dxt.cpp 147 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
Ilya Lavrenov's avatar
Ilya Lavrenov committed
43 44
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
Alexander Alekhin's avatar
Alexander Alekhin committed
45
#include "opencl_kernels_core.hpp"
46
#include <map>
47 48 49 50

namespace cv
{

51
// On Win64 optimized versions of DFT and DCT fail the tests (fixed in VS2010)
52
#if defined _MSC_VER && !defined CV_ICC && defined _M_X64 && _MSC_VER < 1600
53 54
# pragma optimize("", off)
# pragma warning(disable: 4748)
55 56
#endif

57
#if IPP_VERSION_X100 >= 710
58 59 60 61 62
#define USE_IPP_DFT 1
#else
#undef USE_IPP_DFT
#endif

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/****************************************************************************************\
                               Discrete Fourier Transform
\****************************************************************************************/

#define CV_MAX_LOCAL_DFT_SIZE  (1 << 15)

static unsigned char bitrevTab[] =
{
  0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,
  0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8,
  0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4,
  0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec,0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc,
  0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2,
  0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea,0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa,
  0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6,
  0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee,0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe,
  0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1,0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1,
  0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9,
  0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5,
  0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed,0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd,
  0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3,
  0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb,0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb,
  0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7,0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7,
  0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef,0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
};

static const double DFTTab[][2] =
{
{ 1.00000000000000000, 0.00000000000000000 },
{-1.00000000000000000, 0.00000000000000000 },
{ 0.00000000000000000, 1.00000000000000000 },
{ 0.70710678118654757, 0.70710678118654746 },
{ 0.92387953251128674, 0.38268343236508978 },
{ 0.98078528040323043, 0.19509032201612825 },
{ 0.99518472667219693, 0.09801714032956060 },
{ 0.99879545620517241, 0.04906767432741802 },
{ 0.99969881869620425, 0.02454122852291229 },
{ 0.99992470183914450, 0.01227153828571993 },
{ 0.99998117528260111, 0.00613588464915448 },
{ 0.99999529380957619, 0.00306795676296598 },
{ 0.99999882345170188, 0.00153398018628477 },
{ 0.99999970586288223, 0.00076699031874270 },
{ 0.99999992646571789, 0.00038349518757140 },
{ 0.99999998161642933, 0.00019174759731070 },
{ 0.99999999540410733, 0.00009587379909598 },
{ 0.99999999885102686, 0.00004793689960307 },
{ 0.99999999971275666, 0.00002396844980842 },
{ 0.99999999992818922, 0.00001198422490507 },
{ 0.99999999998204725, 0.00000599211245264 },
{ 0.99999999999551181, 0.00000299605622633 },
{ 0.99999999999887801, 0.00000149802811317 },
{ 0.99999999999971945, 0.00000074901405658 },
{ 0.99999999999992983, 0.00000037450702829 },
{ 0.99999999999998246, 0.00000018725351415 },
{ 0.99999999999999567, 0.00000009362675707 },
{ 0.99999999999999889, 0.00000004681337854 },
{ 0.99999999999999978, 0.00000002340668927 },
{ 0.99999999999999989, 0.00000001170334463 },
{ 1.00000000000000000, 0.00000000585167232 },
{ 1.00000000000000000, 0.00000000292583616 }
};

#define BitRev(i,shift) \
   ((int)((((unsigned)bitrevTab[(i)&255] << 24)+ \
           ((unsigned)bitrevTab[((i)>> 8)&255] << 16)+ \
           ((unsigned)bitrevTab[((i)>>16)&255] <<  8)+ \
           ((unsigned)bitrevTab[((i)>>24)])) >> (shift)))

static int
DFTFactorize( int n, int* factors )
{
    int nf = 0, f, i, j;

    if( n <= 5 )
    {
        factors[0] = n;
        return 1;
    }
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    f = (((n - 1)^n)+1) >> 1;
    if( f > 1 )
    {
        factors[nf++] = f;
        n = f == n ? 1 : n/f;
    }

    for( f = 3; n > 1; )
    {
        int d = n/f;
        if( d*f == n )
        {
            factors[nf++] = f;
            n = d;
        }
        else
        {
            f += 2;
            if( f*f > n )
                break;
        }
    }

    if( n > 1 )
        factors[nf++] = n;

    f = (factors[0] & 1) == 0;
    for( i = f; i < (nf+f)/2; i++ )
        CV_SWAP( factors[i], factors[nf-i-1+f], j );

    return nf;
}

static void
176
DFTInit( int n0, int nf, const int* factors, int* itab, int elem_size, void* _wave, int inv_itab )
177 178 179 180 181 182 183 184 185 186 187 188
{
    int digits[34], radix[34];
    int n = factors[0], m = 0;
    int* itab0 = itab;
    int i, j, k;
    Complex<double> w, w1;
    double t;

    if( n0 <= 5 )
    {
        itab[0] = 0;
        itab[n0-1] = n0-1;
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        if( n0 != 4 )
        {
            for( i = 1; i < n0-1; i++ )
                itab[i] = i;
        }
        else
        {
            itab[1] = 2;
            itab[2] = 1;
        }
        if( n0 == 5 )
        {
            if( elem_size == sizeof(Complex<double>) )
                ((Complex<double>*)_wave)[0] = Complex<double>(1.,0.);
            else
                ((Complex<float>*)_wave)[0] = Complex<float>(1.f,0.f);
        }
        if( n0 != 4 )
            return;
        m = 2;
    }
    else
    {
        // radix[] is initialized from index 'nf' down to zero
        assert (nf < 34);
        radix[nf] = 1;
        digits[nf] = 0;
        for( i = 0; i < nf; i++ )
        {
            digits[i] = 0;
            radix[nf-i-1] = radix[nf-i]*factors[nf-i-1];
        }

        if( inv_itab && factors[0] != factors[nf-1] )
            itab = (int*)_wave;

        if( (n & 1) == 0 )
        {
            int a = radix[1], na2 = n*a>>1, na4 = na2 >> 1;
            for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
                ;
            if( n <= 2  )
            {
                itab[0] = 0;
                itab[1] = na2;
            }
            else if( n <= 256 )
            {
                int shift = 10 - m;
                for( i = 0; i <= n - 4; i += 4 )
                {
                    j = (bitrevTab[i>>2]>>shift)*a;
                    itab[i] = j;
                    itab[i+1] = j + na2;
                    itab[i+2] = j + na4;
                    itab[i+3] = j + na2 + na4;
                }
            }
            else
            {
                int shift = 34 - m;
                for( i = 0; i < n; i += 4 )
                {
                    int i4 = i >> 2;
                    j = BitRev(i4,shift)*a;
                    itab[i] = j;
                    itab[i+1] = j + na2;
                    itab[i+2] = j + na4;
                    itab[i+3] = j + na2 + na4;
                }
            }

            digits[1]++;

            if( nf >= 2 )
            {
                for( i = n, j = radix[2]; i < n0; )
                {
                    for( k = 0; k < n; k++ )
                        itab[i+k] = itab[k] + j;
                    if( (i += n) >= n0 )
                        break;
                    j += radix[2];
                    for( k = 1; ++digits[k] >= factors[k]; k++ )
                    {
                        digits[k] = 0;
                        j += radix[k+2] - radix[k];
                    }
                }
            }
        }
        else
        {
            for( i = 0, j = 0;; )
            {
                itab[i] = j;
                if( ++i >= n0 )
                    break;
                j += radix[1];
                for( k = 0; ++digits[k] >= factors[k]; k++ )
                {
                    digits[k] = 0;
                    j += radix[k+2] - radix[k];
                }
            }
        }

        if( itab != itab0 )
        {
            itab0[0] = 0;
            for( i = n0 & 1; i < n0; i += 2 )
            {
                int k0 = itab[i];
                int k1 = itab[i+1];
                itab0[k0] = i;
                itab0[k1] = i+1;
            }
        }
    }

    if( (n0 & (n0-1)) == 0 )
    {
        w.re = w1.re = DFTTab[m][0];
        w.im = w1.im = -DFTTab[m][1];
    }
    else
    {
        t = -CV_PI*2/n0;
        w.im = w1.im = sin(t);
        w.re = w1.re = std::sqrt(1. - w1.im*w1.im);
    }
    n = (n0+1)/2;

    if( elem_size == sizeof(Complex<double>) )
    {
        Complex<double>* wave = (Complex<double>*)_wave;

        wave[0].re = 1.;
        wave[0].im = 0.;

        if( (n0 & 1) == 0 )
        {
            wave[n].re = -1.;
            wave[n].im = 0;
        }

        for( i = 1; i < n; i++ )
        {
            wave[i] = w;
            wave[n0-i].re = w.re;
            wave[n0-i].im = -w.im;

            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
    else
    {
        Complex<float>* wave = (Complex<float>*)_wave;
        assert( elem_size == sizeof(Complex<float>) );
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        wave[0].re = 1.f;
        wave[0].im = 0.f;

        if( (n0 & 1) == 0 )
        {
            wave[n].re = -1.f;
            wave[n].im = 0.f;
        }

        for( i = 1; i < n; i++ )
        {
            wave[i].re = (float)w.re;
            wave[i].im = (float)w.im;
            wave[n0-i].re = (float)w.re;
            wave[n0-i].im = (float)-w.im;

            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
}

template<typename T> struct DFT_VecR4
{
    int operator()(Complex<T>*, int, int, int&, const Complex<T>*) const { return 1; }
};

#if CV_SSE3

// optimized radix-4 transform
template<> struct DFT_VecR4<float>
{
    int operator()(Complex<float>* dst, int N, int n0, int& _dw0, const Complex<float>* wave) const
    {
        int n = 1, i, j, nx, dw, dw0 = _dw0;
        __m128 z = _mm_setzero_ps(), x02=z, x13=z, w01=z, w23=z, y01, y23, t0, t1;
        Cv32suf t; t.i = 0x80000000;
        __m128 neg0_mask = _mm_load_ss(&t.f);
        __m128 neg3_mask = _mm_shuffle_ps(neg0_mask, neg0_mask, _MM_SHUFFLE(0,1,2,3));
392

