slaed8.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slaed8.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/* Table of constant values */

static real c_b3 = -1.f;
static integer c__1 = 1;

/* Subroutine */ int slaed8_(integer *icompq, integer *k, integer *n, integer 
	*qsiz, real *d__, real *q, integer *ldq, integer *indxq, real *rho, 
	integer *cutpnt, real *z__, real *dlamda, real *q2, integer *ldq2, 
	real *w, integer *perm, integer *givptr, integer *givcol, real *
	givnum, integer *indxp, integer *indx, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real c__;
    integer i__, j;
    real s, t;
    integer k2, n1, n2, jp, n1p1;
    real eps, tau, tol;
    integer jlam, imax, jmax;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *), sscal_(integer *, real *, real *, 
	    integer *), scopy_(integer *, real *, integer *, real *, integer *
);
    extern doublereal slapy2_(real *, real *), slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer 
	    *, integer *, integer *), slacpy_(char *, integer *, integer *, 
	    real *, integer *, real *, integer *);


53
/*  -- LAPACK routine (version 3.2) -- */
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAED8 merges the two sets of eigenvalues together into a single */
/*  sorted set.  Then it tries to deflate the size of the problem. */
/*  There are two ways in which deflation can occur:  when two or more */
/*  eigenvalues are close together or if there is a tiny element in the */
/*  Z vector.  For each such occurrence the order of the related secular */
/*  equation problem is reduced by one. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */

/*  K      (output) INTEGER */
/*         The number of non-deflated eigenvalues, and the order of the */
/*         related secular equation. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry, the eigenvalues of the two submatrices to be */
/*         combined.  On exit, the trailing (N-K) updated eigenvalues */
/*         (those which were deflated) sorted into increasing order. */

/*  Q      (input/output) REAL array, dimension (LDQ,N) */
/*         If ICOMPQ = 0, Q is not referenced.  Otherwise, */
/*         on entry, Q contains the eigenvectors of the partially solved */
/*         system which has been previously updated in matrix */
/*         multiplies with other partially solved eigensystems. */
/*         On exit, Q contains the trailing (N-K) updated eigenvectors */
/*         (those which were deflated) in its last N-K columns. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  INDXQ  (input) INTEGER array, dimension (N) */
/*         The permutation which separately sorts the two sub-problems */
/*         in D into ascending order.  Note that elements in the second */
/*         half of this permutation must first have CUTPNT added to */
/*         their values in order to be accurate. */

/*  RHO    (input/output) REAL */
/*         On entry, the off-diagonal element associated with the rank-1 */
/*         cut which originally split the two submatrices which are now */
/*         being recombined. */
/*         On exit, RHO has been modified to the value required by */
/*         SLAED3. */

/*  CUTPNT (input) INTEGER */
/*         The location of the last eigenvalue in the leading */
/*         sub-matrix.  min(1,N) <= CUTPNT <= N. */

/*  Z      (input) REAL array, dimension (N) */
/*         On entry, Z contains the updating vector (the last row of */
/*         the first sub-eigenvector matrix and the first row of the */
/*         second sub-eigenvector matrix). */
/*         On exit, the contents of Z are destroyed by the updating */
/*         process. */

/*  DLAMDA (output) REAL array, dimension (N) */
/*         A copy of the first K eigenvalues which will be used by */
/*         SLAED3 to form the secular equation. */

/*  Q2     (output) REAL array, dimension (LDQ2,N) */
/*         If ICOMPQ = 0, Q2 is not referenced.  Otherwise, */
/*         a copy of the first K eigenvectors which will be used by */
/*         SLAED7 in a matrix multiply (SGEMM) to update the new */
/*         eigenvectors. */

/*  LDQ2   (input) INTEGER */
/*         The leading dimension of the array Q2.  LDQ2 >= max(1,N). */

/*  W      (output) REAL array, dimension (N) */
/*         The first k values of the final deflation-altered z-vector and */
/*         will be passed to SLAED3. */

/*  PERM   (output) INTEGER array, dimension (N) */
/*         The permutations (from deflation and sorting) to be applied */
/*         to each eigenblock. */

/*  GIVPTR (output) INTEGER */
/*         The number of Givens rotations which took place in this */
/*         subproblem. */

/*  GIVCOL (output) INTEGER array, dimension (2, N) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. */

/*  GIVNUM (output) REAL array, dimension (2, N) */
/*         Each number indicates the S value to be used in the */
/*         corresponding Givens rotation. */

/*  INDXP  (workspace) INTEGER array, dimension (N) */
/*         The permutation used to place deflated values of D at the end */
/*         of the array.  INDXP(1:K) points to the nondeflated D-values */
/*         and INDXP(K+1:N) points to the deflated eigenvalues. */

/*  INDX   (workspace) INTEGER array, dimension (N) */
/*         The permutation used to sort the contents of D into ascending */
/*         order. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */

