lapack.cpp 55 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
44
#include <limits>
45

Andrey Kamaev's avatar
Andrey Kamaev committed
46 47 48 49
#if defined _M_IX86 && defined _MSC_VER && _MSC_VER < 1700
#pragma float_control(precise, on)
#endif

50 51
namespace cv
{
52

53 54 55
/****************************************************************************************\
*                     LU & Cholesky implementation for small matrices                    *
\****************************************************************************************/
56

57 58
template<typename _Tp> static inline int
LUImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n)
59 60
{
    int i, j, k, p = 1;
61 62
    astep /= sizeof(A[0]);
    bstep /= sizeof(b[0]);
63

64 65 66
    for( i = 0; i < m; i++ )
    {
        k = i;
67

68
        for( j = i+1; j < m; j++ )
69
            if( std::abs(A[j*astep + i]) > std::abs(A[k*astep + i]) )
70
                k = j;
71

72
        if( std::abs(A[k*astep + i]) < std::numeric_limits<_Tp>::epsilon() )
73
            return 0;
74

75 76 77
        if( k != i )
        {
            for( j = i; j < m; j++ )
78
                std::swap(A[i*astep + j], A[k*astep + j]);
79 80
            if( b )
                for( j = 0; j < n; j++ )
81
                    std::swap(b[i*bstep + j], b[k*bstep + j]);
82 83
            p = -p;
        }
84

85
        _Tp d = -1/A[i*astep + i];
86

87 88
        for( j = i+1; j < m; j++ )
        {
89
            _Tp alpha = A[j*astep + i]*d;
90

91
            for( k = i+1; k < m; k++ )
92
                A[j*astep + k] += alpha*A[i*astep + k];
93

94 95
            if( b )
                for( k = 0; k < n; k++ )
96
                    b[j*bstep + k] += alpha*b[i*bstep + k];
97
        }
98

99
        A[i*astep + i] = -d;
100
    }
101

102 103 104 105 106
    if( b )
    {
        for( i = m-1; i >= 0; i-- )
            for( j = 0; j < n; j++ )
            {
107
                _Tp s = b[i*bstep + j];
108
                for( k = i+1; k < m; k++ )
109 110
                    s -= A[i*astep + k]*b[k*bstep + j];
                b[i*bstep + j] = s*A[i*astep + i];
111 112
            }
    }
113

114 115 116
    return p;
}

117

118
int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n)
119
{
120
    return LUImpl(A, astep, m, b, bstep, n);
121
}
122

123

124
int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n)
125
{
126
    return LUImpl(A, astep, m, b, bstep, n);
127
}
128

129

130 131
template<typename _Tp> static inline bool
CholImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n)
132 133 134 135
{
    _Tp* L = A;
    int i, j, k;
    double s;
136 137
    astep /= sizeof(A[0]);
    bstep /= sizeof(b[0]);
138

139 140 141 142
    for( i = 0; i < m; i++ )
    {
        for( j = 0; j < i; j++ )
        {
143
            s = A[i*astep + j];
144
            for( k = 0; k < j; k++ )
145 146
                s -= L[i*astep + k]*L[j*astep + k];
            L[i*astep + j] = (_Tp)(s*L[j*astep + j]);
147
        }
148
        s = A[i*astep + i];
149 150
        for( k = 0; k < j; k++ )
        {
151
            double t = L[i*astep + k];
152 153 154
            s -= t*t;
        }
        if( s < std::numeric_limits<_Tp>::epsilon() )
155 156
            return false;
        L[i*astep + i] = (_Tp)(1./std::sqrt(s));
157
    }
158

159
    if( !b )
160
        return true;
161

162 163 164
    // LLt x = b
    // 1: L y = b
    // 2. Lt x = y
165

166 167 168 169 170
    /*
     [ L00             ]  y0   b0
     [ L10 L11         ]  y1 = b1
     [ L20 L21 L22     ]  y2   b2
     [ L30 L31 L32 L33 ]  y3   b3
171

172 173 174 175 176
     [ L00 L10 L20 L30 ]  x0   y0
     [     L11 L21 L31 ]  x1 = y1
     [         L22 L32 ]  x2   y2
     [             L33 ]  x3   y3
    */
177

178 179 180 181
    for( i = 0; i < m; i++ )
    {
        for( j = 0; j < n; j++ )
        {
182
            s = b[i*bstep + j];
183
            for( k = 0; k < i; k++ )
184 185
                s -= L[i*astep + k]*b[k*bstep + j];
            b[i*bstep + j] = (_Tp)(s*L[i*astep + i]);
186 187
        }
    }
188

189 190 191 192
    for( i = m-1; i >= 0; i-- )
    {
        for( j = 0; j < n; j++ )
        {
193
            s = b[i*bstep + j];
194
            for( k = m-1; k > i; k-- )
195 196 197 198
                s -= L[k*astep + i]*b[k*bstep + j];
            b[i*bstep + j] = (_Tp)(s*L[i*astep + i]);
        }
    }
199

200 201
    return true;
}
202 203


204 205 206 207
bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n)
{
    return CholImpl(A, astep, m, b, bstep, n);
}
208

209 210 211 212 213
bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n)
{
    return CholImpl(A, astep, m, b, bstep, n);
}

214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
template<typename _Tp> static inline _Tp hypot(_Tp a, _Tp b)
{
    a = std::abs(a);
    b = std::abs(b);
    if( a > b )
    {
        b /= a;
        return a*std::sqrt(1 + b*b);
    }
    if( b > 0 )
    {
        a /= b;
        return b*std::sqrt(1 + a*a);
    }
    return 0;
}


template<typename _Tp> bool
JacobiImpl_( _Tp* A, size_t astep, _Tp* W, _Tp* V, size_t vstep, int n, uchar* buf )
{
    const _Tp eps = std::numeric_limits<_Tp>::epsilon();
    int i, j, k, m;
238

239 240 241 242 243 244 245 246 247 248 249
    astep /= sizeof(A[0]);
    if( V )
    {
        vstep /= sizeof(V[0]);
        for( i = 0; i < n; i++ )
        {
            for( j = 0; j < n; j++ )
                V[i*vstep + j] = (_Tp)0;
            V[i*vstep + i] = (_Tp)1;
        }
    }
250

251
    int iters, maxIters = n*n*30;
252

253
    int* indR = (int*)alignPtr(buf, sizeof(int));
254 255
    int* indC = indR + n;
    _Tp mv = (_Tp)0;
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    for( k = 0; k < n; k++ )
    {
        W[k] = A[(astep + 1)*k];
        if( k < n - 1 )
        {
            for( m = k+1, mv = std::abs(A[astep*k + m]), i = k+2; i < n; i++ )
            {
                _Tp val = std::abs(A[astep*k+i]);
                if( mv < val )
                    mv = val, m = i;
            }
            indR[k] = m;
        }
        if( k > 0 )
        {
            for( m = 0, mv = std::abs(A[k]), i = 1; i < k; i++ )
            {
                _Tp val = std::abs(A[astep*i+k]);
                if( mv < val )
                    mv = val, m = i;
            }
            indC[k] = m;
        }
    }
281

282
    if( n > 1 ) for( iters = 0; iters < maxIters; iters++ )
283 284
    {
        // find index (k,l) of pivot p
285
        for( k = 0, mv = std::abs(A[indR[0]]), i = 1; i < n-1; i++ )
286
        {
287
            _Tp val = std::abs(A[astep*i + indR[i]]);
288 289 290 291 292 293
            if( mv < val )
                mv = val, k = i;
        }
        int l = indR[k];
        for( i = 1; i < n; i++ )
        {
294
            _Tp val = std::abs(A[astep*indC[i] + i]);
295 296 297
            if( mv < val )
                mv = val, k = indC[i], l = i;
        }
298

299 300 301 302 303 304 305 306 307 308 309
        _Tp p = A[astep*k + l];
        if( std::abs(p) <= eps )
            break;
        _Tp y = (_Tp)((W[l] - W[k])*0.5);
        _Tp t = std::abs(y) + hypot(p, y);
        _Tp s = hypot(p, t);
        _Tp c = t/s;
        s = p/s; t = (p/t)*p;
        if( y < 0 )
            s = -s, t = -t;
        A[astep*k + l] = 0;
310