393 394 395 396 397
        for( ; n*4 <= N; )
        {
            nx = n;
            n *= 4;
            dw0 /= 4;
398

399 400 401
            for( i = 0; i < n0; i += n )
            {
                Complexf *v0, *v1;
402

403 404
                v0 = dst + i;
                v1 = v0 + nx*2;
405

406 407 408 409
                x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
                x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
                x02 = _mm_loadh_pi(x02, (const __m64*)&v1[0]);
                x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]);
410

411 412 413 414 415 416 417 418 419 420 421
                y01 = _mm_add_ps(x02, x13);
                y23 = _mm_sub_ps(x02, x13);
                t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
                t0 = _mm_movelh_ps(y01, y23);
                y01 = _mm_add_ps(t0, t1);
                y23 = _mm_sub_ps(t0, t1);

                _mm_storel_pi((__m64*)&v0[0], y01);
                _mm_storeh_pi((__m64*)&v0[nx], y01);
                _mm_storel_pi((__m64*)&v1[0], y23);
                _mm_storeh_pi((__m64*)&v1[nx], y23);
422

423 424 425 426 427 428 429 430 431
                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v0 = dst + i + j;
                    v1 = v0 + nx*2;

                    x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
                    w23 = _mm_loadl_pi(w23, (const __m64*)&wave[dw*2]);
                    x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]); // x1, x3 = r1 i1 r3 i3
                    w23 = _mm_loadh_pi(w23, (const __m64*)&wave[dw*3]); // w2, w3 = wr2 wi2 wr3 wi3
432

433 434 435 436 437 438 439 440 441 442 443 444
                    t0 = _mm_mul_ps(_mm_moveldup_ps(x13), w23);
                    t1 = _mm_mul_ps(_mm_movehdup_ps(x13), _mm_shuffle_ps(w23, w23, _MM_SHUFFLE(2,3,0,1)));
                    x13 = _mm_addsub_ps(t0, t1);
                    // re(x1*w2), im(x1*w2), re(x3*w3), im(x3*w3)
                    x02 = _mm_loadl_pi(x02, (const __m64*)&v1[0]); // x2 = r2 i2
                    w01 = _mm_loadl_pi(w01, (const __m64*)&wave[dw]); // w1 = wr1 wi1
                    x02 = _mm_shuffle_ps(x02, x02, _MM_SHUFFLE(0,0,1,1));
                    w01 = _mm_shuffle_ps(w01, w01, _MM_SHUFFLE(1,0,0,1));
                    x02 = _mm_mul_ps(x02, w01);
                    x02 = _mm_addsub_ps(x02, _mm_movelh_ps(x02, x02));
                    // re(x0) im(x0) re(x2*w1), im(x2*w1)
                    x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459
                    y01 = _mm_add_ps(x02, x13);
                    y23 = _mm_sub_ps(x02, x13);
                    t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
                    t0 = _mm_movelh_ps(y01, y23);
                    y01 = _mm_add_ps(t0, t1);
                    y23 = _mm_sub_ps(t0, t1);

                    _mm_storel_pi((__m64*)&v0[0], y01);
                    _mm_storeh_pi((__m64*)&v0[nx], y01);
                    _mm_storel_pi((__m64*)&v1[0], y23);
                    _mm_storeh_pi((__m64*)&v1[nx], y23);
                }
            }
        }
460

461 462 463 464 465 466 467
        _dw0 = dw0;
        return n;
    }
};

#endif

468
#ifdef USE_IPP_DFT
Elena Gvozdeva's avatar
Elena Gvozdeva committed
469
static IppStatus ippsDFTFwd_CToC( const Complex<float>* src, Complex<float>* dst,
470 471
                             const void* spec, uchar* buf)
{
472
    return CV_INSTRUMENT_FUN_IPP(ippsDFTFwd_CToC_32fc, (const Ipp32fc*)src, (Ipp32fc*)dst,
Elena Gvozdeva's avatar
Elena Gvozdeva committed
473
                                 (const IppsDFTSpec_C_32fc*)spec, buf);
474 475
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
476
static IppStatus ippsDFTFwd_CToC( const Complex<double>* src, Complex<double>* dst,
477 478
                             const void* spec, uchar* buf)
{
479
    return CV_INSTRUMENT_FUN_IPP(ippsDFTFwd_CToC_64fc, (const Ipp64fc*)src, (Ipp64fc*)dst,
Elena Gvozdeva's avatar
Elena Gvozdeva committed
480
                                 (const IppsDFTSpec_C_64fc*)spec, buf);
481 482
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
483
static IppStatus ippsDFTInv_CToC( const Complex<float>* src, Complex<float>* dst,
484 485
                             const void* spec, uchar* buf)
{
486
    return CV_INSTRUMENT_FUN_IPP(ippsDFTInv_CToC_32fc, (const Ipp32fc*)src, (Ipp32fc*)dst,
Elena Gvozdeva's avatar
Elena Gvozdeva committed
487
                                 (const IppsDFTSpec_C_32fc*)spec, buf);
488 489
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
490 491
static IppStatus ippsDFTInv_CToC( const Complex<double>* src, Complex<double>* dst,
                                  const void* spec, uchar* buf)
492
{
493
    return CV_INSTRUMENT_FUN_IPP(ippsDFTInv_CToC_64fc, (const Ipp64fc*)src, (Ipp64fc*)dst,
Elena Gvozdeva's avatar
Elena Gvozdeva committed
494
                                 (const IppsDFTSpec_C_64fc*)spec, buf);
495 496
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
497 498
static IppStatus ippsDFTFwd_RToPack( const float* src, float* dst,
                                     const void* spec, uchar* buf)
499
{
500
    return CV_INSTRUMENT_FUN_IPP(ippsDFTFwd_RToPack_32f, src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
501 502
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
503 504
static IppStatus ippsDFTFwd_RToPack( const double* src, double* dst,
                                     const void* spec, uchar* buf)
505
{
506
    return CV_INSTRUMENT_FUN_IPP(ippsDFTFwd_RToPack_64f, src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
507 508
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
509 510
static IppStatus ippsDFTInv_PackToR( const float* src, float* dst,
                                     const void* spec, uchar* buf)
511
{
512
    return CV_INSTRUMENT_FUN_IPP(ippsDFTInv_PackToR_32f, src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
513 514
}

Elena Gvozdeva's avatar
Elena Gvozdeva committed
515 516
static IppStatus ippsDFTInv_PackToR( const double* src, double* dst,
                                     const void* spec, uchar* buf)
517
{
518
    return CV_INSTRUMENT_FUN_IPP(ippsDFTInv_PackToR_64f, src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
519 520 521
}
#endif

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
struct OcvDftOptions;

typedef void (*DFTFunc)(const OcvDftOptions & c, const void* src, void* dst);

struct OcvDftOptions {
    int nf;
    int *factors;
    double scale;

    int* itab;
    void* wave;
    int tab_size;
    int n;

    bool isInverse;
    bool noPermute;
    bool isComplex;

    bool haveSSE3;

    DFTFunc dft_func;
    bool useIpp;
544

545
#ifdef USE_IPP_DFT
546 547
    uchar* ipp_spec;
    uchar* ipp_work;
548
#endif
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

    OcvDftOptions()
    {
        nf = 0;
        factors = 0;
        scale = 0;
        itab = 0;
        wave = 0;
        tab_size = 0;
        n = 0;
        isInverse = false;
        noPermute = false;
        isComplex = false;
        useIpp = false;
#ifdef USE_IPP_DFT
        ipp_spec = 0;
        ipp_work = 0;
#endif
        dft_func = 0;
        haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
    }
};

// mixed-radix complex discrete Fourier transform: double-precision version
template<typename T> static void
DFT(const OcvDftOptions & c, const Complex<T>* src, Complex<T>* dst)
575 576 577 578 579 580 581
{
    static const T sin_120 = (T)0.86602540378443864676372317075294;
    static const T fft5_2 = (T)0.559016994374947424102293417182819;
    static const T fft5_3 = (T)-0.951056516295153572116439333379382;
    static const T fft5_4 = (T)-1.538841768587626701285145288018455;
    static const T fft5_5 = (T)0.363271264002680442947733378740309;

582 583 584 585 586 587 588
    const Complex<T>* wave = (Complex<T>*)c.wave;
    const int * itab = c.itab;

    int n = c.n;
    int f_idx, nx;
    int inv = c.isInverse;
    int dw0 = c.tab_size, dw;
589 590
    int i, j, k;
    Complex<T> t;
591
    T scale = (T)c.scale;
592

593
    if( c.useIpp )
594
    {
595
#ifdef USE_IPP_DFT
596
        if( !inv )
Elena Gvozdeva's avatar
Elena Gvozdeva committed
597
        {
598
            if (ippsDFTFwd_CToC( src, dst, c.ipp_spec, c.ipp_work ) >= 0)
599 600
            {
                CV_IMPL_ADD(CV_IMPL_IPP);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
601
                return;
602
            }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
603
        }
604
        else
Elena Gvozdeva's avatar
Elena Gvozdeva committed
605
        {
606
            if (ippsDFTInv_CToC( src, dst, c.ipp_spec, c.ipp_work ) >= 0)
607 608
            {
                CV_IMPL_ADD(CV_IMPL_IPP);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
609
                return;
610
            }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
611 612
        }
        setIppErrorStatus();
613
#endif
614
    }
615

616
    int tab_step = c.tab_size == n ? 1 : c.tab_size == n*2 ? 2 : c.tab_size/n;
617 618 619 620