/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --indxq;
    --z__;
    --dlamda;
    q2_dim1 = *ldq2;
    q2_offset = 1 + q2_dim1;
    q2 -= q2_offset;
    --w;
    --perm;
    givcol -= 3;
    givnum -= 3;
    --indxp;
    --indx;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*n < 0) {
	*info = -3;
    } else if (*icompq == 1 && *qsiz < *n) {
	*info = -4;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
	*info = -10;
    } else if (*ldq2 < max(1,*n)) {
	*info = -14;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED8", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    n1 = *cutpnt;
    n2 = *n - n1;
    n1p1 = n1 + 1;

    if (*rho < 0.f) {
	sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
    }

/*     Normalize z so that norm(z) = 1 */

    t = 1.f / sqrt(2.f);
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	indx[j] = j;
/* L10: */
    }
    sscal_(n, &t, &z__[1], &c__1);
    *rho = (r__1 = *rho * 2.f, dabs(r__1));

/*     Sort the eigenvalues into increasing order */

    i__1 = *n;
    for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
	indxq[i__] += *cutpnt;
/* L20: */
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = d__[indxq[i__]];
	w[i__] = z__[indxq[i__]];
/* L30: */
    }
    i__ = 1;
    j = *cutpnt + 1;
    slamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__[i__] = dlamda[indx[i__]];
	z__[i__] = w[indx[i__]];
/* L40: */
    }

/*     Calculate the allowable deflation tolerence */

    imax = isamax_(n, &z__[1], &c__1);
    jmax = isamax_(n, &d__[1], &c__1);
    eps = slamch_("Epsilon");
    tol = eps * 8.f * (r__1 = d__[jmax], dabs(r__1));

/*     If the rank-1 modifier is small enough, no more needs to be done */
/*     except to reorganize Q so that its columns correspond with the */
/*     elements in D. */

    if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) {
	*k = 0;
	if (*icompq == 0) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		perm[j] = indxq[indx[j]];
/* L50: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		perm[j] = indxq[indx[j]];
		scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 
			+ 1], &c__1);
/* L60: */
	    }
	    slacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
	}
	return 0;
    }

/*     If there are multiple eigenvalues then the problem deflates.  Here */
/*     the number of equal eigenvalues are found.  As each equal */
/*     eigenvalue is found, an elementary reflector is computed to rotate */
/*     the corresponding eigensubspace so that the corresponding */
/*     components of Z are zero in this new basis. */

    *k = 0;
    *givptr = 0;
    k2 = *n + 1;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    indxp[k2] = j;
	    if (j == *n) {
		goto L110;
	    }
	} else {
	    jlam = j;
	    goto L80;
	}
/* L70: */
    }
L80:
    ++j;
    if (j > *n) {
	goto L100;
    }
    if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	indxp[k2] = j;
    } else {

/*        Check if eigenvalues are close enough to allow deflation. */

	s = z__[jlam];
	c__ = z__[j];

/*        Find sqrt(a**2+b**2) without overflow or */
/*        destructive underflow. */

	tau = slapy2_(&c__, &s);
	t = d__[j] - d__[jlam];
	c__ /= tau;
	s = -s / tau;
	if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) {

/*           Deflation is possible. */

	    z__[j] = tau;
	    z__[jlam] = 0.f;

/*           Record the appropriate Givens rotation */

	    ++(*givptr);
	    givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
	    givcol[(*givptr << 1) + 2] = indxq[indx[j]];
	    givnum[(*givptr << 1) + 1] = c__;
	    givnum[(*givptr << 1) + 2] = s;
	    if (*icompq == 1) {
		srot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
			indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
	    }
	    t = d__[jlam] * c__ * c__ + d__[j] * s * s;
	    d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
	    d__[jlam] = t;
	    --k2;
	    i__ = 1;
L90:
	    if (k2 + i__ <= *n) {
		if (d__[jlam] < d__[indxp[k2 + i__]]) {
		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
		    indxp[k2 + i__] = jlam;
		    ++i__;
		    goto L90;
		} else {
		    indxp[k2 + i__ - 1] = jlam;
		}
	    } else {
		indxp[k2 + i__ - 1] = jlam;
	    }
	    jlam = j;
	} else {
	    ++(*k);
	    w[*k] = z__[jlam];
	    dlamda[*k] = d__[jlam];
	    indxp[*k] = jlam;
	    jlam = j;
	}
    }
    goto L80;
L100:

/*     Record the last eigenvalue. */

    ++(*k);
    w[*k] = z__[jlam];
    dlamda[*k] = d__[jlam];
    indxp[*k] = jlam;

L110:

/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
/*     and Q2 respectively.  The eigenvalues/vectors which were not */
/*     deflated go into the first K slots of DLAMDA and Q2 respectively, */
/*     while those which were deflated go into the last N - K slots. */

    if (*icompq == 0) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jp = indxp[j];
	    dlamda[j] = d__[jp];
	    perm[j] = indxq[indx[jp]];
/* L120: */
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    jp = indxp[j];
	    dlamda[j] = d__[jp];
	    perm[j] = indxq[indx[jp]];
	    scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
, &c__1);
/* L130: */
	}
    }

/*     The deflated eigenvalues and their corresponding vectors go back */
/*     into the last N - K slots of D and Q respectively. */

    if (*k < *n) {
	if (*icompq == 0) {
	    i__1 = *n - *k;
	    scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
	} else {
	    i__1 = *n - *k;
	    scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
	    i__1 = *n - *k;
	    slacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
		    k + 1) * q_dim1 + 1], ldq);
	}
    }

    return 0;

/*     End of SLAED8 */

} /* slaed8_ */