311 312
        W[k] -= t;
        W[l] += t;
313

314
        _Tp a0, b0;
315

316 317
#undef rotate
#define rotate(v0, v1) a0 = v0, b0 = v1, v0 = a0*c - b0*s, v1 = a0*s + b0*c
318

319 320 321 322 323 324 325
        // rotate rows and columns k and l
        for( i = 0; i < k; i++ )
            rotate(A[astep*i+k], A[astep*i+l]);
        for( i = k+1; i < l; i++ )
            rotate(A[astep*k+i], A[astep*i+l]);
        for( i = l+1; i < n; i++ )
            rotate(A[astep*k+i], A[astep*l+i]);
326

327 328 329 330
        // rotate eigenvectors
        if( V )
            for( i = 0; i < n; i++ )
                rotate(V[vstep*k+i], V[vstep*l+i]);
331

332
#undef rotate
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        for( j = 0; j < 2; j++ )
        {
            int idx = j == 0 ? k : l;
            if( idx < n - 1 )
            {
                for( m = idx+1, mv = std::abs(A[astep*idx + m]), i = idx+2; i < n; i++ )
                {
                    _Tp val = std::abs(A[astep*idx+i]);
                    if( mv < val )
                        mv = val, m = i;
                }
                indR[idx] = m;
            }
            if( idx > 0 )
            {
                for( m = 0, mv = std::abs(A[idx]), i = 1; i < idx; i++ )
                {
                    _Tp val = std::abs(A[astep*i+idx]);
                    if( mv < val )
                        mv = val, m = i;
                }
                indC[idx] = m;
            }
        }
    }
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    // sort eigenvalues & eigenvectors
    for( k = 0; k < n-1; k++ )
    {
        m = k;
        for( i = k+1; i < n; i++ )
        {
            if( W[m] < W[i] )
                m = i;
        }
        if( k != m )
        {
            std::swap(W[m], W[k]);
            if( V )
                for( i = 0; i < n; i++ )
                    std::swap(V[vstep*m + i], V[vstep*k + i]);
        }
    }
377

378 379
    return true;
}
380

381 382 383 384 385 386 387 388 389
static bool Jacobi( float* S, size_t sstep, float* e, float* E, size_t estep, int n, uchar* buf )
{
    return JacobiImpl_(S, sstep, e, E, estep, n, buf);
}

static bool Jacobi( double* S, size_t sstep, double* e, double* E, size_t estep, int n, uchar* buf )
{
    return JacobiImpl_(S, sstep, e, E, estep, n, buf);
}
390 391


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
template<typename T> struct VBLAS
{
    int dot(const T*, const T*, int, T*) const { return 0; }
    int givens(T*, T*, int, T, T) const { return 0; }
    int givensx(T*, T*, int, T, T, T*, T*) const { return 0; }
};

#if CV_SSE2
template<> inline int VBLAS<float>::dot(const float* a, const float* b, int n, float* result) const
{
    if( n < 8 )
        return 0;
    int k = 0;
    __m128 s0 = _mm_setzero_ps(), s1 = _mm_setzero_ps();
    for( ; k <= n - 8; k += 8 )
    {
        __m128 a0 = _mm_load_ps(a + k), a1 = _mm_load_ps(a + k + 4);
        __m128 b0 = _mm_load_ps(b + k), b1 = _mm_load_ps(b + k + 4);
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        s0 = _mm_add_ps(s0, _mm_mul_ps(a0, b0));
        s1 = _mm_add_ps(s1, _mm_mul_ps(a1, b1));
    }
    s0 = _mm_add_ps(s0, s1);
    float sbuf[4];
    _mm_storeu_ps(sbuf, s0);
    *result = sbuf[0] + sbuf[1] + sbuf[2] + sbuf[3];
    return k;
}


template<> inline int VBLAS<float>::givens(float* a, float* b, int n, float c, float s) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128 c4 = _mm_set1_ps(c), s4 = _mm_set1_ps(s);
    for( ; k <= n - 4; k += 4 )
    {
        __m128 a0 = _mm_load_ps(a + k);
        __m128 b0 = _mm_load_ps(b + k);
        __m128 t0 = _mm_add_ps(_mm_mul_ps(a0, c4), _mm_mul_ps(b0, s4));
        __m128 t1 = _mm_sub_ps(_mm_mul_ps(b0, c4), _mm_mul_ps(a0, s4));
        _mm_store_ps(a + k, t0);
        _mm_store_ps(b + k, t1);
    }
    return k;
}


template<> inline int VBLAS<float>::givensx(float* a, float* b, int n, float c, float s,
                                             float* anorm, float* bnorm) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128 c4 = _mm_set1_ps(c), s4 = _mm_set1_ps(s);
    __m128 sa = _mm_setzero_ps(), sb = _mm_setzero_ps();
    for( ; k <= n - 4; k += 4 )
    {
        __m128 a0 = _mm_load_ps(a + k);
        __m128 b0 = _mm_load_ps(b + k);
        __m128 t0 = _mm_add_ps(_mm_mul_ps(a0, c4), _mm_mul_ps(b0, s4));
        __m128 t1 = _mm_sub_ps(_mm_mul_ps(b0, c4), _mm_mul_ps(a0, s4));
        _mm_store_ps(a + k, t0);
        _mm_store_ps(b + k, t1);
        sa = _mm_add_ps(sa, _mm_mul_ps(t0, t0));
        sb = _mm_add_ps(sb, _mm_mul_ps(t1, t1));
    }
    float abuf[4], bbuf[4];
    _mm_storeu_ps(abuf, sa);
    _mm_storeu_ps(bbuf, sb);
    *anorm = abuf[0] + abuf[1] + abuf[2] + abuf[3];
    *bnorm = bbuf[0] + bbuf[1] + bbuf[2] + bbuf[3];
    return k;
}


template<> inline int VBLAS<double>::dot(const double* a, const double* b, int n, double* result) const
{
    if( n < 4 )
        return 0;
    int k = 0;
    __m128d s0 = _mm_setzero_pd(), s1 = _mm_setzero_pd();
    for( ; k <= n - 4; k += 4 )
    {
        __m128d a0 = _mm_load_pd(a + k), a1 = _mm_load_pd(a + k + 2);
        __m128d b0 = _mm_load_pd(b + k), b1 = _mm_load_pd(b + k + 2);
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        s0 = _mm_add_pd(s0, _mm_mul_pd(a0, b0));
        s1 = _mm_add_pd(s1, _mm_mul_pd(a1, b1));
    }
    s0 = _mm_add_pd(s0, s1);
    double sbuf[2];
    _mm_storeu_pd(sbuf, s0);
    *result = sbuf[0] + sbuf[1];
    return k;
}


template<> inline int VBLAS<double>::givens(double* a, double* b, int n, double c, double s) const
{
    int k = 0;
    __m128d c2 = _mm_set1_pd(c), s2 = _mm_set1_pd(s);
    for( ; k <= n - 2; k += 2 )
    {
        __m128d a0 = _mm_load_pd(a + k);
        __m128d b0 = _mm_load_pd(b + k);
        __m128d t0 = _mm_add_pd(_mm_mul_pd(a0, c2), _mm_mul_pd(b0, s2));
        __m128d t1 = _mm_sub_pd(_mm_mul_pd(b0, c2), _mm_mul_pd(a0, s2));
        _mm_store_pd(a + k, t0);
        _mm_store_pd(b + k, t1);
    }
    return k;
}


template<> inline int VBLAS<double>::givensx(double* a, double* b, int n, double c, double s,
                                              double* anorm, double* bnorm) const
{
    int k = 0;
    __m128d c2 = _mm_set1_pd(c), s2 = _mm_set1_pd(s);
    __m128d sa = _mm_setzero_pd(), sb = _mm_setzero_pd();
    for( ; k <= n - 2; k += 2 )
    {
        __m128d a0 = _mm_load_pd(a + k);
        __m128d b0 = _mm_load_pd(b + k);
        __m128d t0 = _mm_add_pd(_mm_mul_pd(a0, c2), _mm_mul_pd(b0, s2));
        __m128d t1 = _mm_sub_pd(_mm_mul_pd(b0, c2), _mm_mul_pd(a0, s2));
        _mm_store_pd(a + k, t0);
        _mm_store_pd(b + k, t1);
        sa = _mm_add_pd(sa, _mm_mul_pd(t0, t0));
        sb = _mm_add_pd(sb, _mm_mul_pd(t1, t1));
    }
    double abuf[2], bbuf[2];
    _mm_storeu_pd(abuf, sa);
    _mm_storeu_pd(bbuf, sb);
    *anorm = abuf[0] + abuf[1];
    *bnorm = bbuf[0] + bbuf[1];
    return k;
}
#endif

template<typename _Tp> void
535 536
JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep,
               int m, int n, int n1, double minval, _Tp eps)
537 538
{
    VBLAS<_Tp> vblas;
539 540
    AutoBuffer<double> Wbuf(n);
    double* W = Wbuf;
541 542 543 544 545
    int i, j, k, iter, max_iter = std::max(m, 30);
    _Tp c, s;
    double sd;
    astep /= sizeof(At[0]);
    vstep /= sizeof(Vt[0]);
546