    // 0. shuffle data
    if( dst != src )
    {
621
        assert( !c.noPermute );
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        if( !inv )
        {
            for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
            {
                int k0 = itab[0], k1 = itab[tab_step];
                assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
                dst[i] = src[k0]; dst[i+1] = src[k1];
            }

            if( i < n )
                dst[n-1] = src[n-1];
        }
        else
        {
            for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
            {
                int k0 = itab[0], k1 = itab[tab_step];
                assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
                t.re = src[k0].re; t.im = -src[k0].im;
                dst[i] = t;
                t.re = src[k1].re; t.im = -src[k1].im;
                dst[i+1] = t;
            }

            if( i < n )
            {
                t.re = src[n-1].re; t.im = -src[n-1].im;
                dst[i] = t;
            }
        }
    }
    else
    {
655
        if( !c.noPermute )
656
        {
657 658
            CV_Assert( c.factors[0] == c.factors[c.nf-1] );
            if( c.nf == 1 )
659 660 661 662 663
            {
                if( (n & 3) == 0 )
                {
                    int n2 = n/2;
                    Complex<T>* dsth = dst + n2;
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
                    for( i = 0; i < n2; i += 2, itab += tab_step*2 )
                    {
                        j = itab[0];
                        assert( (unsigned)j < (unsigned)n2 );

                        CV_SWAP(dst[i+1], dsth[j], t);
                        if( j > i )
                        {
                            CV_SWAP(dst[i], dst[j], t);
                            CV_SWAP(dsth[i+1], dsth[j+1], t);
                        }
                    }
                }
                // else do nothing
            }
            else
            {
                for( i = 0; i < n; i++, itab += tab_step )
                {
                    j = itab[0];
                    assert( (unsigned)j < (unsigned)n );
                    if( j > i )
                        CV_SWAP(dst[i], dst[j], t);
                }
            }
        }

        if( inv )
        {
            for( i = 0; i <= n - 2; i += 2 )
            {
                T t0 = -dst[i].im;
                T t1 = -dst[i+1].im;
                dst[i].im = t0; dst[i+1].im = t1;
            }

            if( i < n )
                dst[n-1].im = -dst[n-1].im;
        }
    }

    n = 1;
    // 1. power-2 transforms
708
    if( (c.factors[0] & 1) == 0 )
709
    {
710
        if( c.factors[0] >= 4 && c.haveSSE3)
711 712
        {
            DFT_VecR4<T> vr4;
713
            n = vr4(dst, c.factors[0], c.n, dw0, wave);
714
        }
715

716
        // radix-4 transform
717
        for( ; n*4 <= c.factors[0]; )
718 719 720 721 722
        {
            nx = n;
            n *= 4;
            dw0 /= 4;

723
            for( i = 0; i < c.n; i += n )
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
            {
                Complex<T> *v0, *v1;
                T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4;

                v0 = dst + i;
                v1 = v0 + nx*2;

                r0 = v1[0].re; i0 = v1[0].im;
                r4 = v1[nx].re; i4 = v1[nx].im;

                r1 = r0 + r4; i1 = i0 + i4;
                r3 = i0 - i4; i3 = r4 - r0;

                r2 = v0[0].re; i2 = v0[0].im;
                r4 = v0[nx].re; i4 = v0[nx].im;
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
                r0 = r2 + r4; i0 = i2 + i4;
                r2 -= r4; i2 -= i4;

                v0[0].re = r0 + r1; v0[0].im = i0 + i1;
                v1[0].re = r0 - r1; v1[0].im = i0 - i1;
                v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
                v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v0 = dst + i + j;
                    v1 = v0 + nx*2;

                    r2 = v0[nx].re*wave[dw*2].re - v0[nx].im*wave[dw*2].im;
                    i2 = v0[nx].re*wave[dw*2].im + v0[nx].im*wave[dw*2].re;
                    r0 = v1[0].re*wave[dw].im + v1[0].im*wave[dw].re;
                    i0 = v1[0].re*wave[dw].re - v1[0].im*wave[dw].im;
                    r3 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
                    i3 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;

                    r1 = i0 + i3; i1 = r0 + r3;
                    r3 = r0 - r3; i3 = i3 - i0;
                    r4 = v0[0].re; i4 = v0[0].im;

                    r0 = r4 + r2; i0 = i4 + i2;
                    r2 = r4 - r2; i2 = i4 - i2;

                    v0[0].re = r0 + r1; v0[0].im = i0 + i1;
                    v1[0].re = r0 - r1; v1[0].im = i0 - i1;
                    v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
                    v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;
                }
            }
        }

775
        for( ; n < c.factors[0]; )
776 777 778 779 780 781
        {
            // do the remaining radix-2 transform
            nx = n;
            n *= 2;
            dw0 /= 2;

782
            for( i = 0; i < c.n; i += n )
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            {
                Complex<T>* v = dst + i;
                T r0 = v[0].re + v[nx].re;
                T i0 = v[0].im + v[nx].im;
                T r1 = v[0].re - v[nx].re;
                T i1 = v[0].im - v[nx].im;
                v[0].re = r0; v[0].im = i0;
                v[nx].re = r1; v[nx].im = i1;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v = dst + i + j;
                    r1 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
                    i1 = v[nx].im*wave[dw].re + v[nx].re*wave[dw].im;
                    r0 = v[0].re; i0 = v[0].im;

                    v[0].re = r0 + r1; v[0].im = i0 + i1;
                    v[nx].re = r0 - r1; v[nx].im = i0 - i1;
                }
            }
        }
    }

    // 2. all the other transforms
807
    for( f_idx = (c.factors[0]&1) ? 0 : 1; f_idx < c.nf; f_idx++ )
808
    {
809
        int factor = c.factors[f_idx];
810 811 812 813 814 815 816
        nx = n;
        n *= factor;
        dw0 /= factor;

        if( factor == 3 )
        {
            // radix-3
817
            for( i = 0; i < c.n; i += n )
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
            {
                Complex<T>* v = dst + i;

                T r1 = v[nx].re + v[nx*2].re;
                T i1 = v[nx].im + v[nx*2].im;
                T r0 = v[0].re;
                T i0 = v[0].im;
                T r2 = sin_120*(v[nx].im - v[nx*2].im);
                T i2 = sin_120*(v[nx*2].re - v[nx].re);
                v[0].re = r0 + r1; v[0].im = i0 + i1;
                r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
                v[nx].re = r0 + r2; v[nx].im = i0 + i2;
                v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v = dst + i + j;
                    r0 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
                    i0 = v[nx].re*wave[dw].im + v[nx].im*wave[dw].re;
                    i2 = v[nx*2].re*wave[dw*2].re - v[nx*2].im*wave[dw*2].im;
                    r2 = v[nx*2].re*wave[dw*2].im + v[nx*2].im*wave[dw*2].re;
                    r1 = r0 + i2; i1 = i0 + r2;
840

841 842 843 844 845 846 847 848 849 850 851 852
                    r2 = sin_120*(i0 - r2); i2 = sin_120*(i2 - r0);
                    r0 = v[0].re; i0 = v[0].im;
                    v[0].re = r0 + r1; v[0].im = i0 + i1;
                    r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
                    v[nx].re = r0 + r2; v[nx].im = i0 + i2;
                    v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
                }
            }
        }
        else if( factor == 5 )
        {
            // radix-5
853
            for( i = 0; i < c.n; i += n )
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
            {
                for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
                {
                    Complex<T>* v0 = dst + i + j;
                    Complex<T>* v1 = v0 + nx*2;
                    Complex<T>* v2 = v1 + nx*2;

                    T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4, r5, i5;

                    r3 = v0[nx].re*wave[dw].re - v0[nx].im*wave[dw].im;
                    i3 = v0[nx].re*wave[dw].im + v0[nx].im*wave[dw].re;
                    r2 = v2[0].re*wave[dw*4].re - v2[0].im*wave[dw*4].im;
                    i2 = v2[0].re*wave[dw*4].im + v2[0].im*wave[dw*4].re;

                    r1 = r3 + r2; i1 = i3 + i2;
                    r3 -= r2; i3 -= i2;

                    r4 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
                    i4 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
                    r0 = v1[0].re*wave[dw*2].re - v1[0].im*wave[dw*2].im;
                    i0 = v1[0].re*wave[dw*2].im + v1[0].im*wave[dw*2].re;

                    r2 = r4 + r0; i2 = i4 + i0;
                    r4 -= r0; i4 -= i0;

                    r0 = v0[0].re; i0 = v0[0].im;
                    r5 = r1 + r2; i5 = i1 + i2;

                    v0[0].re = r0 + r5; v0[0].im = i0 + i5;

                    r0 -= (T)0.25*r5; i0 -= (T)0.25*i5;
                    r1 = fft5_2*(r1 - r2); i1 = fft5_2*(i1 - i2);
                    r2 = -fft5_3*(i3 + i4); i2 = fft5_3*(r3 + r4);

                    i3 *= -fft5_5; r3 *= fft5_5;
                    i4 *= -fft5_4; r4 *= fft5_4;

                    r5 = r2 + i3; i5 = i2 + r3;
                    r2 -= i4; i2 -= r4;
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
                    r3 = r0 + r1; i3 = i0 + i1;
                    r0 -= r1; i0 -= i1;

                    v0[nx].re = r3 + r2; v0[nx].im = i3 + i2;
                    v2[0].re = r3 - r2; v2[0].im = i3 - i2;

                    v1[0].re = r0 + r5; v1[0].im = i0 + i5;
                    v1[nx].re = r0 - r5; v1[nx].im = i0 - i5;
                }
            }
        }
        else
        {
            // radix-"factor" - an odd number
            int p, q, factor2 = (factor - 1)/2;
909 910
            int d, dd, dw_f = c.tab_size/factor;
            AutoBuffer<Complex<T> > buf(factor2 * 2);
911
            Complex<T>* a = buf.data();
912
            Complex<T>* b = a + factor2;
913

