dlasd7.c 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
#include "clapack.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr, 
	integer *sqre, integer *k, doublereal *d__, doublereal *z__, 
	doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl, 
	doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
	dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, 
	integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, 
	 integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
{
    /* System generated locals */
    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j, m, n, k2;
    doublereal z1;
    integer jp;
    doublereal eps, tau, tol;
    integer nlp1, nlp2, idxi, idxj;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer idxjp;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer jprev;
    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), xerbla_(char *, integer *);
    doublereal hlftol;


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASD7 merges the two sets of singular values together into a single */
/*  sorted set. Then it tries to deflate the size of the problem. There */
/*  are two ways in which deflation can occur:  when two or more singular */
/*  values are close together or if there is a tiny entry in the Z */
/*  vector. For each such occurrence the order of the related */
/*  secular equation problem is reduced by one. */

/*  DLASD7 is called from DLASD6. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          Specifies whether singular vectors are to be computed */
/*          in compact form, as follows: */
/*          = 0: Compute singular values only. */
/*          = 1: Compute singular vectors of upper */
/*               bidiagonal matrix in compact form. */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block. NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block. NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has */
/*         N = NL + NR + 1 rows and */
/*         M = N + SQRE >= N columns. */

/*  K      (output) INTEGER */
/*         Contains the dimension of the non-deflated matrix, this is */
/*         the order of the related secular equation. 1 <= K <=N. */

/*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) */
/*         On entry D contains the singular values of the two submatrices */
/*         to be combined. On exit D contains the trailing (N-K) updated */
/*         singular values (those which were deflated) sorted into */
/*         increasing order. */

/*  Z      (output) DOUBLE PRECISION array, dimension ( M ) */
/*         On exit Z contains the updating row vector in the secular */
/*         equation. */

/*  ZW     (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for Z. */

/*  VF     (input/output) DOUBLE PRECISION array, dimension ( M ) */
/*         On entry, VF(1:NL+1) contains the first components of all */
/*         right singular vectors of the upper block; and VF(NL+2:M) */
/*         contains the first components of all right singular vectors */
/*         of the lower block. On exit, VF contains the first components */
/*         of all right singular vectors of the bidiagonal matrix. */

/*  VFW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for VF. */

/*  VL     (input/output) DOUBLE PRECISION array, dimension ( M ) */
/*         On entry, VL(1:NL+1) contains the  last components of all */
/*         right singular vectors of the upper block; and VL(NL+2:M) */
/*         contains the last components of all right singular vectors */
/*         of the lower block. On exit, VL contains the last components */
/*         of all right singular vectors of the bidiagonal matrix. */

/*  VLW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for VL. */

/*  ALPHA  (input) DOUBLE PRECISION */
/*         Contains the diagonal element associated with the added row. */

/*  BETA   (input) DOUBLE PRECISION */
/*         Contains the off-diagonal element associated with the added */
/*         row. */

/*  DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) */
/*         Contains a copy of the diagonal elements (K-1 singular values */
/*         and one zero) in the secular equation. */

/*  IDX    (workspace) INTEGER array, dimension ( N ) */
/*         This will contain the permutation used to sort the contents of */
/*         D into ascending order. */

/*  IDXP   (workspace) INTEGER array, dimension ( N ) */
/*         This will contain the permutation used to place deflated */
/*         values of D at the end of the array. On output IDXP(2:K) */
/*         points to the nondeflated D-values and IDXP(K+1:N) */
/*         points to the deflated singular values. */

/*  IDXQ   (input) INTEGER array, dimension ( N ) */
/*         This contains the permutation which separately sorts the two */
/*         sub-problems in D into ascending order.  Note that entries in */
/*         the first half of this permutation must first be moved one */
/*         position backward; and entries in the second half */
/*         must first have NL+1 added to their values. */

/*  PERM   (output) INTEGER array, dimension ( N ) */
/*         The permutations (from deflation and sorting) to be applied */
/*         to each singular block. Not referenced if ICOMPQ = 0. */