547 548
    for( i = 0; i < n; i++ )
    {
549
        for( k = 0, sd = 0; k < m; k++ )
550 551
        {
            _Tp t = At[i*astep + k];
552
            sd += (double)t*t;
553
        }
554
        W[i] = sd;
555

556 557 558 559 560 561 562
        if( Vt )
        {
            for( k = 0; k < n; k++ )
                Vt[i*vstep + k] = 0;
            Vt[i*vstep + i] = 1;
        }
    }
563

564 565 566
    for( iter = 0; iter < max_iter; iter++ )
    {
        bool changed = false;
567

568 569 570
        for( i = 0; i < n-1; i++ )
            for( j = i+1; j < n; j++ )
            {
571 572
                _Tp *Ai = At + i*astep, *Aj = At + j*astep;
                double a = W[i], p = 0, b = W[j];
573

574 575
                for( k = 0; k < m; k++ )
                    p += (double)Ai[k]*Aj[k];
576

577
                if( std::abs(p) <= eps*std::sqrt((double)a*b) )
578 579
                    continue;

580
                p *= 2;
581
                double beta = a - b, gamma = hypot((double)p, beta);
582 583
                if( beta < 0 )
                {
584
                    double delta = (gamma - beta)*0.5;
585 586 587 588 589 590 591 592
                    s = (_Tp)std::sqrt(delta/gamma);
                    c = (_Tp)(p/(gamma*s*2));
                }
                else
                {
                    c = (_Tp)std::sqrt((gamma + beta)/(gamma*2));
                    s = (_Tp)(p/(gamma*c*2));
                }
593

594 595
                a = b = 0;
                for( k = 0; k < m; k++ )
596
                {
597 598 599
                    _Tp t0 = c*Ai[k] + s*Aj[k];
                    _Tp t1 = -s*Ai[k] + c*Aj[k];
                    Ai[k] = t0; Aj[k] = t1;
600

601
                    a += (double)t0*t0; b += (double)t1*t1;
602
                }
603
                W[i] = a; W[j] = b;
604

605
                changed = true;
606

607 608 609 610
                if( Vt )
                {
                    _Tp *Vi = Vt + i*vstep, *Vj = Vt + j*vstep;
                    k = vblas.givens(Vi, Vj, n, c, s);
611

612 613 614 615 616 617 618 619 620 621 622
                    for( ; k < n; k++ )
                    {
                        _Tp t0 = c*Vi[k] + s*Vj[k];
                        _Tp t1 = -s*Vi[k] + c*Vj[k];
                        Vi[k] = t0; Vj[k] = t1;
                    }
                }
            }
        if( !changed )
            break;
    }
623

624 625 626 627 628 629 630
    for( i = 0; i < n; i++ )
    {
        for( k = 0, sd = 0; k < m; k++ )
        {
            _Tp t = At[i*astep + k];
            sd += (double)t*t;
        }
631
        W[i] = std::sqrt(sd);
632
    }
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    for( i = 0; i < n-1; i++ )
    {
        j = i;
        for( k = i+1; k < n; k++ )
        {
            if( W[j] < W[k] )
                j = k;
        }
        if( i != j )
        {
            std::swap(W[i], W[j]);
            if( Vt )
            {
                for( k = 0; k < m; k++ )
                    std::swap(At[i*astep + k], At[j*astep + k]);
649

650 651 652 653 654
                for( k = 0; k < n; k++ )
                    std::swap(Vt[i*vstep + k], Vt[j*vstep + k]);
            }
        }
    }
655

656 657
    for( i = 0; i < n; i++ )
        _W[i] = (_Tp)W[i];
658

659 660
    if( !Vt )
        return;
661

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
662
    RNG rng(0x12345678);
663 664
    for( i = 0; i < n1; i++ )
    {
665
        sd = i < n ? W[i] : 0;
666

667
        while( sd <= minval )
668 669 670 671 672 673 674
        {
            // if we got a zero singular value, then in order to get the corresponding left singular vector
            // we generate a random vector, project it to the previously computed left singular vectors,
            // subtract the projection and normalize the difference.
            const _Tp val0 = (_Tp)(1./m);
            for( k = 0; k < m; k++ )
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
675
                _Tp val = (rng.next() & 256) != 0 ? val0 : -val0;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                At[i*astep + k] = val;
            }
            for( iter = 0; iter < 2; iter++ )
            {
                for( j = 0; j < i; j++ )
                {
                    sd = 0;
                    for( k = 0; k < m; k++ )
                        sd += At[i*astep + k]*At[j*astep + k];
                    _Tp asum = 0;
                    for( k = 0; k < m; k++ )
                    {
                        _Tp t = (_Tp)(At[i*astep + k] - sd*At[j*astep + k]);
                        At[i*astep + k] = t;
                        asum += std::abs(t);
                    }
                    asum = asum ? 1/asum : 0;
                    for( k = 0; k < m; k++ )
                        At[i*astep + k] *= asum;
                }
            }
            sd = 0;
            for( k = 0; k < m; k++ )
            {
                _Tp t = At[i*astep + k];
                sd += (double)t*t;
            }
703
            sd = std::sqrt(sd);
704
        }
705

706
        s = (_Tp)(1/sd);
707 708 709 710 711
        for( k = 0; k < m; k++ )
            At[i*astep + k] *= s;
    }
}

712

713 714
static void JacobiSVD(float* At, size_t astep, float* W, float* Vt, size_t vstep, int m, int n, int n1=-1)
{
715
    JacobiSVDImpl_(At, astep, W, Vt, vstep, m, n, !Vt ? 0 : n1 < 0 ? n : n1, FLT_MIN, FLT_EPSILON*2);
716 717 718 719
}

static void JacobiSVD(double* At, size_t astep, double* W, double* Vt, size_t vstep, int m, int n, int n1=-1)
{
720
    JacobiSVDImpl_(At, astep, W, Vt, vstep, m, n, !Vt ? 0 : n1 < 0 ? n : n1, DBL_MIN, DBL_EPSILON*10);
721
}
722

723 724 725 726 727 728 729 730 731
/* y[0:m,0:n] += diag(a[0:1,0:m]) * x[0:m,0:n] */
template<typename T1, typename T2, typename T3> static void
MatrAXPY( int m, int n, const T1* x, int dx,
         const T2* a, int inca, T3* y, int dy )
{
    int i, j;
    for( i = 0; i < m; i++, x += dx, y += dy )
    {
        T2 s = a[i*inca];
732 733
        j=0;
         #if CV_ENABLE_UNROLLED
Victoria Zhislina's avatar
Victoria Zhislina committed
734
        for(; j <= n - 4; j += 4 )
735 736 737 738 739 740 741 742 743 744
        {
            T3 t0 = (T3)(y[j]   + s*x[j]);
            T3 t1 = (T3)(y[j+1] + s*x[j+1]);
            y[j]   = t0;
            y[j+1] = t1;
            t0 = (T3)(y[j+2] + s*x[j+2]);
            t1 = (T3)(y[j+3] + s*x[j+3]);
            y[j+2] = t0;
            y[j+3] = t1;
        }
Victoria Zhislina's avatar
Victoria Zhislina committed
745
        #endif
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
        for( ; j < n; j++ )
            y[j] = (T3)(y[j] + s*x[j]);
    }
}

template<typename T> static void
SVBkSbImpl_( int m, int n, const T* w, int incw,
       const T* u, int ldu, bool uT,
       const T* v, int ldv, bool vT,
       const T* b, int ldb, int nb,
       T* x, int ldx, double* buffer, T eps )
{
    double threshold = 0;
    int udelta0 = uT ? ldu : 1, udelta1 = uT ? 1 : ldu;
    int vdelta0 = vT ? ldv : 1, vdelta1 = vT ? 1 : ldv;
    int i, j, nm = std::min(m, n);
762