914
            for( i = 0; i < c.n; i += n )
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
            {
                for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
                {
                    Complex<T>* v = dst + i + j;
                    Complex<T> v_0 = v[0];
                    Complex<T> vn_0 = v_0;

                    if( j == 0 )
                    {
                        for( p = 1, k = nx; p <= factor2; p++, k += nx )
                        {
                            T r0 = v[k].re + v[n-k].re;
                            T i0 = v[k].im - v[n-k].im;
                            T r1 = v[k].re - v[n-k].re;
                            T i1 = v[k].im + v[n-k].im;

                            vn_0.re += r0; vn_0.im += i1;
                            a[p-1].re = r0; a[p-1].im = i0;
                            b[p-1].re = r1; b[p-1].im = i1;
                        }
                    }
                    else
                    {
                        const Complex<T>* wave_ = wave + dw*factor;
                        d = dw;

                        for( p = 1, k = nx; p <= factor2; p++, k += nx, d += dw )
                        {
                            T r2 = v[k].re*wave[d].re - v[k].im*wave[d].im;
                            T i2 = v[k].re*wave[d].im + v[k].im*wave[d].re;

                            T r1 = v[n-k].re*wave_[-d].re - v[n-k].im*wave_[-d].im;
                            T i1 = v[n-k].re*wave_[-d].im + v[n-k].im*wave_[-d].re;
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                            T r0 = r2 + r1;
                            T i0 = i2 - i1;
                            r1 = r2 - r1;
                            i1 = i2 + i1;

                            vn_0.re += r0; vn_0.im += i1;
                            a[p-1].re = r0; a[p-1].im = i0;
                            b[p-1].re = r1; b[p-1].im = i1;
                        }
                    }

                    v[0] = vn_0;

                    for( p = 1, k = nx; p <= factor2; p++, k += nx )
                    {
                        Complex<T> s0 = v_0, s1 = v_0;
                        d = dd = dw_f*p;

                        for( q = 0; q < factor2; q++ )
                        {
                            T r0 = wave[d].re * a[q].re;
                            T i0 = wave[d].im * a[q].im;
                            T r1 = wave[d].re * b[q].im;
                            T i1 = wave[d].im * b[q].re;
973

974 975 976 977
                            s1.re += r0 + i0; s0.re += r0 - i0;
                            s1.im += r1 - i1; s0.im += r1 + i1;

                            d += dd;
978
                            d -= -(d >= c.tab_size) & c.tab_size;
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
                        }

                        v[k] = s0;
                        v[n-k] = s1;
                    }
                }
            }
        }
    }

    if( scale != 1 )
    {
        T re_scale = scale, im_scale = scale;
        if( inv )
            im_scale = -im_scale;

995
        for( i = 0; i < c.n; i++ )
996 997 998 999 1000 1001 1002 1003 1004
        {
            T t0 = dst[i].re*re_scale;
            T t1 = dst[i].im*im_scale;
            dst[i].re = t0;
            dst[i].im = t1;
        }
    }
    else if( inv )
    {
1005
        for( i = 0; i <= c.n - 2; i += 2 )
1006 1007 1008 1009 1010 1011 1012
        {
            T t0 = -dst[i].im;
            T t1 = -dst[i+1].im;
            dst[i].im = t0;
            dst[i+1].im = t1;
        }

1013 1014
        if( i < c.n )
            dst[c.n-1].im = -dst[c.n-1].im;
1015 1016 1017 1018 1019 1020 1021 1022 1023
    }
}


/* FFT of real vector
   output vector format:
     re(0), re(1), im(1), ... , re(n/2-1), im((n+1)/2-1) [, re((n+1)/2)] OR ...
     re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
1024
RealDFT(const OcvDftOptions & c, const T* src, T* dst)
1025
{
1026 1027 1028 1029
    int n = c.n;
    int complex_output = c.isComplex;
    T scale = (T)c.scale;
    int j;
1030 1031
    dst += complex_output;

1032
    if( c.useIpp )
1033
    {
1034 1035
#ifdef USE_IPP_DFT
        if (ippsDFTFwd_RToPack( src, dst, c.ipp_spec, c.ipp_work ) >=0)
1036
        {
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1037 1038 1039 1040 1041 1042 1043
            if( complex_output )
            {
                dst[-1] = dst[0];
                dst[0] = 0;
                if( (n & 1) == 0 )
                    dst[n] = 0;
            }
1044
            CV_IMPL_ADD(CV_IMPL_IPP);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1045
            return;
1046
        }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1047
        setIppErrorStatus();
1048
#endif
1049 1050
    }
    assert( c.tab_size == n );
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    if( n == 1 )
    {
        dst[0] = src[0]*scale;
    }
    else if( n == 2 )
    {
        T t = (src[0] + src[1])*scale;
        dst[1] = (src[0] - src[1])*scale;
        dst[0] = t;
    }
    else if( n & 1 )
    {
        dst -= complex_output;
        Complex<T>* _dst = (Complex<T>*)dst;
        _dst[0].re = src[0]*scale;
        _dst[0].im = 0;
        for( j = 1; j < n; j += 2 )
        {
1070 1071
            T t0 = src[c.itab[j]]*scale;
            T t1 = src[c.itab[j+1]]*scale;
1072 1073 1074 1075 1076
            _dst[j].re = t0;
            _dst[j].im = 0;
            _dst[j+1].re = t1;
            _dst[j+1].im = 0;
        }
1077 1078 1079 1080 1081 1082
        OcvDftOptions sub_c = c;
        sub_c.isComplex = false;
        sub_c.isInverse = false;
        sub_c.noPermute = true;
        sub_c.scale = 1.;
        DFT(sub_c, _dst, _dst);
1083 1084 1085 1086 1087 1088 1089 1090
        if( !complex_output )
            dst[1] = dst[0];
    }
    else
    {
        T t0, t;
        T h1_re, h1_im, h2_re, h2_im;
        T scale2 = scale*(T)0.5;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        int n2 = n >> 1;

        c.factors[0] >>= 1;

        OcvDftOptions sub_c = c;
        sub_c.factors += (c.factors[0] == 1);
        sub_c.nf -= (c.factors[0] == 1);
        sub_c.isComplex = false;
        sub_c.isInverse = false;
        sub_c.noPermute = false;
        sub_c.scale = 1.;
        sub_c.n = n2;
1103

1104 1105 1106
        DFT(sub_c, (Complex<T>*)src, (Complex<T>*)dst);

        c.factors[0] <<= 1;
1107 1108 1109 1110 1111 1112 1113 1114 1115

        t = dst[0] - dst[1];
        dst[0] = (dst[0] + dst[1])*scale;
        dst[1] = t*scale;

        t0 = dst[n2];
        t = dst[n-1];
        dst[n-1] = dst[1];

1116 1117
        const Complex<T> *wave = (const Complex<T>*)c.wave;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        for( j = 2, wave++; j < n2; j += 2, wave++ )
        {
            /* calc odd */
            h2_re = scale2*(dst[j+1] + t);
            h2_im = scale2*(dst[n-j] - dst[j]);

            /* calc even */
            h1_re = scale2*(dst[j] + dst[n-j]);
            h1_im = scale2*(dst[j+1] - t);

            /* rotate */
            t = h2_re*wave->re - h2_im*wave->im;
            h2_im = h2_re*wave->im + h2_im*wave->re;
            h2_re = t;
            t = dst[n-j-1];

            dst[j-1] = h1_re + h2_re;
            dst[n-j-1] = h1_re - h2_re;
            dst[j] = h1_im + h2_im;
            dst[n-j] = h2_im - h1_im;
        }

        if( j <= n2 )
        {
            dst[n2-1] = t0*scale;
            dst[n2] = -t*scale;
        }
    }

1147
    if( complex_output && ((n & 1) == 0 || n == 1))
1148 1149 1150
    {
        dst[-1] = dst[0];
        dst[0] = 0;
1151 1152
        if( n > 1 )
            dst[n] = 0;
1153 1154 1155 1156 1157 1158 1159 1160
    }
}

/* Inverse FFT of complex conjugate-symmetric vector
   input vector format:
      re[0], re[1], im[1], ... , re[n/2-1], im[n/2-1], re[n/2] OR
      re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
1161
CCSIDFT(const OcvDftOptions & c, const T* src, T* dst)
1162
{
1163 1164 1165 1166
    int n = c.n;
    int complex_input = c.isComplex;
    int j, k;
    T scale = (T)c.scale;
1167 1168 1169
    T save_s1 = 0.;
    T t0, t1, t2, t3, t;

1170
    assert( c.tab_size == n );
1171 1172 1173 1174 1175 1176 1177 1178

    if( complex_input )
    {
        assert( src != dst );
        save_s1 = src[1];
        ((T*)src)[1] = src[0];
        src++;
    }
1179
    if( c.useIpp )
1180
    {
1181 1182
#ifdef USE_IPP_DFT
        if (ippsDFTInv_PackToR( src, dst, c.ipp_spec, c.ipp_work ) >=0)
1183 1184 1185 1186 1187 1188
        {
            if( complex_input )
                ((T*)src)[0] = (T)save_s1;
            CV_IMPL_ADD(CV_IMPL_IPP);
            return;
        }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1189 1190

        setIppErrorStatus();
1191
#endif
1192
    }
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    if( n == 1 )
    {
        dst[0] = (T)(src[0]*scale);
    }
    else if( n == 2 )
    {
        t = (src[0] + src[1])*scale;
        dst[1] = (src[0] - src[1])*scale;
        dst[0] = t;
    }
    else if( n & 1 )
    {
        Complex<T>* _src = (Complex<T>*)(src-1);
        Complex<T>* _dst = (Complex<T>*)dst;