/*  GIVPTR (output) INTEGER */
/*         The number of Givens rotations which took place in this */
/*         subproblem. Not referenced if ICOMPQ = 0. */

/*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGCOL (input) INTEGER */
/*         The leading dimension of GIVCOL, must be at least N. */

/*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
/*         Each number indicates the C or S value to be used in the */
/*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGNUM (input) INTEGER */
/*         The leading dimension of GIVNUM, must be at least N. */

/*  C      (output) DOUBLE PRECISION */
/*         C contains garbage if SQRE =0 and the C-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  S      (output) DOUBLE PRECISION */
/*         S contains garbage if SQRE =0 and the S-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  INFO   (output) INTEGER */
/*         = 0:  successful exit. */
/*         < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */

/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --z__;
    --zw;
    --vf;
    --vfw;
    --vl;
    --vlw;
    --dsigma;
    --idx;
    --idxp;
    --idxq;
    --perm;
    givcol_dim1 = *ldgcol;
    givcol_offset = 1 + givcol_dim1;
    givcol -= givcol_offset;
    givnum_dim1 = *ldgnum;
    givnum_offset = 1 + givnum_dim1;
    givnum -= givnum_offset;

    /* Function Body */
    *info = 0;
    n = *nl + *nr + 1;
    m = n + *sqre;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*nl < 1) {
	*info = -2;
    } else if (*nr < 1) {
	*info = -3;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -4;
    } else if (*ldgcol < n) {
	*info = -22;
    } else if (*ldgnum < n) {
	*info = -24;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD7", &i__1);
	return 0;
    }

    nlp1 = *nl + 1;
    nlp2 = *nl + 2;
    if (*icompq == 1) {
	*givptr = 0;
    }

/*     Generate the first part of the vector Z and move the singular */
/*     values in the first part of D one position backward. */

    z1 = *alpha * vl[nlp1];
    vl[nlp1] = 0.;
    tau = vf[nlp1];
    for (i__ = *nl; i__ >= 1; --i__) {
	z__[i__ + 1] = *alpha * vl[i__];
	vl[i__] = 0.;
	vf[i__ + 1] = vf[i__];
	d__[i__ + 1] = d__[i__];
	idxq[i__ + 1] = idxq[i__] + 1;
/* L10: */
    }
    vf[1] = tau;

/*     Generate the second part of the vector Z. */

    i__1 = m;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	z__[i__] = *beta * vf[i__];
	vf[i__] = 0.;
/* L20: */
    }

/*     Sort the singular values into increasing order */

    i__1 = n;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	idxq[i__] += nlp1;
/* L30: */
    }

/*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	dsigma[i__] = d__[idxq[i__]];
	zw[i__] = z__[idxq[i__]];
	vfw[i__] = vf[idxq[i__]];
	vlw[i__] = vl[idxq[i__]];
/* L40: */
    }

    dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	idxi = idx[i__] + 1;
	d__[i__] = dsigma[idxi];
	z__[i__] = zw[idxi];
	vf[i__] = vfw[idxi];
	vl[i__] = vlw[idxi];
/* L50: */
    }

/*     Calculate the allowable deflation tolerence */

    eps = dlamch_("Epsilon");
/* Computing MAX */
    d__1 = abs(*alpha), d__2 = abs(*beta);
    tol = max(d__1,d__2);
/* Computing MAX */
    d__2 = (d__1 = d__[n], abs(d__1));
    tol = eps * 64. * max(d__2,tol);

/*     There are 2 kinds of deflation -- first a value in the z-vector */
/*     is small, second two (or more) singular values are very close */
/*     together (their difference is small). */

/*     If the value in the z-vector is small, we simply permute the */
/*     array so that the corresponding singular value is moved to the */
/*     end. */

/*     If two values in the D-vector are close, we perform a two-sided */
/*     rotation designed to make one of the corresponding z-vector */
/*     entries zero, and then permute the array so that the deflated */
/*     singular value is moved to the end. */