763 764
    if( !b )
        nb = m;
765

766 767 768
    for( i = 0; i < n; i++ )
        for( j = 0; j < nb; j++ )
            x[i*ldx + j] = 0;
769

770 771 772
    for( i = 0; i < nm; i++ )
        threshold += w[i*incw];
    threshold *= eps;
773

774 775 776 777 778 779 780
    // v * inv(w) * uT * b
    for( i = 0; i < nm; i++, u += udelta0, v += vdelta0 )
    {
        double wi = w[i*incw];
        if( (double)std::abs(wi) <= threshold )
            continue;
        wi = 1/wi;
781

782 783 784 785 786 787 788 789 790
        if( nb == 1 )
        {
            double s = 0;
            if( b )
                for( j = 0; j < m; j++ )
                    s += u[j*udelta1]*b[j*ldb];
            else
                s = u[0];
            s *= wi;
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
            for( j = 0; j < n; j++ )
                x[j*ldx] = (T)(x[j*ldx] + s*v[j*vdelta1]);
        }
        else
        {
            if( b )
            {
                for( j = 0; j < nb; j++ )
                    buffer[j] = 0;
                MatrAXPY( m, nb, b, ldb, u, udelta1, buffer, 0 );
                for( j = 0; j < nb; j++ )
                    buffer[j] *= wi;
            }
            else
            {
                for( j = 0; j < nb; j++ )
                    buffer[j] = u[j*udelta1]*wi;
            }
            MatrAXPY( n, nb, buffer, 0, v, vdelta1, x, ldx );
811 812 813
        }
    }
}
814

815 816 817 818 819 820
static void
SVBkSb( int m, int n, const float* w, size_t wstep,
        const float* u, size_t ustep, bool uT,
        const float* v, size_t vstep, bool vT,
        const float* b, size_t bstep, int nb,
        float* x, size_t xstep, uchar* buffer )
821
{
822 823 824 825 826
    SVBkSbImpl_(m, n, w, wstep ? (int)(wstep/sizeof(w[0])) : 1,
                u, (int)(ustep/sizeof(u[0])), uT,
                v, (int)(vstep/sizeof(v[0])), vT,
                b, (int)(bstep/sizeof(b[0])), nb,
                x, (int)(xstep/sizeof(x[0])),
827
                (double*)alignPtr(buffer, sizeof(double)), (float)(DBL_EPSILON*2) );
828
}
829 830 831 832 833 834 835

static void
SVBkSb( int m, int n, const double* w, size_t wstep,
       const double* u, size_t ustep, bool uT,
       const double* v, size_t vstep, bool vT,
       const double* b, size_t bstep, int nb,
       double* x, size_t xstep, uchar* buffer )
836
{
837 838 839 840 841 842
    SVBkSbImpl_(m, n, w, wstep ? (int)(wstep/sizeof(w[0])) : 1,
                u, (int)(ustep/sizeof(u[0])), uT,
                v, (int)(vstep/sizeof(v[0])), vT,
                b, (int)(bstep/sizeof(b[0])), nb,
                x, (int)(xstep/sizeof(x[0])),
                (double*)alignPtr(buffer, sizeof(double)), DBL_EPSILON*2 );
843
}
844 845

}
846

847 848 849 850
/****************************************************************************************\
*                                 Determinant of the matrix                              *
\****************************************************************************************/

851 852 853 854
#define det2(m)   ((double)m(0,0)*m(1,1) - (double)m(0,1)*m(1,0))
#define det3(m)   (m(0,0)*((double)m(1,1)*m(2,2) - (double)m(1,2)*m(2,1)) -  \
                   m(0,1)*((double)m(1,0)*m(2,2) - (double)m(1,2)*m(2,0)) +  \
                   m(0,2)*((double)m(1,0)*m(2,1) - (double)m(1,1)*m(2,0)))
855

856
double cv::determinant( InputArray _mat )
857
{
858
    Mat mat = _mat.getMat();
859 860 861 862 863
    double result = 0;
    int type = mat.type(), rows = mat.rows;
    size_t step = mat.step;
    const uchar* m = mat.data;

864
    CV_Assert( !mat.empty() );
865
    CV_Assert( mat.rows == mat.cols && (type == CV_32F || type == CV_64F));
866 867 868 869

    #define Mf(y, x) ((float*)(m + y*step))[x]
    #define Md(y, x) ((double*)(m + y*step))[x]

870
    if( type == CV_32F )
871
    {
872 873 874 875 876 877
        if( rows == 2 )
            result = det2(Mf);
        else if( rows == 3 )
            result = det3(Mf);
        else if( rows == 1 )
            result = Mf(0,0);
878 879
        else
        {
880 881 882 883
            size_t bufSize = rows*rows*sizeof(float);
            AutoBuffer<uchar> buffer(bufSize);
            Mat a(rows, rows, CV_32F, (uchar*)buffer);
            mat.copyTo(a);
884

885 886
            result = LU((float*)a.data, a.step, rows, 0, 0, 0);
            if( result )
887
            {
888 889 890
                for( int i = 0; i < rows; i++ )
                    result *= ((const float*)(a.data + a.step*i))[i];
                result = 1./result;
891 892 893
            }
        }
    }
894
    else
895
    {
896 897 898 899 900 901 902
        if( rows == 2 )
            result = det2(Md);
        else if( rows == 3 )
            result = det3(Md);
        else if( rows == 1 )
            result = Md(0,0);
        else
903
        {
904 905 906 907
            size_t bufSize = rows*rows*sizeof(double);
            AutoBuffer<uchar> buffer(bufSize);
            Mat a(rows, rows, CV_64F, (uchar*)buffer);
            mat.copyTo(a);
908

909 910
            result = LU((double*)a.data, a.step, rows, 0, 0, 0);
            if( result )
911
            {
912 913 914
                for( int i = 0; i < rows; i++ )
                    result *= ((const double*)(a.data + a.step*i))[i];
                result = 1./result;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
            }
        }
    }

    #undef Mf
    #undef Md

    return result;
}

/****************************************************************************************\
*                          Inverse (or pseudo-inverse) of a matrix                       *
\****************************************************************************************/

#define Sf( y, x ) ((float*)(srcdata + y*srcstep))[x]
#define Sd( y, x ) ((double*)(srcdata + y*srcstep))[x]
#define Df( y, x ) ((float*)(dstdata + y*dststep))[x]
#define Dd( y, x ) ((double*)(dstdata + y*dststep))[x]

934
double cv::invert( InputArray _src, OutputArray _dst, int method )
935
{
936
    bool result = false;
937
    Mat src = _src.getMat();
938
    int type = src.type();
939 940 941

    CV_Assert(type == CV_32F || type == CV_64F);

942 943
    size_t esz = CV_ELEM_SIZE(type);
    int m = src.rows, n = src.cols;
944

945
    if( method == DECOMP_SVD )
946
    {
947
        int nm = std::min(m, n);
948

949 950 951 952 953
        AutoBuffer<uchar> _buf((m*nm + nm + nm*n)*esz + sizeof(double));
        uchar* buf = alignPtr((uchar*)_buf, (int)esz);
        Mat u(m, nm, type, buf);
        Mat w(nm, 1, type, u.data + m*nm*esz);
        Mat vt(nm, n, type, w.data + nm*esz);
954

955 956
        SVD::compute(src, w, u, vt);
        SVD::backSubst(w, u, vt, Mat(), _dst);
957
        return type == CV_32F ?
958 959 960 961
            (((float*)w.data)[0] >= FLT_EPSILON ?
             ((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
            (((double*)w.data)[0] >= DBL_EPSILON ?
             ((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
962
    }
963

964
    CV_Assert( m == n );
965

966 967 968 969 970 971 972
    if( method == DECOMP_EIG )
    {
        AutoBuffer<uchar> _buf((n*n*2 + n)*esz + sizeof(double));
        uchar* buf = alignPtr((uchar*)_buf, (int)esz);
        Mat u(n, n, type, buf);
        Mat w(n, 1, type, u.data + n*n*esz);
        Mat vt(n, n, type, w.data + n*esz);
973