        _dst[0].re = src[0];
        _dst[0].im = 0;
1210 1211 1212

        int n2 = (n+1) >> 1;

1213 1214
        for( j = 1; j < n2; j++ )
        {
1215
            int k0 = c.itab[j], k1 = c.itab[n-j];
1216 1217 1218 1219 1220
            t0 = _src[j].re; t1 = _src[j].im;
            _dst[k0].re = t0; _dst[k0].im = -t1;
            _dst[k1].re = t0; _dst[k1].im = t1;
        }

1221 1222 1223 1224 1225 1226 1227 1228
        OcvDftOptions sub_c = c;
        sub_c.isComplex = false;
        sub_c.isInverse = false;
        sub_c.noPermute = true;
        sub_c.scale = 1.;
        sub_c.n = n;

        DFT(sub_c, _dst, _dst);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        dst[0] *= scale;
        for( j = 1; j < n; j += 2 )
        {
            t0 = dst[j*2]*scale;
            t1 = dst[j*2+2]*scale;
            dst[j] = t0;
            dst[j+1] = t1;
        }
    }
    else
    {
        int inplace = src == dst;
1241
        const Complex<T>* w = (const Complex<T>*)c.wave;
1242 1243 1244 1245 1246 1247 1248

        t = src[1];
        t0 = (src[0] + src[n-1]);
        t1 = (src[n-1] - src[0]);
        dst[0] = t0;
        dst[1] = t1;

1249 1250
        int n2 = (n+1) >> 1;

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        for( j = 2, w++; j < n2; j += 2, w++ )
        {
            T h1_re, h1_im, h2_re, h2_im;

            h1_re = (t + src[n-j-1]);
            h1_im = (src[j] - src[n-j]);

            h2_re = (t - src[n-j-1]);
            h2_im = (src[j] + src[n-j]);

            t = h2_re*w->re + h2_im*w->im;
            h2_im = h2_im*w->re - h2_re*w->im;
            h2_re = t;

            t = src[j+1];
            t0 = h1_re - h2_im;
            t1 = -h1_im - h2_re;
            t2 = h1_re + h2_im;
            t3 = h1_im - h2_re;

            if( inplace )
            {
                dst[j] = t0;
                dst[j+1] = t1;
                dst[n-j] = t2;
                dst[n-j+1]= t3;
            }
            else
            {
                int j2 = j >> 1;
1281
                k = c.itab[j2];
1282 1283
                dst[k] = t0;
                dst[k+1] = t1;
1284
                k = c.itab[n2-j2];
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
                dst[k] = t2;
                dst[k+1]= t3;
            }
        }

        if( j <= n2 )
        {
            t0 = t*2;
            t1 = src[n2]*2;

            if( inplace )
            {
                dst[n2] = t0;
                dst[n2+1] = t1;
            }
            else
            {
1302
                k = c.itab[n2];
1303 1304 1305 1306 1307
                dst[k*2] = t0;
                dst[k*2+1] = t1;
            }
        }

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        c.factors[0] >>= 1;

        OcvDftOptions sub_c = c;
        sub_c.factors += (c.factors[0] == 1);
        sub_c.nf -= (c.factors[0] == 1);
        sub_c.isComplex = false;
        sub_c.isInverse = false;
        sub_c.noPermute = !inplace;
        sub_c.scale = 1.;
        sub_c.n = n2;

        DFT(sub_c, (Complex<T>*)dst, (Complex<T>*)dst);

        c.factors[0] <<= 1;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

        for( j = 0; j < n; j += 2 )
        {
            t0 = dst[j]*scale;
            t1 = dst[j+1]*(-scale);
            dst[j] = t0;
            dst[j+1] = t1;
        }
    }
    if( complex_input )
        ((T*)src)[0] = (T)save_s1;
}

static void
CopyColumn( const uchar* _src, size_t src_step,
            uchar* _dst, size_t dst_step,
            int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src = (const int*)_src;
    int* dst = (int*)_dst;
    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
            dst[0] = src[0];
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
        {
            t0 = src[0]; t1 = src[1];
            dst[0] = t0; dst[1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
        {
            t0 = src[0]; t1 = src[1];
            dst[0] = t0; dst[1] = t1;
            t0 = src[2]; t1 = src[3];
            dst[2] = t0; dst[3] = t1;
        }
    }
}


static void
CopyFrom2Columns( const uchar* _src, size_t src_step,
                  uchar* _dst0, uchar* _dst1,
                  int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src = (const int*)_src;
    int* dst0 = (int*)_dst0;
    int* dst1 = (int*)_dst1;
    src_step /= sizeof(src[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst1[i] = t1;
        }
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len*2; i += 2, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst0[i+1] = t1;
            t0 = src[2]; t1 = src[3];
            dst1[i] = t0; dst1[i+1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len*4; i += 4, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst0[i+1] = t1;
            t0 = src[2]; t1 = src[3];
            dst0[i+2] = t0; dst0[i+3] = t1;
            t0 = src[4]; t1 = src[5];
            dst1[i] = t0; dst1[i+1] = t1;
            t0 = src[6]; t1 = src[7];
            dst1[i+2] = t0; dst1[i+3] = t1;
        }
    }
}


static void
CopyTo2Columns( const uchar* _src0, const uchar* _src1,
                uchar* _dst, size_t dst_step,
                int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src0 = (const int*)_src0;
    const int* src1 = (const int*)_src1;
    int* dst = (int*)_dst;
    dst_step /= sizeof(dst[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, dst += dst_step )
        {
            t0 = src0[i]; t1 = src1[i];
            dst[0] = t0; dst[1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len*2; i += 2, dst += dst_step )
        {
            t0 = src0[i]; t1 = src0[i+1];
            dst[0] = t0; dst[1] = t1;
            t0 = src1[i]; t1 = src1[i+1];
            dst[2] = t0; dst[3] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len*4; i += 4, dst += dst_step )
        {
            t0 = src0[i]; t1 = src0[i+1];
            dst[0] = t0; dst[1] = t1;
            t0 = src0[i+2]; t1 = src0[i+3];
            dst[2] = t0; dst[3] = t1;
            t0 = src1[i]; t1 = src1[i+1];
            dst[4] = t0; dst[5] = t1;
            t0 = src1[i+2]; t1 = src1[i+3];
            dst[6] = t0; dst[7] = t1;
        }
    }
}


static void
1465
ExpandCCS( uchar* _ptr, int n, int elem_size )
1466 1467
{
    int i;
1468
    if( elem_size == (int)sizeof(float) )
1469
    {
1470 1471 1472 1473 1474 1475 1476
        float* p = (float*)_ptr;
        for( i = 1; i < (n+1)/2; i++ )
        {
            p[(n-i)*2] = p[i*2-1];
            p[(n-i)*2+1] = -p[i*2];
        }
        if( (n & 1) == 0 )
1477
        {
1478 1479 1480
            p[n] = p[n-1];
            p[n+1] = 0.f;
            n--;
1481
        }
1482 1483 1484
        for( i = n-1; i > 0; i-- )
            p[i+1] = p[i];
        p[1] = 0.f;
1485 1486 1487
    }
    else
    {
1488 1489
        double* p = (double*)_ptr;
        for( i = 1; i < (n+1)/2; i++ )
1490
        {
1491 1492
            p[(n-i)*2] = p[i*2-1];
            p[(n-i)*2+1] = -p[i*2];
1493
        }
1494 1495 1496 1497 1498 1499 1500 1501 1502
        if( (n & 1) == 0 )
        {
            p[n] = p[n-1];
            p[n+1] = 0.f;
            n--;
        }
        for( i = n-1; i > 0; i-- )
            p[i+1] = p[i];
        p[1] = 0.f;
1503 1504 1505
    }
}

1506
static void DFT_32f(const OcvDftOptions & c, const Complexf* src, Complexf* dst)
1507
{
1508
    DFT(c, src, dst);
1509
}
1510

1511
static void DFT_64f(const OcvDftOptions & c, const Complexd* src, Complexd* dst)
1512
{
1513
    DFT(c, src, dst);
1514 1515 1516
}


1517
static void RealDFT_32f(const OcvDftOptions & c, const float* src, float* dst)
1518
{
1519
    RealDFT(c, src, dst);
1520 1521
}

1522
static void RealDFT_64f(const OcvDftOptions & c, const double* src, double* dst)
1523
{
1524
    RealDFT(c, src, dst);
1525 1526
}

1527
static void CCSIDFT_32f(const OcvDftOptions & c, const float* src, float* dst)
1528
{
1529
    CCSIDFT(c, src, dst);
1530 1531
}

1532
static void CCSIDFT_64f(const OcvDftOptions & c, const double* src, double* dst)
1533
{
1534
    CCSIDFT(c, src, dst);
1535
}
1536

1537
}
1538

1539
#ifdef USE_IPP_DFT
1540 1541 1542
typedef IppStatus (CV_STDCALL* IppDFTGetSizeFunc)(int, int, IppHintAlgorithm, int*, int*, int*);
typedef IppStatus (CV_STDCALL* IppDFTInitFunc)(int, int, IppHintAlgorithm, void*, uchar*);
#endif
1543

Elena Gvozdeva's avatar
Elena Gvozdeva committed
1544 1545
namespace cv
{
1546
#if defined USE_IPP_DFT
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1547

1548 1549 1550 1551 1552 1553 1554 1555
typedef IppStatus (CV_STDCALL* ippiDFT_C_Func)(const Ipp32fc*, int, Ipp32fc*, int, const IppiDFTSpec_C_32fc*, Ipp8u*);
typedef IppStatus (CV_STDCALL* ippiDFT_R_Func)(const Ipp32f* , int, Ipp32f* , int, const IppiDFTSpec_R_32f* , Ipp8u*);

template <typename Dft>
class Dft_C_IPPLoop_Invoker : public ParallelLoopBody
{
public:

