warp.cpp 19 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)


void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpAffineMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpPerspectiveMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

#else // HAVE_CUDA

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
64
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
65 66 67 68 69

        void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
70
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    }
}}}

void cv::gpu::buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    CV_Assert(M.rows == 2 && M.cols == 3);

    xmap.create(dsize, CV_32FC1);
    ymap.create(dsize, CV_32FC1);

    float coeffs[2 * 3];
    Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invertAffineTransform(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

void cv::gpu::buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    CV_Assert(M.rows == 3 && M.cols == 3);

    xmap.create(dsize, CV_32FC1);
    ymap.create(dsize, CV_32FC1);

    float coeffs[3 * 3];
    Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invert(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

namespace
{
    template<int DEPTH> struct NppTypeTraits;
    template<> struct NppTypeTraits<CV_8U>  { typedef Npp8u npp_t; };
    template<> struct NppTypeTraits<CV_8S>  { typedef Npp8s npp_t; };
    template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
    template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; typedef Npp16sc npp_complex_type; };
    template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; typedef Npp32sc npp_complex_type; };
    template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; typedef Npp32fc npp_complex_type; };
    template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; typedef Npp64fc npp_complex_type; };

    template <int DEPTH> struct NppWarpFunc
    {
        typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;

        typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_t* pDst,
                                    int dstStep, NppiRect dstRoi, const double coeffs[][3],
                                    int interpolation);
    };

    template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp
    {
        typedef typename NppWarpFunc<DEPTH>::npp_t npp_t;

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
146
        static void call(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream)
147 148 149 150
        {
            static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};

            NppiSize srcsz;
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
151 152
            srcsz.height = src.rows;
            srcsz.width = src.cols;
153 154

            NppiRect srcroi;
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
155 156
            srcroi.x = 0;
            srcroi.y = 0;
157 158 159 160
            srcroi.height = src.rows;
            srcroi.width = src.cols;

            NppiRect dstroi;
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
161 162
            dstroi.x = 0;
            dstroi.y = 0;
163 164 165 166 167
            dstroi.height = dst.rows;
            dstroi.width = dst.cols;

            cv::gpu::NppStreamHandler h(stream);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
168 169 170
            nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi,
                              dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi,
                              coeffs, npp_inter[interpolation]) );
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 2 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
188 189
    dst.create(dsize, src.type());

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
234
    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
235 236
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;
237 238 239

    if (useNpp)
    {
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
240
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call}
            }
        };

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
262 263
        dst.setTo(borderValue);

264 265 266 267 268 269 270
        double coeffs[2][3];
        Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
271
        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s));
272 273 274 275 276 277
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
278
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

        static const func_t funcs[6][4] =
        {
            {warpAffine_gpu<uchar>      , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3>     , warpAffine_gpu<uchar4>     },
            {0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/  , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/},
            {warpAffine_gpu<ushort>     , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3>    , warpAffine_gpu<ushort4>    },
            {warpAffine_gpu<short>      , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3>     , warpAffine_gpu<short4>     },
            {0 /*warpAffine_gpu<int>*/  , 0 /*warpAffine_gpu<int2>*/   , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ },
            {warpAffine_gpu<float>      , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3>     , warpAffine_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

        float coeffs[2 * 3];
        Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invertAffineTransform(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
312
            dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20));
313 314 315 316 317 318 319 320 321 322 323 324 325
    }
}

void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 3 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
326 327
    dst.create(dsize, src.type());

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
372
    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
373 374
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;
375 376 377

    if (useNpp)
    {
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
378
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
400 401
        dst.setTo(borderValue);

402 403 404 405 406 407 408
        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
409
        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s));
410 411 412 413 414 415
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
416
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/  , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
            {warpPerspective_gpu<ushort>     , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3>    , warpPerspective_gpu<ushort4>    },
            {warpPerspective_gpu<short>      , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3>     , warpPerspective_gpu<short4>     },
            {0 /*warpPerspective_gpu<int>*/  , 0 /*warpPerspective_gpu<int2>*/   , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

        float coeffs[3 * 3];
        Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invert(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
450
            dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20));
451 452 453 454
    }
}

#endif // HAVE_CUDA