974 975 976 977 978 979 980 981 982
        eigen(src, w, vt);
        transpose(vt, u);
        SVD::backSubst(w, u, vt, Mat(), _dst);
        return type == CV_32F ?
        (((float*)w.data)[0] >= FLT_EPSILON ?
         ((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
        (((double*)w.data)[0] >= DBL_EPSILON ?
         ((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
    }
983

984
    CV_Assert( method == DECOMP_LU || method == DECOMP_CHOLESKY );
985

986 987 988 989
    _dst.create( n, n, type );
    Mat dst = _dst.getMat();

    if( n <= 3 )
990
    {
991 992 993 994
        uchar* srcdata = src.data;
        uchar* dstdata = dst.data;
        size_t srcstep = src.step;
        size_t dststep = dst.step;
995

996
        if( n == 2 )
997 998
        {
            if( type == CV_32FC1 )
999
            {
1000
                double d = det2(Sf);
1001
                if( d != 0. )
1002
                {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                    result = true;
                    d = 1./d;

                    #if CV_SSE2
                        if(USE_SSE2)
                        {
                            __m128 zero = _mm_setzero_ps();
                            __m128 t0 = _mm_loadl_pi(zero, (const __m64*)srcdata); //t0 = sf(0,0) sf(0,1)
                            __m128 t1 = _mm_loadh_pi(zero, (const __m64*)(srcdata+srcstep)); //t1 = sf(1,0) sf(1,1)
                            __m128 s0 = _mm_or_ps(t0, t1);
                            __m128 det =_mm_set1_ps((float)d);
                            s0 =  _mm_mul_ps(s0, det);
                            static const uchar CV_DECL_ALIGNED(16) inv[16] = {0,0,0,0,0,0,0,0x80,0,0,0,0x80,0,0,0,0};
                            __m128 pattern = _mm_load_ps((const float*)inv);
                            s0 = _mm_xor_ps(s0, pattern);//==-1*s0
                            s0 = _mm_shuffle_ps(s0, s0, _MM_SHUFFLE(0,2,1,3));
                            _mm_storel_pi((__m64*)dstdata, s0);
                            _mm_storeh_pi((__m64*)((float*)(dstdata+dststep)), s0);
                        }
                        else
                    #endif
                        {
                        double t0, t1;
                        t0 = Sf(0,0)*d;
                        t1 = Sf(1,1)*d;
                        Df(1,1) = (float)t0;
                        Df(0,0) = (float)t1;
                        t0 = -Sf(0,1)*d;
                        t1 = -Sf(1,0)*d;
                        Df(0,1) = (float)t0;
                        Df(1,0) = (float)t1;
                        }

                }
1037
            }
1038
            else
1039
            {
1040 1041
                double d = det2(Sd);
                if( d != 0. )
1042
                {
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                    result = true;
                    d = 1./d;
                    #if CV_SSE2
                        if(USE_SSE2)
                        {
                            __m128d s0 = _mm_loadu_pd((const double*)srcdata); //s0 = sf(0,0) sf(0,1)
                            __m128d s1 = _mm_loadu_pd ((const double*)(srcdata+srcstep));//s1 = sf(1,0) sf(1,1)
                            __m128d sm = _mm_unpacklo_pd(s0, _mm_load_sd((const double*)(srcdata+srcstep)+1)); //sm = sf(0,0) sf(1,1) - main diagonal
                            __m128d ss = _mm_shuffle_pd(s0, s1, _MM_SHUFFLE2(0,1)); //ss = sf(0,1) sf(1,0) - secondary diagonal
                            __m128d det = _mm_load1_pd((const double*)&d);
                            sm =  _mm_mul_pd(sm, det);

                            static const uchar CV_DECL_ALIGNED(16) inv[8] = {0,0,0,0,0,0,0,0x80};
                            __m128d pattern = _mm_load1_pd((double*)inv);
                            ss = _mm_mul_pd(ss, det);
                            ss = _mm_xor_pd(ss, pattern);//==-1*ss

                            s0 = _mm_shuffle_pd(sm, ss, _MM_SHUFFLE2(0,1));
                            s1 = _mm_shuffle_pd(ss, sm, _MM_SHUFFLE2(0,1));
                            _mm_storeu_pd((double*)dstdata, s0);
                            _mm_storeu_pd((double*)(dstdata+dststep), s1);
                        }
                        else
                    #endif
                        {
                            double t0, t1;
                            t0 = Sd(0,0)*d;
                            t1 = Sd(1,1)*d;
                            Dd(1,1) = t0;
                            Dd(0,0) = t1;
                            t0 = -Sd(0,1)*d;
                            t1 = -Sd(1,0)*d;
                            Dd(0,1) = t0;
                            Dd(1,0) = t1;
                        }
                }
1079 1080
            }
        }
1081
        else if( n == 3 )
1082 1083 1084 1085
        {
            if( type == CV_32FC1 )
            {
                double d = det3(Sf);
1086

Andrey Kamaev's avatar
Andrey Kamaev committed
1087
                if( d != 0. )
1088
                {
Andrey Kamaev's avatar
Andrey Kamaev committed
1089
                    double t[12];
1090

Andrey Kamaev's avatar
Andrey Kamaev committed
1091 1092 1093 1094 1095
                    result = true;
                    d = 1./d;
                    t[0] = (((double)Sf(1,1) * Sf(2,2) - (double)Sf(1,2) * Sf(2,1)) * d);
                    t[1] = (((double)Sf(0,2) * Sf(2,1) - (double)Sf(0,1) * Sf(2,2)) * d);
                    t[2] = (((double)Sf(0,1) * Sf(1,2) - (double)Sf(0,2) * Sf(1,1)) * d);
1096

Andrey Kamaev's avatar
Andrey Kamaev committed
1097 1098 1099
                    t[3] = (((double)Sf(1,2) * Sf(2,0) - (double)Sf(1,0) * Sf(2,2)) * d);
                    t[4] = (((double)Sf(0,0) * Sf(2,2) - (double)Sf(0,2) * Sf(2,0)) * d);
                    t[5] = (((double)Sf(0,2) * Sf(1,0) - (double)Sf(0,0) * Sf(1,2)) * d);
1100

Andrey Kamaev's avatar
Andrey Kamaev committed
1101 1102 1103
                    t[6] = (((double)Sf(1,0) * Sf(2,1) - (double)Sf(1,1) * Sf(2,0)) * d);
                    t[7] = (((double)Sf(0,1) * Sf(2,0) - (double)Sf(0,0) * Sf(2,1)) * d);
                    t[8] = (((double)Sf(0,0) * Sf(1,1) - (double)Sf(0,1) * Sf(1,0)) * d);
1104

Andrey Kamaev's avatar
Andrey Kamaev committed
1105 1106 1107
                    Df(0,0) = (float)t[0]; Df(0,1) = (float)t[1]; Df(0,2) = (float)t[2];
                    Df(1,0) = (float)t[3]; Df(1,1) = (float)t[4]; Df(1,2) = (float)t[5];
                    Df(2,0) = (float)t[6]; Df(2,1) = (float)t[7]; Df(2,2) = (float)t[8];
1108
                }
1109 1110 1111
            }
            else
            {
1112 1113
                double d = det3(Sd);
                if( d != 0. )
1114
                {
1115 1116
                    result = true;
                    d = 1./d;
1117 1118 1119 1120 1121
                    double t[9];

                    t[0] = (Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1)) * d;
                    t[1] = (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2)) * d;
                    t[2] = (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1)) * d;
1122

1123 1124 1125
                    t[3] = (Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2)) * d;
                    t[4] = (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0)) * d;
                    t[5] = (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2)) * d;
1126

1127 1128 1129 1130 1131 1132 1133
                    t[6] = (Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0)) * d;
                    t[7] = (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1)) * d;
                    t[8] = (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0)) * d;

                    Dd(0,0) = t[0]; Dd(0,1) = t[1]; Dd(0,2) = t[2];
                    Dd(1,0) = t[3]; Dd(1,1) = t[4]; Dd(1,2) = t[5];
                    Dd(2,0) = t[6]; Dd(2,1) = t[7]; Dd(2,2) = t[8];
1134 1135 1136
                }
            }
        }
1137
        else
1138
        {
1139
            assert( n == 1 );
1140