1556
    Dft_C_IPPLoop_Invoker(const uchar * _src, size_t _src_step, uchar * _dst, size_t _dst_step, int _width,
1557 1558 1559 1560
                          const Dft& _ippidft, int _norm_flag, bool *_ok) :
        ParallelLoopBody(),
        src(_src), src_step(_src_step), dst(_dst), dst_step(_dst_step), width(_width),
        ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
1561 1562 1563 1564
    {
        *ok = true;
    }

1565
    virtual void operator()(const Range& range) const CV_OVERRIDE
1566 1567 1568 1569 1570 1571 1572 1573
    {
        IppStatus status;
        Ipp8u* pBuffer = 0;
        Ipp8u* pMemInit= 0;
        int sizeBuffer=0;
        int sizeSpec=0;
        int sizeInit=0;

1574
        IppiSize srcRoiSize = {width, 1};
1575 1576 1577 1578 1579 1580 1581 1582

        status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
        if ( status < 0 )
        {
            *ok = false;
            return;
        }

1583
        IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)CV_IPP_MALLOC( sizeSpec );
1584 1585

        if ( sizeInit > 0 )
1586
            pMemInit = (Ipp8u*)CV_IPP_MALLOC( sizeInit );
1587 1588

        if ( sizeBuffer > 0 )
1589
            pBuffer = (Ipp8u*)CV_IPP_MALLOC( sizeBuffer );
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

        status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

        if ( sizeInit > 0 )
            ippFree( pMemInit );

        if ( status < 0 )
        {
            ippFree( pDFTSpec );
            if ( sizeBuffer > 0 )
                ippFree( pBuffer );
            *ok = false;
            return;
        }

        for( int i = range.start; i < range.end; ++i)
1606 1607
            if(!ippidft((Ipp32fc*)(src + src_step * i), src_step, (Ipp32fc*)(dst + dst_step * i), dst_step,
                        pDFTSpec, (Ipp8u*)pBuffer))
1608 1609 1610 1611 1612 1613 1614 1615
            {
                *ok = false;
            }

        if ( sizeBuffer > 0 )
            ippFree( pBuffer );

        ippFree( pDFTSpec );
1616
        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
1617 1618 1619
    }

private:
1620
    const uchar * src;
1621
    size_t src_step;
1622
    uchar * dst;
1623
    size_t dst_step;
1624
    int width;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
    const Dft& ippidft;
    int norm_flag;
    bool *ok;

    const Dft_C_IPPLoop_Invoker& operator= (const Dft_C_IPPLoop_Invoker&);
};

template <typename Dft>
class Dft_R_IPPLoop_Invoker : public ParallelLoopBody
{
public:

1637
    Dft_R_IPPLoop_Invoker(const uchar * _src, size_t _src_step, uchar * _dst, size_t _dst_step, int _width,
1638 1639 1640 1641
                          const Dft& _ippidft, int _norm_flag, bool *_ok) :
        ParallelLoopBody(),
        src(_src), src_step(_src_step), dst(_dst), dst_step(_dst_step), width(_width),
        ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
1642 1643 1644 1645
    {
        *ok = true;
    }

1646
    virtual void operator()(const Range& range) const CV_OVERRIDE
1647 1648 1649 1650 1651 1652 1653 1654
    {
        IppStatus status;
        Ipp8u* pBuffer = 0;
        Ipp8u* pMemInit= 0;
        int sizeBuffer=0;
        int sizeSpec=0;
        int sizeInit=0;

1655
        IppiSize srcRoiSize = {width, 1};
1656 1657 1658 1659 1660 1661 1662 1663

        status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
        if ( status < 0 )
        {
            *ok = false;
            return;
        }

1664
        IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)CV_IPP_MALLOC( sizeSpec );
1665 1666

        if ( sizeInit > 0 )
1667
            pMemInit = (Ipp8u*)CV_IPP_MALLOC( sizeInit );
1668 1669

        if ( sizeBuffer > 0 )
1670
            pBuffer = (Ipp8u*)CV_IPP_MALLOC( sizeBuffer );
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

        status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

        if ( sizeInit > 0 )
            ippFree( pMemInit );

        if ( status < 0 )
        {
            ippFree( pDFTSpec );
            if ( sizeBuffer > 0 )
                ippFree( pBuffer );
            *ok = false;
            return;
        }

        for( int i = range.start; i < range.end; ++i)
1687 1688
            if(!ippidft((float*)(src + src_step * i), src_step, (float*)(dst + dst_step * i), dst_step,
                        pDFTSpec, (Ipp8u*)pBuffer))
1689 1690 1691 1692 1693 1694 1695 1696
            {
                *ok = false;
            }

        if ( sizeBuffer > 0 )
            ippFree( pBuffer );

        ippFree( pDFTSpec );
1697
        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
1698 1699 1700
    }

private:
1701
    const uchar * src;
1702
    size_t src_step;
1703
    uchar * dst;
1704
    size_t dst_step;
1705
    int width;
1706 1707 1708 1709 1710 1711 1712 1713
    const Dft& ippidft;
    int norm_flag;
    bool *ok;

    const Dft_R_IPPLoop_Invoker& operator= (const Dft_R_IPPLoop_Invoker&);
};

template <typename Dft>
1714
bool Dft_C_IPPLoop(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, const Dft& ippidft, int norm_flag)
1715 1716
{
    bool ok;
1717
    parallel_for_(Range(0, height), Dft_C_IPPLoop_Invoker<Dft>(src, src_step, dst, dst_step, width, ippidft, norm_flag, &ok), (width * height)/(double)(1<<16) );
1718 1719 1720 1721
    return ok;
}

template <typename Dft>
1722
bool Dft_R_IPPLoop(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, const Dft& ippidft, int norm_flag)
1723 1724
{
    bool ok;
1725
    parallel_for_(Range(0, height), Dft_R_IPPLoop_Invoker<Dft>(src, src_step, dst, dst_step, width, ippidft, norm_flag, &ok), (width * height)/(double)(1<<16) );
1726 1727 1728 1729 1730
    return ok;
}

struct IPPDFT_C_Functor
{
1731
    IPPDFT_C_Functor(ippiDFT_C_Func _func) : ippiDFT_CToC_32fc_C1R(_func){}
1732

1733
    bool operator()(const Ipp32fc* src, size_t srcStep, Ipp32fc* dst, size_t dstStep, const IppiDFTSpec_C_32fc* pDFTSpec, Ipp8u* pBuffer) const
1734
    {
1735
        return ippiDFT_CToC_32fc_C1R ? CV_INSTRUMENT_FUN_IPP(ippiDFT_CToC_32fc_C1R, src, static_cast<int>(srcStep), dst, static_cast<int>(dstStep), pDFTSpec, pBuffer) >= 0 : false;
1736 1737
    }
private:
1738
    ippiDFT_C_Func ippiDFT_CToC_32fc_C1R;
1739 1740 1741 1742
};

struct IPPDFT_R_Functor
{
1743
    IPPDFT_R_Functor(ippiDFT_R_Func _func) : ippiDFT_PackToR_32f_C1R(_func){}
1744

1745
    bool operator()(const Ipp32f* src, size_t srcStep, Ipp32f* dst, size_t dstStep, const IppiDFTSpec_R_32f* pDFTSpec, Ipp8u* pBuffer) const
1746
    {
1747
        return ippiDFT_PackToR_32f_C1R ? CV_INSTRUMENT_FUN_IPP(ippiDFT_PackToR_32f_C1R, src, static_cast<int>(srcStep), dst, static_cast<int>(dstStep), pDFTSpec, pBuffer) >= 0 : false;
1748 1749
    }
private:
1750
    ippiDFT_R_Func ippiDFT_PackToR_32f_C1R;
1751 1752
};

1753
static bool ippi_DFT_C_32F(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, bool inv, int norm_flag)
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1754
{
1755
    CV_INSTRUMENT_REGION_IPP();
1756

Elena Gvozdeva's avatar
Elena Gvozdeva committed
1757 1758 1759 1760 1761 1762 1763
    IppStatus status;
    Ipp8u* pBuffer = 0;
    Ipp8u* pMemInit= 0;
    int sizeBuffer=0;
    int sizeSpec=0;
    int sizeInit=0;

1764
    IppiSize srcRoiSize = {width, height};
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1765 1766 1767 1768 1769

    status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
    if ( status < 0 )
        return false;

1770
    IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)CV_IPP_MALLOC( sizeSpec );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1771 1772

    if ( sizeInit > 0 )
1773
        pMemInit = (Ipp8u*)CV_IPP_MALLOC( sizeInit );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1774 1775

    if ( sizeBuffer > 0 )
1776
        pBuffer = (Ipp8u*)CV_IPP_MALLOC( sizeBuffer );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

    status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

    if ( sizeInit > 0 )
        ippFree( pMemInit );

    if ( status < 0 )
    {
        ippFree( pDFTSpec );
        if ( sizeBuffer > 0 )
            ippFree( pBuffer );
        return false;
    }

    if (!inv)
1792
        status = CV_INSTRUMENT_FUN_IPP(ippiDFTFwd_CToC_32fc_C1R, (Ipp32fc*)src, static_cast<int>(src_step), (Ipp32fc*)dst, static_cast<int>(dst_step), pDFTSpec, pBuffer);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1793
    else
1794
        status = CV_INSTRUMENT_FUN_IPP(ippiDFTInv_CToC_32fc_C1R, (Ipp32fc*)src, static_cast<int>(src_step), (Ipp32fc*)dst, static_cast<int>(dst_step), pDFTSpec, pBuffer);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1795 1796 1797 1798 1799 1800

    if ( sizeBuffer > 0 )
        ippFree( pBuffer );

    ippFree( pDFTSpec );