/*     If there are multiple singular values then the problem deflates. */
/*     Here the number of equal singular values are found.  As each equal */
/*     singular value is found, an elementary reflector is computed to */
/*     rotate the corresponding singular subspace so that the */
/*     corresponding components of Z are zero in this new basis. */

    *k = 1;
    k2 = n + 1;
    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	if ((d__1 = z__[j], abs(d__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    idxp[k2] = j;
	    if (j == n) {
		goto L100;
	    }
	} else {
	    jprev = j;
	    goto L70;
	}
/* L60: */
    }
L70:
    j = jprev;
L80:
    ++j;
    if (j > n) {
	goto L90;
    }
    if ((d__1 = z__[j], abs(d__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	idxp[k2] = j;
    } else {

/*        Check if singular values are close enough to allow deflation. */

	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {

/*           Deflation is possible. */

	    *s = z__[jprev];
	    *c__ = z__[j];

/*           Find sqrt(a**2+b**2) without overflow or */
/*           destructive underflow. */

	    tau = dlapy2_(c__, s);
	    z__[j] = tau;
	    z__[jprev] = 0.;
	    *c__ /= tau;
	    *s = -(*s) / tau;

/*           Record the appropriate Givens rotation */

	    if (*icompq == 1) {
		++(*givptr);
		idxjp = idxq[idx[jprev] + 1];
		idxj = idxq[idx[j] + 1];
		if (idxjp <= nlp1) {
		    --idxjp;
		}
		if (idxj <= nlp1) {
		    --idxj;
		}
		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
		givcol[*givptr + givcol_dim1] = idxj;
		givnum[*givptr + (givnum_dim1 << 1)] = *c__;
		givnum[*givptr + givnum_dim1] = *s;
	    }
	    drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
	    drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
	    --k2;
	    idxp[k2] = jprev;
	    jprev = j;
	} else {
	    ++(*k);
	    zw[*k] = z__[jprev];
	    dsigma[*k] = d__[jprev];
	    idxp[*k] = jprev;
	    jprev = j;
	}
    }
    goto L80;
L90:

/*     Record the last singular value. */

    ++(*k);
    zw[*k] = z__[jprev];
    dsigma[*k] = d__[jprev];
    idxp[*k] = jprev;

L100:

/*     Sort the singular values into DSIGMA. The singular values which */
/*     were not deflated go into the first K slots of DSIGMA, except */
/*     that DSIGMA(1) is treated separately. */

    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	jp = idxp[j];
	dsigma[j] = d__[jp];
	vfw[j] = vf[jp];
	vlw[j] = vl[jp];
/* L110: */
    }
    if (*icompq == 1) {
	i__1 = n;
	for (j = 2; j <= i__1; ++j) {
	    jp = idxp[j];
	    perm[j] = idxq[idx[jp] + 1];
	    if (perm[j] <= nlp1) {
		--perm[j];
	    }
/* L120: */
	}
    }

/*     The deflated singular values go back into the last N - K slots of */
/*     D. */

    i__1 = n - *k;
    dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);

/*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
/*     VL(M). */

    dsigma[1] = 0.;
    hlftol = tol / 2.;
    if (abs(dsigma[2]) <= hlftol) {
	dsigma[2] = hlftol;
    }
    if (m > n) {
	z__[1] = dlapy2_(&z1, &z__[m]);
	if (z__[1] <= tol) {
	    *c__ = 1.;
	    *s = 0.;
	    z__[1] = tol;
	} else {
	    *c__ = z1 / z__[1];
	    *s = -z__[m] / z__[1];
	}
	drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
	drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
    } else {
	if (abs(z1) <= tol) {
	    z__[1] = tol;
	} else {
	    z__[1] = z1;
	}
    }

/*     Restore Z, VF, and VL. */

    i__1 = *k - 1;
    dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
    i__1 = n - 1;
    dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
    i__1 = n - 1;
    dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);

    return 0;

/*     End of DLASD7 */

} /* dlasd7_ */