1141
            if( type == CV_32FC1 )
1142
            {
1143 1144 1145
                double d = Sf(0,0);
                if( d != 0. )
                {
1146
                    result = true;
1147 1148
                    Df(0,0) = (float)(1./d);
                }
1149 1150 1151
            }
            else
            {
1152 1153 1154
                double d = Sd(0,0);
                if( d != 0. )
                {
1155
                    result = true;
1156 1157
                    Dd(0,0) = 1./d;
                }
1158
            }
1159
        }
1160 1161
        if( !result )
            dst = Scalar(0);
1162 1163
        return result;
    }
1164

1165
   int elem_size = CV_ELEM_SIZE(type);
1166 1167 1168 1169
    AutoBuffer<uchar> buf(n*n*elem_size);
    Mat src1(n, n, type, (uchar*)buf);
    src.copyTo(src1);
    setIdentity(dst);
1170

1171
    if( method == DECOMP_LU && type == CV_32F )
1172
        result = LU((float*)src1.data, src1.step, n, (float*)dst.data, dst.step, n) != 0;
1173
    else if( method == DECOMP_LU && type == CV_64F )
1174
        result = LU((double*)src1.data, src1.step, n, (double*)dst.data, dst.step, n) != 0;
1175 1176
    else if( method == DECOMP_CHOLESKY && type == CV_32F )
        result = Cholesky((float*)src1.data, src1.step, n, (float*)dst.data, dst.step, n);
1177
    else
1178
        result = Cholesky((double*)src1.data, src1.step, n, (double*)dst.data, dst.step, n);
1179 1180 1181 1182 1183 1184 1185

    if( !result )
        dst = Scalar(0);

    return result;
}

1186

1187

1188 1189 1190 1191
/****************************************************************************************\
*                              Solving a linear system                                   *
\****************************************************************************************/

1192
bool cv::solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int method )
1193 1194
{
    bool result = true;
1195
    Mat src = _src.getMat(), _src2 = _src2arg.getMat();
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    int type = src.type();
    bool is_normal = (method & DECOMP_NORMAL) != 0;

    CV_Assert( type == _src2.type() && (type == CV_32F || type == CV_64F) );

    method &= ~DECOMP_NORMAL;
    CV_Assert( (method != DECOMP_LU && method != DECOMP_CHOLESKY) ||
        is_normal || src.rows == src.cols );

    // check case of a single equation and small matrix
1206
    if( (method == DECOMP_LU || method == DECOMP_CHOLESKY) && !is_normal &&
1207 1208
        src.rows <= 3 && src.rows == src.cols && _src2.cols == 1 )
    {
1209 1210
        _dst.create( src.cols, _src2.cols, src.type() );
        Mat dst = _dst.getMat();
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        #define bf(y) ((float*)(bdata + y*src2step))[0]
        #define bd(y) ((double*)(bdata + y*src2step))[0]

        uchar* srcdata = src.data;
        uchar* bdata = _src2.data;
        uchar* dstdata = dst.data;
        size_t srcstep = src.step;
        size_t src2step = _src2.step;
        size_t dststep = dst.step;

        if( src.rows == 2 )
        {
            if( type == CV_32FC1 )
            {
                double d = det2(Sf);
                if( d != 0. )
                {
1229
                    double t;
1230
                    d = 1./d;
1231 1232
                    t = (float)(((double)bf(0)*Sf(1,1) - (double)bf(1)*Sf(0,1))*d);
                    Df(1,0) = (float)(((double)bf(1)*Sf(0,0) - (double)bf(0)*Sf(1,0))*d);
1233
                    Df(0,0) = (float)t;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
                }
                else
                    result = false;
            }
            else
            {
                double d = det2(Sd);
                if( d != 0. )
                {
                    double t;
                    d = 1./d;
                    t = (bd(0)*Sd(1,1) - bd(1)*Sd(0,1))*d;
                    Dd(1,0) = (bd(1)*Sd(0,0) - bd(0)*Sd(1,0))*d;
                    Dd(0,0) = t;
                }
                else
                    result = false;
            }
        }
        else if( src.rows == 3 )
        {
            if( type == CV_32FC1 )
            {
                double d = det3(Sf);
                if( d != 0. )
                {
                    float t[3];
                    d = 1./d;

                    t[0] = (float)(d*
1264 1265 1266
                           (bf(0)*((double)Sf(1,1)*Sf(2,2) - (double)Sf(1,2)*Sf(2,1)) -
                            Sf(0,1)*((double)bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) +
                            Sf(0,2)*((double)bf(1)*Sf(2,1) - (double)Sf(1,1)*bf(2))));
1267 1268

                    t[1] = (float)(d*
1269 1270 1271
                           (Sf(0,0)*(double)(bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) -
                            bf(0)*((double)Sf(1,0)*Sf(2,2) - (double)Sf(1,2)*Sf(2,0)) +
                            Sf(0,2)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0))));
1272 1273

                    t[2] = (float)(d*
1274 1275 1276
                           (Sf(0,0)*((double)Sf(1,1)*bf(2) - (double)bf(1)*Sf(2,1)) -
                            Sf(0,1)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0)) +
                            bf(0)*((double)Sf(1,0)*Sf(2,1) - (double)Sf(1,1)*Sf(2,0))));
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

                    Df(0,0) = t[0];
                    Df(1,0) = t[1];
                    Df(2,0) = t[2];
                }
                else
                    result = false;
            }
            else
            {
                double d = det3(Sd);
                if( d != 0. )
                {
                    double t[9];

                    d = 1./d;
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                    t[0] = ((Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1))*bd(0) +
                            (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2))*bd(1) +
                            (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1))*bd(2))*d;

                    t[1] = ((Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2))*bd(0) +
                            (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0))*bd(1) +
                            (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2))*bd(2))*d;

                    t[2] = ((Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0))*bd(0) +
                            (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1))*bd(1) +
                            (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0))*bd(2))*d;

                    Dd(0,0) = t[0];
                    Dd(1,0) = t[1];
                    Dd(2,0) = t[2];
                }
                else
                    result = false;
            }
        }
        else
        {
            assert( src.rows == 1 );

            if( type == CV_32FC1 )
            {
1320 1321 1322 1323 1324
                double d = Sf(0,0);
                if( d != 0. )
                    Df(0,0) = (float)(bf(0)/d);
                else
                    result = false;
1325
            }
1326
            else
1327
            {
1328 1329 1330 1331 1332
                double d = Sd(0,0);
                if( d != 0. )
                    Dd(0,0) = (bd(0)/d);
                else
                    result = false;
1333 1334
            }
        }
1335
        return result;
1336
    }
1337 1338 1339

    if( method == DECOMP_QR )
        method = DECOMP_SVD;
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349
    int m = src.rows, m_ = m, n = src.cols, nb = _src2.cols;
    size_t esz = CV_ELEM_SIZE(type), bufsize = 0;
    size_t vstep = alignSize(n*esz, 16);
    size_t astep = method == DECOMP_SVD && !is_normal ? alignSize(m*esz, 16) : vstep;
    AutoBuffer<uchar> buffer;

    Mat src2 = _src2;
    _dst.create( src.cols, src2.cols, src.type() );
    Mat dst = _dst.getMat();
1350

1351 1352
    if( m < n )
        CV_Error(CV_StsBadArg, "The function can not solve under-determined linear systems" );
1353

1354 1355 1356 1357 1358 1359 1360 1361
    if( m == n )
        is_normal = false;
    else if( is_normal )
    {
        m_ = n;
        if( method == DECOMP_SVD )
            method = DECOMP_EIG;
    }
1362

1363
    size_t asize = astep*(method == DECOMP_SVD || is_normal ? n : m);
1364
    bufsize += asize + 32;
1365

1366 1367
    if( is_normal )
        bufsize += n*nb*esz;
1368

1369 1370
    if( method == DECOMP_SVD || method == DECOMP_EIG )
        bufsize += n*5*esz + n*vstep + nb*sizeof(double) + 32;
1371

1372
    buffer.allocate(bufsize);
1373
    uchar* ptr = alignPtr((uchar*)buffer, 16);
1374 1375

    Mat a(m_, n, type, ptr, astep);
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    if( is_normal )
        mulTransposed(src, a, true);
    else if( method != DECOMP_SVD )
        src.copyTo(a);
    else
    {
        a = Mat(n, m_, type, ptr, astep);
        transpose(src, a);
    }
    ptr += asize;
1387