1801 1802 1803 1804
    if(status >= 0)
    {
        CV_IMPL_ADD(CV_IMPL_IPP);
        return true;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1805
    }
1806 1807
    return false;
}
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1808

1809
static bool ippi_DFT_R_32F(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, bool inv, int norm_flag)
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1810
{
1811
    CV_INSTRUMENT_REGION_IPP();
1812

Elena Gvozdeva's avatar
Elena Gvozdeva committed
1813 1814 1815 1816 1817 1818 1819
    IppStatus status;
    Ipp8u* pBuffer = 0;
    Ipp8u* pMemInit= 0;
    int sizeBuffer=0;
    int sizeSpec=0;
    int sizeInit=0;

1820
    IppiSize srcRoiSize = {width, height};
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1821 1822 1823 1824 1825

    status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
    if ( status < 0 )
        return false;

1826
    IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)CV_IPP_MALLOC( sizeSpec );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1827 1828

    if ( sizeInit > 0 )
1829
        pMemInit = (Ipp8u*)CV_IPP_MALLOC( sizeInit );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1830 1831

    if ( sizeBuffer > 0 )
1832
        pBuffer = (Ipp8u*)CV_IPP_MALLOC( sizeBuffer );
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

    status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

    if ( sizeInit > 0 )
        ippFree( pMemInit );

    if ( status < 0 )
    {
        ippFree( pDFTSpec );
        if ( sizeBuffer > 0 )
            ippFree( pBuffer );
        return false;
    }

    if (!inv)
1848
        status = CV_INSTRUMENT_FUN_IPP(ippiDFTFwd_RToPack_32f_C1R, (float*)src, static_cast<int>(src_step), (float*)dst, static_cast<int>(dst_step), pDFTSpec, pBuffer);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1849
    else
1850
        status = CV_INSTRUMENT_FUN_IPP(ippiDFTInv_PackToR_32f_C1R, (float*)src, static_cast<int>(src_step), (float*)dst, static_cast<int>(dst_step), pDFTSpec, pBuffer);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1851 1852 1853 1854 1855 1856

    if ( sizeBuffer > 0 )
        ippFree( pBuffer );

    ippFree( pDFTSpec );

1857 1858 1859 1860 1861 1862
    if(status >= 0)
    {
        CV_IMPL_ADD(CV_IMPL_IPP);
        return true;
    }
    return false;
1863
}
Elena Gvozdeva's avatar
Elena Gvozdeva committed
1864 1865 1866 1867

#endif
}

1868
#ifdef HAVE_OPENCL
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1869

1870 1871 1872
namespace cv
{

1873 1874
enum FftType
{
1875 1876 1877 1878
    R2R = 0, // real to CCS in case forward transform, CCS to real otherwise
    C2R = 1, // complex to real in case inverse transform
    R2C = 2, // real to complex in case forward transform
    C2C = 3  // complex to complex
1879 1880
};

Alexander Karsakov's avatar
Alexander Karsakov committed
1881
struct OCL_FftPlan
1882
{
1883
private:
Alexander Karsakov's avatar
Alexander Karsakov committed
1884 1885 1886 1887
    UMat twiddles;
    String buildOptions;
    int thread_count;
    int dft_size;
1888
    int dft_depth;
1889
    bool status;
1890

1891
public:
1892
    OCL_FftPlan(int _size, int _depth) : dft_size(_size), dft_depth(_depth), status(true)
1893
    {
1894 1895
        CV_Assert( dft_depth == CV_32F || dft_depth == CV_64F );

1896
        int min_radix;
1897 1898
        std::vector<int> radixes, blocks;
        ocl_getRadixes(dft_size, radixes, blocks, min_radix);
1899
        thread_count = dft_size / min_radix;
1900

1901
        if (thread_count > (int) ocl::Device::getDefault().maxWorkGroupSize())
1902
        {
1903 1904
            status = false;
            return;
1905
        }
Alexander Karsakov's avatar
Alexander Karsakov committed
1906 1907 1908 1909 1910 1911

        // generate string with radix calls
        String radix_processing;
        int n = 1, twiddle_size = 0;
        for (size_t i=0; i<radixes.size(); i++)
        {
1912 1913 1914
            int radix = radixes[i], block = blocks[i];
            if (block > 1)
                radix_processing += format("fft_radix%d_B%d(smem,twiddles+%d,ind,%d,%d);", radix, block, twiddle_size, n, dft_size/radix);
1915 1916
            else
                radix_processing += format("fft_radix%d(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
Alexander Karsakov's avatar
Alexander Karsakov committed
1917 1918 1919 1920
            twiddle_size += (radix-1)*n;
            n *= radix;
        }

1921 1922 1923 1924 1925
        twiddles.create(1, twiddle_size, CV_MAKE_TYPE(dft_depth, 2));
        if (dft_depth == CV_32F)
            fillRadixTable<float>(twiddles, radixes);
        else
            fillRadixTable<double>(twiddles, radixes);
Alexander Karsakov's avatar
Alexander Karsakov committed
1926

1927 1928 1929
        buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s",
                              dft_size, min_radix, ocl::typeToStr(dft_depth), ocl::typeToStr(CV_MAKE_TYPE(dft_depth, 2)),
                              dft_depth == CV_64F ? " -D DOUBLE_SUPPORT" : "", radix_processing.c_str());
Alexander Karsakov's avatar
Alexander Karsakov committed
1930 1931
    }

1932
    bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
Alexander Karsakov's avatar
Alexander Karsakov committed
1933
    {
1934 1935 1936
        if (!status)
            return false;

Alexander Karsakov's avatar
Alexander Karsakov committed
1937 1938 1939
        UMat src = _src.getUMat();
        UMat dst = _dst.getUMat();

1940 1941 1942 1943
        size_t globalsize[2];
        size_t localsize[2];
        String kernel_name;

1944
        bool is1d = (flags & DFT_ROWS) != 0 || num_dfts == 1;
1945
        bool inv = (flags & DFT_INVERSE) != 0;
1946
        String options = buildOptions;
1947

1948 1949
        if (rows)
        {
1950
            globalsize[0] = thread_count; globalsize[1] = src.rows;
1951
            localsize[0] = thread_count; localsize[1] = 1;
1952
            kernel_name = !inv ? "fft_multi_radix_rows" : "ifft_multi_radix_rows";
1953
            if ((is1d || inv) && (flags & DFT_SCALE))
1954
                options += " -D DFT_SCALE";
1955 1956 1957
        }
        else
        {
1958
            globalsize[0] = num_dfts; globalsize[1] = thread_count;
1959
            localsize[0] = 1; localsize[1] = thread_count;
1960
            kernel_name = !inv ? "fft_multi_radix_cols" : "ifft_multi_radix_cols";
1961 1962
            if (flags & DFT_SCALE)
                options += " -D DFT_SCALE";
1963
        }
1964

1965 1966 1967
        options += src.channels() == 1 ? " -D REAL_INPUT" : " -D COMPLEX_INPUT";
        options += dst.channels() == 1 ? " -D REAL_OUTPUT" : " -D COMPLEX_OUTPUT";
        options += is1d ? " -D IS_1D" : "";
1968

1969 1970 1971 1972 1973 1974 1975
        if (!inv)
        {
            if ((is1d && src.channels() == 1) || (rows && (fftType == R2R)))
                options += " -D NO_CONJUGATE";
        }
        else
        {
1976
            if (rows && (fftType == C2R || fftType == R2R))
1977 1978
                options += " -D NO_CONJUGATE";
            if (dst.cols % 2 == 0)
1979
                options += " -D EVEN";
1980
        }
Alexander Karsakov's avatar
Alexander Karsakov committed
1981

1982
        ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
Alexander Karsakov's avatar
Alexander Karsakov committed
1983 1984 1985
        if (k.empty())
            return false;

1986
        k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, num_dfts);
Alexander Karsakov's avatar
Alexander Karsakov committed
1987 1988
        return k.run(2, globalsize, localsize, false);
    }
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

private:
    static void ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
    {
        int factors[34];
        int nf = DFTFactorize(cols, factors);

        int n = 1;
        int factor_index = 0;
        min_radix = INT_MAX;

        // 2^n transforms
        if ((factors[factor_index] & 1) == 0)
        {
            for( ; n < factors[factor_index];)
            {
                int radix = 2, block = 1;
                if (8*n <= factors[0])
                    radix = 8;
                else if (4*n <= factors[0])
                {
                    radix = 4;
                    if (cols % 12 == 0)
                        block = 3;
                    else if (cols % 8 == 0)
                        block = 2;
                }
                else
                {
                    if (cols % 10 == 0)
                        block = 5;
                    else if (cols % 8 == 0)
                        block = 4;
                    else if (cols % 6 == 0)
                        block = 3;
                    else if (cols % 4 == 0)
                        block = 2;
                }

                radixes.push_back(radix);
                blocks.push_back(block);
                min_radix = min(min_radix, block*radix);
                n *= radix;
            }
            factor_index++;
        }

        // all the other transforms
        for( ; factor_index < nf; factor_index++)
        {
            int radix = factors[factor_index], block = 1;
            if (radix == 3)
            {
                if (cols % 12 == 0)
                    block = 4;
                else if (cols % 9 == 0)
                    block = 3;
                else if (cols % 6 == 0)
                    block = 2;
            }
            else if (radix == 5)
            {
                if (cols % 10 == 0)
                    block = 2;
            }
            radixes.push_back(radix);
            blocks.push_back(block);
            min_radix = min(min_radix, block*radix);
        }
    }
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

    template <typename T>
    static void fillRadixTable(UMat twiddles, const std::vector<int>& radixes)
    {
        Mat tw = twiddles.getMat(ACCESS_WRITE);
        T* ptr = tw.ptr<T>();
        int ptr_index = 0;

        int n = 1;
        for (size_t i=0; i<radixes.size(); i++)
        {
            int radix = radixes[i];
            n *= radix;

            for (int j=1; j<radix; j++)
            {
                double theta = -CV_2PI*j/n;

                for (int k=0; k<(n/radix); k++)
                {
                    ptr[ptr_index++] = (T) cos(k*theta);
                    ptr[ptr_index++] = (T) sin(k*theta);
                }
            }
        }
    }
Alexander Karsakov's avatar
Alexander Karsakov committed
2085 2086 2087 2088 2089 2090 2091
};

class OCL_FftPlanCache
{
public:
    static OCL_FftPlanCache & getInstance()
    {
2092
        CV_SINGLETON_LAZY_INIT_REF(OCL_FftPlanCache, new OCL_FftPlanCache())
2093
    }
2094

