akmeans.cpp 8.05 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "cvtest.h"

#if 0
                       
/* Testing parameters */
static char test_desc[] = "KMeans clustering";
static char* func_name[] = 
{
    "cvKMeans"
};

//based on Ara Nefian's implementation
float distance(float* vector_1, float *vector_2, int VecSize)
{
  int i;
  float dist;

  dist = 0.0;
  for (i = 0; i < VecSize; i++)
  {
      //printf ("%f, %f\n", vector_1[i], vector_2[i]);
      dist = dist + (vector_1[i] - vector_2[i])*(vector_1[i] - vector_2[i]);
  }
  return dist;  
}

//returns number of made iterations
int _real_kmeans( int numClusters, float **sample, int numSamples, 
                   int VecSize, int* a_class, double eps, int iter )

{                            
  int     i, k, n;
  int     *counter;
  float   minDist;
  float   *dist; 
  float   **curr_cluster;
  float   **prev_cluster;

  float   error;
  
  //printf("* numSamples = %d, numClusters = %d, VecSize = %d\n", numSamples, numClusters, VecSize);

  //memory allocation 
  dist = new float[numClusters];
  counter = new int[numClusters];

  //allocate memory for curr_cluster and prev_cluster
  curr_cluster = new float*[numClusters];
  prev_cluster = new float*[numClusters];
  for (k = 0; k < numClusters; k++){
      curr_cluster[k] = new float[VecSize]; 
      prev_cluster[k] = new float[VecSize]; 
  } 

  //pick initial cluster centers
  for (k = 0; k < numClusters; k++)
  { 
    for (n = 0; n < VecSize; n++)
    {
       curr_cluster[k][n] = sample[k*(numSamples/numClusters)][n]; 
       prev_cluster[k][n] = sample[k*(numSamples/numClusters)][n]; 
    }
  }
  

  int NumIter = 0;
  error = FLT_MAX;
  while ((error > eps) && (NumIter < iter))
  {
    NumIter++;
    //printf("NumIter = %d, error = %lf, \n", NumIter, error);

    //assign samples to clusters
    for (i = 0; i < numSamples; i++)
    { 
      for (k = 0; k < numClusters; k++)
      {
          dist[k] = distance(sample[i], curr_cluster[k], VecSize);
      }
      minDist = dist[0];
      a_class[i] = 0;
      for (k = 1; k < numClusters; k++)
      {
        if (dist[k] < minDist)
        {
           minDist = dist[k];
           a_class[i] = k;
        }
      }
    }
    
   //reset clusters and counters
   for (k = 0; k < numClusters; k++){
     counter[k] = 0; 
     for (n = 0; n < VecSize; n++){
        curr_cluster[k][n] = 0.0; 
     }
   }
    for (i = 0; i < numSamples; i++){
      for (n = 0; n < VecSize; n++){ 
          curr_cluster[a_class[i]][n] = curr_cluster[a_class[i]][n] + sample[i][n];
      }
      counter[a_class[i]]++;  
    }
   
   for (k = 0; k < numClusters; k++){  
      for (n = 0; n < VecSize; n++){
         curr_cluster[k][n] = curr_cluster[k][n]/(float)counter[k];
      }
    }

    error = 0.0;  
    for (k = 0; k < numClusters; k++){
      for (n = 0; n < VecSize; n++){
        error = error + (curr_cluster[k][n] - prev_cluster[k][n])*(curr_cluster[k][n] - prev_cluster[k][n]);
      }
    }
    //error = error/(double)(numClusters*VecSize);

    //copy curr_clusters to prev_clusters
    for (k = 0; k < numClusters; k++){
      for (n =0; n < VecSize; n++){
        prev_cluster[k][n] = curr_cluster[k][n];  
      }
    }

  } 
  
  //deallocate memory for curr_cluster and prev_cluster 
  for (k = 0; k < numClusters; k++){
      delete curr_cluster[k]; 
      delete prev_cluster[k]; 
  } 
  delete curr_cluster;
  delete prev_cluster;

  delete counter;
  delete dist;
  return NumIter;
     
}

static int fmaKMeans(void)
{
    CvTermCriteria crit;
    float** vectors;
    int*    output;
    int*    etalon_output;

    int lErrors = 0;
    int lNumVect = 0;
    int lVectSize = 0;
    int lNumClust = 0;
    int lMaxNumIter = 0;
    float flEpsilon = 0;

    int i,j;
    static int  read_param = 0;

    /* Initialization global parameters */
    if( !read_param )
    {
        read_param = 1;
        /* Read test-parameters */
        trsiRead( &lNumVect, "1000", "Number of vectors" );
        trsiRead( &lVectSize, "10", "Number of vectors" );
        trsiRead( &lNumClust, "20", "Number of clusters" );
        trsiRead( &lMaxNumIter,"100","Maximal number of iterations");
        trssRead( &flEpsilon, "0.5", "Accuracy" );
    }

    crit = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER, lMaxNumIter, flEpsilon );
    
    //allocate vectors
    vectors = (float**)cvAlloc( lNumVect * sizeof(float*) );
    for( i = 0; i < lNumVect; i++ )
    {
        vectors[i] = (float*)cvAlloc( lVectSize * sizeof( float ) );
    }

    output = (int*)cvAlloc( lNumVect * sizeof(int) );
    etalon_output = (int*)cvAlloc( lNumVect * sizeof(int) );
    
    //fill input vectors
    for( i = 0; i < lNumVect; i++ )
    {
        ats1flInitRandom( -2000, 2000, vectors[i], lVectSize );
    }
    
    /* run etalon kmeans */
    /* actually it is the simpliest realization of kmeans */

    int ni = _real_kmeans( lNumClust, vectors, lNumVect, lVectSize, etalon_output, crit.epsilon, crit.max_iter );

    trsWrite(  ATS_CON, "%d iterations done\n",  ni );
                  
    /* Run OpenCV function */
#define _KMEANS_TIME 0

#if _KMEANS_TIME
    //timing section 
    trsTimerStart(0);
    __int64 tics = atsGetTickCount();  
#endif  

    cvKMeans( lNumClust, vectors, lNumVect, lVectSize, 
              crit, output );

#if _KMEANS_TIME
    tics = atsGetTickCount() - tics;     
    trsTimerStop(0);
    //output result
    //double dbUsecs =ATS_TICS_TO_USECS((double)tics);
    trsWrite( ATS_CON, "Tics per iteration %d\n", tics/ni );    

#endif

    //compare results
    for( j = 0; j < lNumVect; j++ )
    {
        if ( output[j] != etalon_output[j] )
        {
            lErrors++;
        }
    }

    //free memory
    for( i = 0; i < lNumVect; i++ )
    {
        cvFree( &(vectors[i]) );
    }
    cvFree(&vectors);
    cvFree(&output);
    cvFree(&etalon_output);      
   
   if( lErrors == 0 ) return trsResult( TRS_OK, "No errors fixed for this text" );
    else return trsResult( TRS_FAIL, "Detected %d errors", lErrors );

}



void InitAKMeans()
{
    /* Register test function */
    trsReg( func_name[0], test_desc, atsAlgoClass, fmaKMeans );
    
} /* InitAKMeans */

#endif