1388
    if( !is_normal )
1389
    {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
            src2.copyTo(dst);
    }
    else
    {
        // a'*b
        if( method == DECOMP_LU || method == DECOMP_CHOLESKY )
            gemm( src, src2, 1, Mat(), 0, dst, GEMM_1_T );
        else
        {
            Mat tmp(n, nb, type, ptr);
            ptr += n*nb*esz;
            gemm( src, src2, 1, Mat(), 0, tmp, GEMM_1_T );
            src2 = tmp;
        }
1405
    }
1406

1407
    if( method == DECOMP_LU )
1408 1409
    {
        if( type == CV_32F )
1410
            result = LU(a.ptr<float>(), a.step, n, dst.ptr<float>(), dst.step, nb) != 0;
1411
        else
1412
            result = LU(a.ptr<double>(), a.step, n, dst.ptr<double>(), dst.step, nb) != 0;
1413
    }
1414
    else if( method == DECOMP_CHOLESKY )
1415
    {
1416 1417
        if( type == CV_32F )
            result = Cholesky(a.ptr<float>(), a.step, n, dst.ptr<float>(), dst.step, nb);
1418
        else
1419
            result = Cholesky(a.ptr<double>(), a.step, n, dst.ptr<double>(), dst.step, nb);
1420 1421 1422
    }
    else
    {
1423 1424 1425
        ptr = alignPtr(ptr, 16);
        Mat v(n, n, type, ptr, vstep), w(n, 1, type, ptr + vstep*n), u;
        ptr += n*(vstep + esz);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        if( method == DECOMP_EIG )
        {
            if( type == CV_32F )
                Jacobi(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, n, ptr);
            else
                Jacobi(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, n, ptr);
            u = v;
        }
        else
        {
            if( type == CV_32F )
                JacobiSVD(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, m_, n);
            else
                JacobiSVD(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, m_, n);
            u = a;
        }
1443

1444 1445 1446 1447 1448 1449
        if( type == CV_32F )
        {
            SVBkSb(m_, n, w.ptr<float>(), 0, u.ptr<float>(), u.step, true,
                   v.ptr<float>(), v.step, true, src2.ptr<float>(),
                   src2.step, nb, dst.ptr<float>(), dst.step, ptr);
        }
1450
        else
1451 1452 1453 1454 1455 1456 1457
        {
            SVBkSb(m_, n, w.ptr<double>(), 0, u.ptr<double>(), u.step, true,
                   v.ptr<double>(), v.step, true, src2.ptr<double>(),
                   src2.step, nb, dst.ptr<double>(), dst.step, ptr);
        }
        result = true;
    }
1458

1459 1460
    if( !result )
        dst = Scalar(0);
1461

1462 1463
    return result;
}
1464 1465


1466
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix ///////////////
1467

Andrey Kamaev's avatar
Andrey Kamaev committed
1468
bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
1469 1470 1471 1472 1473 1474 1475 1476 1477
{
    Mat src = _src.getMat();
    int type = src.type();
    int n = src.rows;

    CV_Assert( src.rows == src.cols );
    CV_Assert (type == CV_32F || type == CV_64F);

    Mat v;
Andrey Kamaev's avatar
Andrey Kamaev committed
1478
    if( _evects.needed() )
1479 1480 1481 1482
    {
        _evects.create(n, n, type);
        v = _evects.getMat();
    }
1483

1484 1485 1486 1487 1488
    size_t elemSize = src.elemSize(), astep = alignSize(n*elemSize, 16);
    AutoBuffer<uchar> buf(n*astep + n*5*elemSize + 32);
    uchar* ptr = alignPtr((uchar*)buf, 16);
    Mat a(n, n, type, ptr, astep), w(n, 1, type, ptr + astep*n);
    ptr += astep*n + elemSize*n;
1489 1490 1491 1492
    src.copyTo(a);
    bool ok = type == CV_32F ?
        Jacobi(a.ptr<float>(), a.step, w.ptr<float>(), v.ptr<float>(), v.step, n, ptr) :
        Jacobi(a.ptr<double>(), a.step, w.ptr<double>(), v.ptr<double>(), v.step, n, ptr);
1493

1494 1495
    w.copyTo(_evals);
    return ok;
1496 1497
}

1498 1499
namespace cv
{
1500

1501
static void _SVDcompute( InputArray _aarr, OutputArray _w,
1502
                         OutputArray _u, OutputArray _vt, int flags )
1503
{
1504 1505 1506
    Mat src = _aarr.getMat();
    int m = src.rows, n = src.cols;
    int type = src.type();
1507
    bool compute_uv = _u.needed() || _vt.needed();
1508
    bool full_uv = (flags & SVD::FULL_UV) != 0;
1509

1510
    CV_Assert( type == CV_32F || type == CV_64F );
1511

1512
    if( flags & SVD::NO_UV )
1513
    {
1514 1515
        _u.release();
        _vt.release();
1516
        compute_uv = full_uv = false;
1517
    }
1518

1519 1520
    bool at = false;
    if( m < n )
1521
    {
1522 1523
        std::swap(m, n);
        at = true;
1524
    }
1525

1526 1527 1528
    int urows = full_uv ? m : n;
    size_t esz = src.elemSize(), astep = alignSize(m*esz, 16), vstep = alignSize(n*esz, 16);
    AutoBuffer<uchar> _buf(urows*astep + n*vstep + n*esz + 32);
1529
    uchar* buf = alignPtr((uchar*)_buf, 16);
1530 1531 1532
    Mat temp_a(n, m, type, buf, astep);
    Mat temp_w(n, 1, type, buf + urows*astep);
    Mat temp_u(urows, m, type, buf, astep), temp_v;
1533

1534 1535
    if( compute_uv )
        temp_v = Mat(n, n, type, alignPtr(buf + urows*astep + n*esz, 16), vstep);
1536

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1537 1538
    if( urows > n )
        temp_u = Scalar::all(0);
1539

1540 1541 1542 1543
    if( !at )
        transpose(src, temp_a);
    else
        src.copyTo(temp_a);
1544

1545 1546
    if( type == CV_32F )
    {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1547
        JacobiSVD(temp_a.ptr<float>(), temp_u.step, temp_w.ptr<float>(),
1548
              temp_v.ptr<float>(), temp_v.step, m, n, compute_uv ? urows : 0);
1549 1550 1551
    }
    else
    {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1552
        JacobiSVD(temp_a.ptr<double>(), temp_u.step, temp_w.ptr<double>(),
1553
              temp_v.ptr<double>(), temp_v.step, m, n, compute_uv ? urows : 0);
1554
    }
1555 1556
    temp_w.copyTo(_w);
    if( compute_uv )
1557
    {
1558
        if( !at )
1559
        {
1560 1561 1562 1563
            if( _u.needed() )
                transpose(temp_u, _u);
            if( _vt.needed() )
                temp_v.copyTo(_vt);
1564
        }
1565
        else
1566
        {
1567 1568 1569 1570
            if( _u.needed() )
                transpose(temp_v, _u);
            if( _vt.needed() )
                temp_u.copyTo(_vt);
1571 1572
        }
    }
1573 1574 1575
}


1576
void SVD::compute( InputArray a, OutputArray w, OutputArray u, OutputArray vt, int flags )
1577
{
1578
    _SVDcompute(a, w, u, vt, flags);
1579 1580
}

1581
void SVD::compute( InputArray a, OutputArray w, int flags )
1582
{
1583
    _SVDcompute(a, w, noArray(), noArray(), flags);
1584
}
1585

1586 1587
void SVD::backSubst( InputArray _w, InputArray _u, InputArray _vt,
                     InputArray _rhs, OutputArray _dst )
1588
{
1589
    Mat w = _w.getMat(), u = _u.getMat(), vt = _vt.getMat(), rhs = _rhs.getMat();
1590
    int type = w.type(), esz = (int)w.elemSize();
1591
    int m = u.rows, n = vt.cols, nb = rhs.data ? rhs.cols : m, nm = std::min(m, n);
1592
    size_t wstep = w.rows == 1 ? (size_t)esz : w.cols == 1 ? (size_t)w.step : (size_t)w.step + esz;
1593 1594 1595 1596
    AutoBuffer<uchar> buffer(nb*sizeof(double) + 16);
    CV_Assert( w.type() == u.type() && u.type() == vt.type() && u.data && vt.data && w.data );
    CV_Assert( u.cols >= nm && vt.rows >= nm &&
              (w.size() == Size(nm, 1) || w.size() == Size(1, nm) || w.size() == Size(vt.rows, u.cols)) );
1597
    CV_Assert( rhs.data == 0 || (rhs.type() == type && rhs.rows == m) );
1598

