test_nearestneighbors.cpp 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#include <algorithm>
#include <vector>
#include <iostream>

using namespace cv;
using namespace cv::flann;

//--------------------------------------------------------------------------------
class NearestNeighborTest : public cvtest::BaseTest
{
public:
    NearestNeighborTest() {}
protected:
    static const int minValue = 0;
    static const int maxValue = 1;
    static const int dims = 30;
    static const int featuresCount = 2000;
    static const int K = 1; // * should also test 2nd nn etc.?


    virtual void run( int start_from );
    virtual void createModel( const Mat& data ) = 0;
    virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
68
    virtual int checkGetPoints( const Mat& data );
69 70 71 72 73
    virtual int checkFindBoxed();
    virtual int checkFind( const Mat& data );
    virtual void releaseModel() = 0;
};

Ilya Lavrenov's avatar
Ilya Lavrenov committed
74
int NearestNeighborTest::checkGetPoints( const Mat& )
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
{
   return cvtest::TS::OK;
}

int NearestNeighborTest::checkFindBoxed()
{
    return cvtest::TS::OK;
}

int NearestNeighborTest::checkFind( const Mat& data )
{
    int code = cvtest::TS::OK;
    int pointsCount = 1000;
    float noise = 0.2f;

    RNG rng;
    Mat points( pointsCount, dims, CV_32FC1 );
    Mat results( pointsCount, K, CV_32SC1 );

    std::vector<int> fmap( pointsCount );
    for( int pi = 0; pi < pointsCount; pi++ )
    {
        int fi = rng.next() % featuresCount;
        fmap[pi] = fi;
        for( int d = 0; d < dims; d++ )
            points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
    }

    code = findNeighbors( points, results );

    if( code == cvtest::TS::OK )
    {
        int correctMatches = 0;
        for( int pi = 0; pi < pointsCount; pi++ )
        {
            if( fmap[pi] == results.at<int>(pi, 0) )
                correctMatches++;
        }

        double correctPerc = correctMatches / (double)pointsCount;
        if (correctPerc < .75)
        {
            ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc );
            code = cvtest::TS::FAIL_BAD_ACCURACY;
        }
    }

    return code;
}

void NearestNeighborTest::run( int /*start_from*/ ) {
    int code = cvtest::TS::OK, tempCode;
    Mat desc( featuresCount, dims, CV_32FC1 );
128
    ts->get_rng().fill( desc, RNG::UNIFORM, minValue, maxValue );
129 130

    createModel( desc );
131

Ilya Lavrenov's avatar
Ilya Lavrenov committed
132
    tempCode = checkGetPoints( desc );
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if( tempCode != cvtest::TS::OK )
    {
        ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
        code = tempCode;
    }

    tempCode = checkFindBoxed();
    if( tempCode != cvtest::TS::OK )
    {
        ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
        code = tempCode;
    }

    tempCode = checkFind( desc );
    if( tempCode != cvtest::TS::OK )
    {
        ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
        code = tempCode;
    }
152

153
    releaseModel();
154

155 156 157 158 159 160 161
    ts->set_failed_test_info( code );
}

//--------------------------------------------------------------------------------
class CV_KDTreeTest_CPP : public NearestNeighborTest
{
public:
162
    CV_KDTreeTest_CPP() : NearestNeighborTest(), tr(NULL) {}
163 164
protected:
    virtual void createModel( const Mat& data );
Ilya Lavrenov's avatar
Ilya Lavrenov committed
165
    virtual int checkGetPoints( const Mat& data );
166 167 168 169 170 171 172 173 174 175 176 177
    virtual int findNeighbors( Mat& points, Mat& neighbors );
    virtual int checkFindBoxed();
    virtual void releaseModel();
    KDTree* tr;
};


void CV_KDTreeTest_CPP::createModel( const Mat& data )
{
    tr = new KDTree( data, false );
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
178
int CV_KDTreeTest_CPP::checkGetPoints( const Mat& data )
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
    Mat res1( data.size(), data.type() ),
        res3( data.size(), data.type() );
    Mat idxs( 1, data.rows, CV_32SC1 );
    for( int pi = 0; pi < data.rows; pi++ )
    {
        idxs.at<int>(0, pi) = pi;
        // 1st way
        const float* point = tr->getPoint(pi);
        for( int di = 0; di < data.cols; di++ )
            res1.at<float>(pi, di) = point[di];
    }

    // 3d way
    tr->getPoints( idxs, res3 );

    if( norm( res1, data, NORM_L1) != 0 ||
        norm( res3, data, NORM_L1) != 0)
        return cvtest::TS::FAIL_BAD_ACCURACY;
    return cvtest::TS::OK;
}

int CV_KDTreeTest_CPP::checkFindBoxed()
{
Andrey Kamaev's avatar
Andrey Kamaev committed
203
    vector<float> min( dims, static_cast<float>(minValue)), max(dims, static_cast<float>(maxValue));
204
    vector<int> indices;
205
    tr->findOrthoRange( min, max, indices );
206 207 208 209 210 211 212 213 214 215 216 217 218 219
    // TODO check indices
    if( (int)indices.size() != featuresCount)
        return cvtest::TS::FAIL_BAD_ACCURACY;
    return cvtest::TS::OK;
}

int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors )
{
    const int emax = 20;
    Mat neighbors2( neighbors.size(), CV_32SC1 );
    int j;
    for( int pi = 0; pi < points.rows; pi++ )
    {
        // 1st way
220 221
        Mat nrow = neighbors.row(pi);
        tr->findNearest( points.row(pi), neighbors.cols, emax, nrow );
222 223 224

