multi.cpp 2.05 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* This sample demonstrates the way you can perform independed tasks
   on the different GPUs */

// Disable some warnings which are caused with CUDA headers
#if defined(_MSC_VER)
#pragma warning(disable: 4201 4408 4100)
#endif

#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/gpu/gpu.hpp"

13 14 15
using namespace std;
using namespace cv;
using namespace cv::gpu;
16

17
struct Worker: public ParallelLoopBody
18
{
19 20 21 22 23
    virtual void operator() (const Range& range) const
    {
        for (int device_id = range.start; device_id != range.end; ++device_id)
        {
            setDevice(device_id);
24

25 26
            Mat src(1000, 1000, CV_32F);
            Mat dst;
27

28 29
            RNG rng(0);
            rng.fill(src, RNG::UNIFORM, 0, 1);
30

31 32
            // CPU works
            transpose(src, dst);
33

34 35 36 37
            // GPU works
            GpuMat d_src(src);
            GpuMat d_dst;
            transpose(d_src, d_dst);
38

39 40 41 42
            // Check results
            bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
            std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
            << (passed ? "passed" : "FAILED") << endl;
43

44 45 46 47 48 49 50
            // Deallocate data here, otherwise deallocation will be performed
            // after context is extracted from the stack
            d_src.release();
            d_dst.release();
        }
    }
};
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

int main()
{
    int num_devices = getCudaEnabledDeviceCount();
    if (num_devices < 2)
    {
        std::cout << "Two or more GPUs are required\n";
        return -1;
    }
    for (int i = 0; i < num_devices; ++i)
    {
        cv::gpu::printShortCudaDeviceInfo(i);

        DeviceInfo dev_info(i);
        if (!dev_info.isCompatible())
        {
            std::cout << "GPU module isn't built for GPU #" << i << " ("
                 << dev_info.name() << ", CC " << dev_info.majorVersion()
                 << dev_info.minorVersion() << "\n";
            return -1;
        }
    }

74
    // Execute calculation in several threads, 1 GPU per thread
75
    parallel_for_(cv::Range(0, num_devices), Worker());
76 77 78

    return 0;
}