1599 1600
    _dst.create( n, nb, type );
    Mat dst = _dst.getMat();
1601
    if( type == CV_32F )
1602 1603 1604
        SVBkSb(m, n, w.ptr<float>(), wstep, u.ptr<float>(), u.step, false,
               vt.ptr<float>(), vt.step, true, rhs.ptr<float>(), rhs.step, nb,
               dst.ptr<float>(), dst.step, buffer);
1605
    else if( type == CV_64F )
1606 1607 1608
        SVBkSb(m, n, w.ptr<double>(), wstep, u.ptr<double>(), u.step, false,
               vt.ptr<double>(), vt.step, true, rhs.ptr<double>(), rhs.step, nb,
               dst.ptr<double>(), dst.step, buffer);
1609 1610 1611 1612
    else
        CV_Error( CV_StsUnsupportedFormat, "" );
}

1613

1614
SVD& SVD::operator ()(InputArray a, int flags)
1615
{
1616
    _SVDcompute(a, w, u, vt, flags);
1617 1618 1619 1620
    return *this;
}


1621
void SVD::backSubst( InputArray rhs, OutputArray dst ) const
1622 1623 1624 1625
{
    backSubst( w, u, vt, rhs, dst );
}

1626 1627 1628
}


1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
void cv::SVDecomp(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags)
{
    SVD::compute(src, w, u, vt, flags);
}

void cv::SVBackSubst(InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst)
{
    SVD::backSubst(w, u, vt, rhs, dst);
}


1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
CV_IMPL double
cvDet( const CvArr* arr )
{
    if( CV_IS_MAT(arr) && ((CvMat*)arr)->rows <= 3 )
    {
        CvMat* mat = (CvMat*)arr;
        int type = CV_MAT_TYPE(mat->type);
        int rows = mat->rows;
        uchar* m = mat->data.ptr;
        int step = mat->step;
        CV_Assert( rows == mat->cols );

        #define Mf(y, x) ((float*)(m + y*step))[x]
        #define Md(y, x) ((double*)(m + y*step))[x]

        if( type == CV_32F )
        {
            if( rows == 2 )
                return det2(Mf);
            if( rows == 3 )
                return det3(Mf);
        }
        else if( type == CV_64F )
        {
            if( rows == 2 )
                return det2(Md);
            if( rows == 3 )
                return det3(Md);
        }
    }
    return cv::determinant(cv::cvarrToMat(arr));
}


CV_IMPL double
cvInvert( const CvArr* srcarr, CvArr* dstarr, int method )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( src.type() == dst.type() && src.rows == dst.cols && src.cols == dst.rows );
    return cv::invert( src, dst, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
1681 1682
                      method == CV_SVD ? cv::DECOMP_SVD :
                      method == CV_SVD_SYM ? cv::DECOMP_EIG : cv::DECOMP_LU );
1683 1684 1685 1686 1687 1688 1689 1690 1691
}


CV_IMPL int
cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method )
{
    cv::Mat A = cv::cvarrToMat(Aarr), b = cv::cvarrToMat(barr), x = cv::cvarrToMat(xarr);

    CV_Assert( A.type() == x.type() && A.cols == x.rows && x.cols == b.cols );
1692 1693 1694
    bool is_normal = (method & CV_NORMAL) != 0;
    method &= ~CV_NORMAL;
    return cv::solve( A, b, x, (method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
1695 1696
                                method == CV_SVD ? cv::DECOMP_SVD :
                                method == CV_SVD_SYM ? cv::DECOMP_EIG :
1697
        A.rows > A.cols ? cv::DECOMP_QR : cv::DECOMP_LU) + (is_normal ? cv::DECOMP_NORMAL : 0) );
1698 1699 1700 1701 1702
}


CV_IMPL void
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
Andrey Kamaev's avatar
Andrey Kamaev committed
1703
           int, int )
1704
{
1705
    cv::Mat src = cv::cvarrToMat(srcarr), evals0 = cv::cvarrToMat(evalsarr), evals = evals0;
1706 1707
    if( evectsarr )
    {
1708
        cv::Mat evects0 = cv::cvarrToMat(evectsarr), evects = evects0;
Andrey Kamaev's avatar
Andrey Kamaev committed
1709
        eigen(src, evals, evects);
1710 1711 1712 1713 1714 1715
        if( evects0.data != evects.data )
        {
            uchar* p = evects0.data;
            evects.convertTo(evects0, evects0.type());
            CV_Assert( p == evects0.data );
        }
1716 1717
    }
    else
Andrey Kamaev's avatar
Andrey Kamaev committed
1718
        eigen(src, evals);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    if( evals0.data != evals.data )
    {
        uchar* p = evals0.data;
        if( evals0.size() == evals.size() )
            evals.convertTo(evals0, evals0.type());
        else if( evals0.type() == evals.type() )
            cv::transpose(evals, evals0);
        else
            cv::Mat(evals.t()).convertTo(evals0, evals0.type());
        CV_Assert( p == evals0.data );
    }
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}


CV_IMPL void
cvSVD( CvArr* aarr, CvArr* warr, CvArr* uarr, CvArr* varr, int flags )
{
    cv::Mat a = cv::cvarrToMat(aarr), w = cv::cvarrToMat(warr), u, v;
    int m = a.rows, n = a.cols, type = a.type(), mn = std::max(m, n), nm = std::min(m, n);

    CV_Assert( w.type() == type &&
        (w.size() == cv::Size(nm,1) || w.size() == cv::Size(1, nm) ||
        w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m)) );

    cv::SVD svd;

    if( w.size() == cv::Size(nm, 1) )
        svd.w = cv::Mat(nm, 1, type, w.data );
    else if( w.isContinuous() )
        svd.w = w;

    if( uarr )
    {
        u = cv::cvarrToMat(uarr);
        CV_Assert( u.type() == type );
        svd.u = u;
    }

    if( varr )
    {
        v = cv::cvarrToMat(varr);
        CV_Assert( v.type() == type );
        svd.vt = v;
    }

    svd(a, ((flags & CV_SVD_MODIFY_A) ? cv::SVD::MODIFY_A : 0) |
        ((!svd.u.data && !svd.vt.data) ? cv::SVD::NO_UV : 0) |
        ((m != n && (svd.u.size() == cv::Size(mn, mn) ||
        svd.vt.size() == cv::Size(mn, mn))) ? cv::SVD::FULL_UV : 0));

    if( u.data )
    {
        if( flags & CV_SVD_U_T )
            cv::transpose( svd.u, u );
        else if( u.data != svd.u.data )
        {
            CV_Assert( u.size() == svd.u.size() );
            svd.u.copyTo(u);
        }
    }

    if( v.data )
    {
        if( !(flags & CV_SVD_V_T) )
            cv::transpose( svd.vt, v );
        else if( v.data != svd.vt.data )
        {
            CV_Assert( v.size() == svd.vt.size() );
            svd.vt.copyTo(v);
        }
    }

    if( w.data != svd.w.data )
    {
        if( w.size() == svd.w.size() )
            svd.w.copyTo(w);
        else
        {
            w = cv::Scalar(0);
            cv::Mat wd = w.diag();
            svd.w.copyTo(wd);
        }
    }
}


CV_IMPL void
cvSVBkSb( const CvArr* warr, const CvArr* uarr,
          const CvArr* varr, const CvArr* rhsarr,
          CvArr* dstarr, int flags )
{
    cv::Mat w = cv::cvarrToMat(warr), u = cv::cvarrToMat(uarr),
1811 1812 1813
        v = cv::cvarrToMat(varr), rhs,
        dst = cv::cvarrToMat(dstarr), dst0 = dst;
    if( flags & CV_SVD_U_T )
1814
    {
1815 1816 1817
        cv::Mat tmp;
        transpose(u, tmp);
        u = tmp;
1818
    }
1819 1820 1821 1822 1823 1824 1825 1826
    if( !(flags & CV_SVD_V_T) )
    {
        cv::Mat tmp;
        transpose(v, tmp);
        v = tmp;
    }
    if( rhsarr )
        rhs = cv::cvarrToMat(rhsarr);
1827

1828 1829
    cv::SVD::backSubst(w, u, v, rhs, dst);
    CV_Assert( dst.data == dst0.data );
1830
}