        // 2nd way
        vector<int> neighborsIdx2( neighbors2.cols, 0 );
225
        tr->findNearest( points.row(pi), neighbors2.cols, emax, neighborsIdx2 );
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        vector<int>::const_iterator it2 = neighborsIdx2.begin();
        for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ )
            neighbors2.at<int>(pi,j) = *it2;
    }

    // compare results
    if( norm( neighbors, neighbors2, NORM_L1 ) != 0 )
        return cvtest::TS::FAIL_BAD_ACCURACY;

    return cvtest::TS::OK;
}

void CV_KDTreeTest_CPP::releaseModel()
{
    delete tr;
}

//--------------------------------------------------------------------------------
class CV_FlannTest : public NearestNeighborTest
{
public:
247
    CV_FlannTest() : NearestNeighborTest(), index(NULL) { }
248 249 250 251 252 253 254 255 256 257
protected:
    void createIndex( const Mat& data, const IndexParams& params );
    int knnSearch( Mat& points, Mat& neighbors );
    int radiusSearch( Mat& points, Mat& neighbors );
    virtual void releaseModel();
    Index* index;
};

void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
{
258 259 260
    // release previously allocated index
    releaseModel();

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    index = new Index( data, params );
}

int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors )
{
    Mat dist( points.rows, neighbors.cols, CV_32FC1);
    int knn = 1, j;

    // 1st way
    index->knnSearch( points, neighbors, dist, knn, SearchParams() );

    // 2nd way
    Mat neighbors1( neighbors.size(), CV_32SC1 );
    for( int i = 0; i < points.rows; i++ )
    {
        float* fltPtr = points.ptr<float>(i);
        vector<float> query( fltPtr, fltPtr + points.cols );
        vector<int> indices( neighbors1.cols, 0 );
        vector<float> dists( dist.cols, 0 );
        index->knnSearch( query, indices, dists, knn, SearchParams() );
        vector<int>::const_iterator it = indices.begin();
        for( j = 0; it != indices.end(); ++it, j++ )
            neighbors1.at<int>(i,j) = *it;
    }

    // compare results
    if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
        return cvtest::TS::FAIL_BAD_ACCURACY;

    return cvtest::TS::OK;
}

int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
{
    Mat dist( 1, neighbors.cols, CV_32FC1);
    Mat neighbors1( neighbors.size(), CV_32SC1 );
    float radius = 10.0f;
    int j;

    // radiusSearch can only search one feature at a time for range search
    for( int i = 0; i < points.rows; i++ )
    {
        // 1st way
        Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
            n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
306
        index->radiusSearch( p, n, dist, radius, neighbors.cols, SearchParams() );
307 308 309 310 311 312

        // 2nd way
        float* fltPtr = points.ptr<float>(i);
        vector<float> query( fltPtr, fltPtr + points.cols );
        vector<int> indices( neighbors1.cols, 0 );
        vector<float> dists( dist.cols, 0 );
313
        index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() );
314 315 316 317 318 319 320 321 322 323 324 325 326
        vector<int>::const_iterator it = indices.begin();
        for( j = 0; it != indices.end(); ++it, j++ )
            neighbors1.at<int>(i,j) = *it;
    }
    // compare results
    if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
        return cvtest::TS::FAIL_BAD_ACCURACY;

    return cvtest::TS::OK;
}

void CV_FlannTest::releaseModel()
{
327 328 329 330 331
    if (index)
    {
        delete index;
        index = NULL;
    }
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

//---------------------------------------
class CV_FlannLinearIndexTest : public CV_FlannTest
{
public:
    CV_FlannLinearIndexTest() {}
protected:
    virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); }
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};

//---------------------------------------
class CV_FlannKMeansIndexTest : public CV_FlannTest
{
public:
    CV_FlannKMeansIndexTest() {}
protected:
    virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); }
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
};

//---------------------------------------
class CV_FlannKDTreeIndexTest : public CV_FlannTest
{
public:
    CV_FlannKDTreeIndexTest() {}
protected:
    virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); }
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
};

//----------------------------------------
class CV_FlannCompositeIndexTest : public CV_FlannTest
{
public:
    CV_FlannCompositeIndexTest() {}
protected:
    virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); }
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};

//----------------------------------------
class CV_FlannAutotunedIndexTest : public CV_FlannTest
{
public:
    CV_FlannAutotunedIndexTest() {}
protected:
    virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); }
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};
//----------------------------------------
class CV_FlannSavedIndexTest : public CV_FlannTest
{
public:
    CV_FlannSavedIndexTest() {}
protected:
    virtual void createModel( const Mat& data );
    virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};

void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
{
    switch ( cvtest::randInt(ts->get_rng()) % 2 )
    {
        //case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search
        case 0: createIndex( data, KMeansIndexParams() ); break;
        case 1: createIndex( data, KDTreeIndexParams() ); break;
        //case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search
        //case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index !
        default: assert(0);
    }
404
    string filename = tempfile();
405
    index->save( filename );
406

407 408
    createIndex( data, SavedIndexParams(filename.c_str()));
    remove( filename.c_str() );
409 410 411 412 413 414 415 416 417
}

TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); }
TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }