3d points for every camera 
				  vector<Mat>& cameraMatrix, //intrinsic matrices of all cameras (input and output)
				  vector<Mat>& R, //rotation matrices of all cameras (input and output)
				  vector<Mat>& T, //translation vector of all cameras (input and output)
				  vector<Mat>& distCoeffs, //distortion coefficients of all cameras (input and output)
				  const TermCriteria& criteria,
				  BundleAdjustCallback cb, void* user_data) {
  //,enum{MOTION_AND_STRUCTURE,MOTION,STRUCTURE})
998 999
  int num_points = (int)points.size();
  int num_cameras = (int)cameraMatrix.size();
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

  CV_Assert( imagePoints.size() == (size_t)num_cameras && 
	     visibility.size() == (size_t)num_cameras && 
	     R.size() == (size_t)num_cameras &&
	     T.size() == (size_t)num_cameras &&
	     (distCoeffs.size() == (size_t)num_cameras || distCoeffs.size() == 0) );                

  int numdist = distCoeffs.size() ? (distCoeffs[0].rows * distCoeffs[0].cols) : 0;

  int num_cam_param = 3 /* rotation vector */ + 3 /* translation vector */
    + 2 /* fx, fy */ + 2 /* cx, cy */ + numdist; 

  int num_point_param = 3; 

  //collect camera parameters into vector
  Mat params( num_cameras * num_cam_param + num_points * num_point_param, 1, CV_64F );

  //fill camera params
  for( int i = 0; i < num_cameras; i++ ) {
    //rotation
    Mat rot_vec; Rodrigues( R[i], rot_vec );
    Mat dst = params.rowRange(i*num_cam_param, i*num_cam_param+3);
    rot_vec.copyTo(dst);

    //translation
    dst = params.rowRange(i*num_cam_param + 3, i*num_cam_param+6);
    T[i].copyTo(dst); 
1027
        
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    //intrinsic camera matrix
    double* intr_data = (double*)cameraMatrix[i].data;
    double* intr = (double*)(params.data + params.step * (i*num_cam_param+6));
    //focals
    intr[0] = intr_data[0];  //fx
    intr[1] = intr_data[4];  //fy
    //center of projection
    intr[2] = intr_data[2];  //cx
    intr[3] = intr_data[5];  //cy  

    //add distortion if exists
    if( distCoeffs.size() ) {
      dst = params.rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist);
      distCoeffs[i].copyTo(dst); 
1042
    }
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  }  

  //fill point params
  Mat ptparams(num_points, 1, CV_64FC3, params.data + num_cameras*num_cam_param*params.step);
  Mat _points(points);
  CV_Assert(_points.size() == ptparams.size() && _points.type() == ptparams.type());
  _points.copyTo(ptparams);

  //convert visibility vectors to visibility matrix
  Mat vismat(num_points, num_cameras, CV_32S);
  for( int i = 0; i < num_cameras; i++ ) {
    //get row
    Mat col = vismat.col(i);
    Mat((int)visibility[i].size(), 1, vismat.type(), (void*)&visibility[i][0]).copyTo( col );
  }

  int num_proj = countNonZero(vismat); //total number of points projections

  //collect measurements
  Mat X(num_proj*2,1,CV_64F); //measurement vector      
1063
    
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  int counter = 0;
  for(int i = 0; i < num_points; i++ ) {
    for(int j = 0; j < num_cameras; j++ ) {
      //check visibility
      if( visibility[j][i] ) {
	//extract point and put tu vector
	Point2d p = imagePoints[j][i];
	((double*)(X.data))[counter] = p.x;
	((double*)(X.data))[counter+1] = p.y;
	assert(p.x != -1 || p.y != -1);
	counter+=2;
      }             
    }   
  }

  LevMarqSparse levmar( num_points, num_cameras, num_point_param, num_cam_param, 2, vismat, params, X,
			TermCriteria(criteria), fjac_new, func_new, NULL,
			cb, user_data);
  //extract results
  //fill point params
  /*Mat final_points(num_points, 1, CV_64FC3,
    levmar.P->data.db + num_cameras*num_cam_param *levmar.P->step);
1086
    CV_Assert(_points.size() == final_points.size() && _points.type() == final_points.type());
1087 1088 1089 1090 1091 1092 1093
    final_points.copyTo(_points);*/

  points.clear();
  for( int i = 0; i < num_points; i++ ) {
    CvMat point_mat;
    cvGetSubRect( levmar.P, &point_mat, cvRect( 0, levmar.num_cams * levmar.num_cam_param+ levmar.num_point_param * i, 1, levmar.num_point_param ));
    CvScalar x = cvGet2D(&point_mat,0,0); CvScalar y = cvGet2D(&point_mat,1,0); CvScalar z = cvGet2D(&point_mat,2,0);
1094
    points.push_back(Point3d(x.val[0],y.val[0],z.val[0]));
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    //std::cerr<<"point"<<points[points.size()-1].x<<","<<points[points.size()-1].y<<","<<points[points.size()-1].z<<std::endl;
  }
  //fill camera params
  //R.clear();T.clear();cameraMatrix.clear();
  for( int i = 0; i < num_cameras; i++ ) {
    //rotation
    Mat rot_vec = Mat(levmar.P).rowRange(i*num_cam_param, i*num_cam_param+3);
    Rodrigues( rot_vec, R[i] );
    //translation
    T[i] = Mat(levmar.P).rowRange(i*num_cam_param + 3, i*num_cam_param+6);  

    //intrinsic camera matrix
    double* intr_data = (double*)cameraMatrix[i].data;
    double* intr = (double*)(Mat(levmar.P).data + Mat(levmar.P).step * (i*num_cam_param+6));
    //focals
    intr_data[0] = intr[0];  //fx
    intr_data[4] = intr[1];  //fy
    //center of projection
    intr_data[2] = intr[2];  //cx
    intr_data[5] = intr[3];  //cy  

    //add distortion if exists
    if( distCoeffs.size() ) {
      Mat(levmar.P).rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist).copyTo(distCoeffs[i]);
    }
  } 
1121
}