slatrd.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slatrd.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Table of constant values */

static real c_b5 = -1.f;
static real c_b6 = 1.f;
static integer c__1 = 1;
static real c_b16 = 0.f;

/* Subroutine */ int slatrd_(char *uplo, integer *n, integer *nb, real *a, 
	integer *lda, real *e, real *tau, real *w, integer *ldw)
{
    /* System generated locals */
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, iw;
    extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
    real alpha;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 
	    sgemv_(char *, integer *, integer *, real *, real *, integer *, 
	    real *, integer *, real *, real *, integer *), saxpy_(
	    integer *, real *, real *, integer *, real *, integer *), ssymv_(
	    char *, integer *, real *, real *, integer *, real *, integer *, 
	    real *, real *, integer *), slarfg_(integer *, real *, 
	    real *, integer *, real *);


43
/*  -- LAPACK auxiliary routine (version 3.2) -- */
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLATRD reduces NB rows and columns of a real symmetric matrix A to */
/*  symmetric tridiagonal form by an orthogonal similarity */
/*  transformation Q' * A * Q, and returns the matrices V and W which are */
/*  needed to apply the transformation to the unreduced part of A. */

/*  If UPLO = 'U', SLATRD reduces the last NB rows and columns of a */
/*  matrix, of which the upper triangle is supplied; */
/*  if UPLO = 'L', SLATRD reduces the first NB rows and columns of a */
/*  matrix, of which the lower triangle is supplied. */

/*  This is an auxiliary routine called by SSYTRD. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U': Upper triangular */
/*          = 'L': Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A. */

/*  NB      (input) INTEGER */
/*          The number of rows and columns to be reduced. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n-by-n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n-by-n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */
/*          On exit: */
/*          if UPLO = 'U', the last NB columns have been reduced to */
/*            tridiagonal form, with the diagonal elements overwriting */
/*            the diagonal elements of A; the elements above the diagonal */
/*            with the array TAU, represent the orthogonal matrix Q as a */
/*            product of elementary reflectors; */
/*          if UPLO = 'L', the first NB columns have been reduced to */
/*            tridiagonal form, with the diagonal elements overwriting */
/*            the diagonal elements of A; the elements below the diagonal */
/*            with the array TAU, represent the  orthogonal matrix Q as a */
/*            product of elementary reflectors. */
/*          See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= (1,N). */

/*  E       (output) REAL array, dimension (N-1) */
/*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
/*          elements of the last NB columns of the reduced matrix; */
/*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
/*          the first NB columns of the reduced matrix. */

/*  TAU     (output) REAL array, dimension (N-1) */
/*          The scalar factors of the elementary reflectors, stored in */
/*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
/*          See Further Details. */

/*  W       (output) REAL array, dimension (LDW,NB) */
/*          The n-by-nb matrix W required to update the unreduced part */
/*          of A. */

/*  LDW     (input) INTEGER */
/*          The leading dimension of the array W. LDW >= max(1,N). */

/*  Further Details */
/*  =============== */

/*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
/*  reflectors */

/*     Q = H(n) H(n-1) . . . H(n-nb+1). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
/*  and tau in TAU(i-1). */

/*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
/*  reflectors */

/*     Q = H(1) H(2) . . . H(nb). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
/*  and tau in TAU(i). */

/*  The elements of the vectors v together form the n-by-nb matrix V */
/*  which is needed, with W, to apply the transformation to the unreduced */
/*  part of the matrix, using a symmetric rank-2k update of the form: */
/*  A := A - V*W' - W*V'. */

/*  The contents of A on exit are illustrated by the following examples */
/*  with n = 5 and nb = 2: */

/*  if UPLO = 'U':                       if UPLO = 'L': */

/*    (  a   a   a   v4  v5 )              (  d                  ) */
/*    (      a   a   v4  v5 )              (  1   d              ) */
/*    (          a   1   v5 )              (  v1  1   a          ) */
/*    (              d   1  )              (  v1  v2  a   a      ) */
/*    (                  d  )              (  v1  v2  a   a   a  ) */

/*  where d denotes a diagonal element of the reduced matrix, a denotes */
/*  an element of the original matrix that is unchanged, and vi denotes */
/*  an element of the vector defining H(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --e;
    --tau;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1;
    w -= w_offset;

    /* Function Body */
    if (*n <= 0) {
	return 0;
    }

    if (lsame_(uplo, "U")) {

/*        Reduce last NB columns of upper triangle */

	i__1 = *n - *nb + 1;
	for (i__ = *n; i__ >= i__1; --i__) {
	    iw = i__ - *n + *nb;
	    if (i__ < *n) {

/*              Update A(1:i,i) */

		i__2 = *n - i__;
		sgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * 
			a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
			c_b6, &a[i__ * a_dim1 + 1], &c__1);
		i__2 = *n - i__;
		sgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * 
			w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
			c_b6, &a[i__ * a_dim1 + 1], &c__1);
	    }
	    if (i__ > 1) {

/*              Generate elementary reflector H(i) to annihilate */
/*              A(1:i-2,i) */

		i__2 = i__ - 1;
		slarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 
			1], &c__1, &tau[i__ - 1]);
		e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
		a[i__ - 1 + i__ * a_dim1] = 1.f;

/*              Compute W(1:i-1,i) */

		i__2 = i__ - 1;
		ssymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * 
			a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
			c__1);
		if (i__ < *n) {
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    sgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * 
			    w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
			     a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    sgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * 
			    a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * 
			    w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
		}
		i__2 = i__ - 1;
		sscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
		i__2 = i__ - 1;
		alpha = tau[i__ - 1] * -.5f * sdot_(&i__2, &w[iw * w_dim1 + 1]
, &c__1, &a[i__ * a_dim1 + 1], &c__1);
		i__2 = i__ - 1;
		saxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * 
			w_dim1 + 1], &c__1);
	    }

/* L10: */
	}
    } else {

/*        Reduce first NB columns of lower triangle */

	i__1 = *nb;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Update A(i:n,i) */

	    i__2 = *n - i__ + 1;
	    i__3 = i__ - 1;
	    sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, 
		     &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
		    c__1);
	    i__2 = *n - i__ + 1;
	    i__3 = i__ - 1;
	    sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, 
		     &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
		    c__1);
	    if (i__ < *n) {

/*              Generate elementary reflector H(i) to annihilate */
/*              A(i+2:n,i) */

		i__2 = *n - i__;
/* Computing MIN */
		i__3 = i__ + 2;
		slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ 
			i__ * a_dim1], &c__1, &tau[i__]);
		e[i__] = a[i__ + 1 + i__ * a_dim1];
		a[i__ + 1 + i__ * a_dim1] = 1.f;

/*              Compute W(i+1:n,i) */

		i__2 = *n - i__;
		ssymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
			i__ + 1 + i__ * w_dim1], &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		sgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], 
			 ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
			i__ * w_dim1 + 1], &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + 
			a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
			i__ + 1 + i__ * w_dim1], &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		sgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], 
			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
			i__ * w_dim1 + 1], &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + 
			w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
			i__ + 1 + i__ * w_dim1], &c__1);
		i__2 = *n - i__;
		sscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
		i__2 = *n - i__;
		alpha = tau[i__] * -.5f * sdot_(&i__2, &w[i__ + 1 + i__ * 
			w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
		i__2 = *n - i__;
		saxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
			i__ + 1 + i__ * w_dim1], &c__1);
	    }

/* L20: */
	}
    }

    return 0;

/*     End of SLATRD */

} /* slatrd_ */