2095
    Ptr<OCL_FftPlan> getFftPlan(int dft_size, int depth)
Alexander Karsakov's avatar
Alexander Karsakov committed
2096
    {
2097 2098
        int key = (dft_size << 16) | (depth & 0xFFFF);
        std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(key);
2099
        if (f != planStorage.end())
Alexander Karsakov's avatar
Alexander Karsakov committed
2100
        {
2101 2102 2103 2104
            return f->second;
        }
        else
        {
2105 2106
            Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size, depth));
            planStorage[key] = newPlan;
2107
            return newPlan;
Alexander Karsakov's avatar
Alexander Karsakov committed
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
        }
    }

    ~OCL_FftPlanCache()
    {
        planStorage.clear();
    }

protected:
    OCL_FftPlanCache() :
        planStorage()
    {
    }
2121
    std::map<int, Ptr<OCL_FftPlan> > planStorage;
Alexander Karsakov's avatar
Alexander Karsakov committed
2122 2123
};

2124
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
Alexander Karsakov's avatar
Alexander Karsakov committed
2125
{
2126 2127
    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), depth);
2128
    return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
2129 2130
}

2131
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
2132
{
2133 2134
    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), depth);
2135
    return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
inline FftType determineFFTType(bool real_input, bool complex_input, bool real_output, bool complex_output, bool inv)
{
    // output format is not specified
    if (!real_output && !complex_output)
        complex_output = true;

    // input or output format is ambiguous
    if (real_input == complex_input || real_output == complex_output)
        CV_Error(Error::StsBadArg, "Invalid FFT input or output format");

    FftType result = real_input ? (real_output ? R2R : R2C) : (real_output ? C2R : C2C);

    // Forward Complex to CCS not supported
    if (result == C2R && !inv)
        result = C2C;

    // Inverse CCS to Complex not supported
    if (result == R2C && inv)
        result = R2R;

    return result;
}

2161 2162
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{
2163
    int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
2164
    Size ssize = _src.size();
2165
    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
2166

2167 2168 2169
    if (!(cn == 1 || cn == 2)
        || !(depth == CV_32F || (depth == CV_64F && doubleSupport))
        || ((flags & DFT_REAL_OUTPUT) && (flags & DFT_COMPLEX_OUTPUT)))
2170 2171 2172 2173 2174 2175 2176 2177
        return false;

    // if is not a multiplication of prime numbers { 2, 3, 5 }
    if (ssize.area() != getOptimalDFTSize(ssize.area()))
        return false;

    UMat src = _src.getUMat();
    bool inv = (flags & DFT_INVERSE) != 0 ? 1 : 0;
2178 2179 2180 2181

    if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
        nonzero_rows = _src.rows();
    bool is1d = (flags & DFT_ROWS) != 0 || nonzero_rows == 1;
2182

2183 2184
    FftType fftType = determineFFTType(cn == 1, cn == 2,
        (flags & DFT_REAL_OUTPUT) != 0, (flags & DFT_COMPLEX_OUTPUT) != 0, inv);
2185

2186
    UMat output;
2187
    if (fftType == C2C || fftType == R2C)
Alexander Karsakov's avatar
Alexander Karsakov committed
2188
    {
2189
        // complex output
2190
        _dst.create(src.size(), CV_MAKETYPE(depth, 2));
2191
        output = _dst.getUMat();
2192
    }
2193
    else
Alexander Karsakov's avatar
Alexander Karsakov committed
2194
    {
2195
        // real output
2196 2197
        if (is1d)
        {
2198
            _dst.create(src.size(), CV_MAKETYPE(depth, 1));
2199 2200 2201
            output = _dst.getUMat();
        }
        else
2202
        {
2203 2204
            _dst.create(src.size(), CV_MAKETYPE(depth, 1));
            output.create(src.size(), CV_MAKETYPE(depth, 2));
2205
        }
Alexander Karsakov's avatar
Alexander Karsakov committed
2206
    }
2207

2208
    bool result = false;
2209
    if (!inv)
2210
    {
2211 2212
        int nonzero_cols = fftType == R2R ? output.cols/2 + 1 : output.cols;
        result = ocl_dft_rows(src, output, nonzero_rows, flags, fftType);
2213
        if (!is1d)
2214
            result = result && ocl_dft_cols(output, _dst, nonzero_cols, flags, fftType);
2215 2216
    }
    else
2217
    {
2218 2219 2220
        if (fftType == C2C)
        {
            // complex output
2221
            result = ocl_dft_rows(src, output, nonzero_rows, flags, fftType);
2222
            if (!is1d)
2223
                result = result && ocl_dft_cols(output, output, output.cols, flags, fftType);
2224 2225 2226 2227 2228
        }
        else
        {
            if (is1d)
            {
2229
                result = ocl_dft_rows(src, output, nonzero_rows, flags, fftType);
2230 2231 2232
            }
            else
            {
2233
                int nonzero_cols = src.cols/2 + 1;
2234 2235
                result = ocl_dft_cols(src, output, nonzero_cols, flags, fftType);
                result = result && ocl_dft_rows(output, _dst, nonzero_rows, flags, fftType);
2236 2237
            }
        }
Alexander Karsakov's avatar
Alexander Karsakov committed
2238
    }
2239
    return result;
2240 2241
}

2242 2243
} // namespace cv;

2244 2245
#endif

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
#ifdef HAVE_CLAMDFFT

namespace cv {

#define CLAMDDFT_Assert(func) \
    { \
        clAmdFftStatus s = (func); \
        CV_Assert(s == CLFFT_SUCCESS); \
    }

class PlanCache
{
    struct FftPlan
    {
        FftPlan(const Size & _dft_size, int _src_step, int _dst_step, bool _doubleFP, bool _inplace, int _flags, FftType _fftType) :
            dft_size(_dft_size), src_step(_src_step), dst_step(_dst_step),
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2262 2263
            doubleFP(_doubleFP), inplace(_inplace), flags(_flags), fftType(_fftType),
            context((cl_context)ocl::Context::getDefault().ptr()), plHandle(0)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2264 2265 2266 2267 2268 2269 2270 2271 2272
        {
            bool dft_inverse = (flags & DFT_INVERSE) != 0;
            bool dft_scale = (flags & DFT_SCALE) != 0;
            bool dft_rows = (flags & DFT_ROWS) != 0;

            clAmdFftLayout inLayout = CLFFT_REAL, outLayout = CLFFT_REAL;
            clAmdFftDim dim = dft_size.height == 1 || dft_rows ? CLFFT_1D : CLFFT_2D;

            size_t batchSize = dft_rows ? dft_size.height : 1;
2273
            size_t clLengthsIn[3] = { (size_t)dft_size.width, dft_rows ? 1 : (size_t)dft_size.height, 1 };
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            size_t clStridesIn[3] = { 1, 1, 1 };
            size_t clStridesOut[3]  = { 1, 1, 1 };
            int elemSize = doubleFP ? sizeof(double) : sizeof(float);

            switch (fftType)
            {
            case C2C:
                inLayout = CLFFT_COMPLEX_INTERLEAVED;
                outLayout = CLFFT_COMPLEX_INTERLEAVED;
                clStridesIn[1] = src_step / (elemSize << 1);
                clStridesOut[1] = dst_step / (elemSize << 1);
                break;
            case R2C:
                inLayout = CLFFT_REAL;
                outLayout = CLFFT_HERMITIAN_INTERLEAVED;
                clStridesIn[1] = src_step / elemSize;
                clStridesOut[1] = dst_step / (elemSize << 1);
                break;
            case C2R:
                inLayout = CLFFT_HERMITIAN_INTERLEAVED;
                outLayout = CLFFT_REAL;
                clStridesIn[1] = src_step / (elemSize << 1);
                clStridesOut[1] = dst_step / elemSize;
                break;
            case R2R:
            default:
                CV_Error(Error::StsNotImplemented, "AMD Fft does not support this type");
                break;
            }

            clStridesIn[2] = dft_rows ? clStridesIn[1] : dft_size.width * clStridesIn[1];
            clStridesOut[2] = dft_rows ? clStridesOut[1] : dft_size.width * clStridesOut[1];

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2307
            CLAMDDFT_Assert(clAmdFftCreateDefaultPlan(&plHandle, (cl_context)ocl::Context::getDefault().ptr(), dim, clLengthsIn))
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

            // setting plan properties
            CLAMDDFT_Assert(clAmdFftSetPlanPrecision(plHandle, doubleFP ? CLFFT_DOUBLE : CLFFT_SINGLE));
            CLAMDDFT_Assert(clAmdFftSetResultLocation(plHandle, inplace ? CLFFT_INPLACE : CLFFT_OUTOFPLACE))
            CLAMDDFT_Assert(clAmdFftSetLayout(plHandle, inLayout, outLayout))
            CLAMDDFT_Assert(clAmdFftSetPlanBatchSize(plHandle, batchSize))
            CLAMDDFT_Assert(clAmdFftSetPlanInStride(plHandle, dim, clStridesIn))
            CLAMDDFT_Assert(clAmdFftSetPlanOutStride(plHandle, dim, clStridesOut))
            CLAMDDFT_Assert(clAmdFftSetPlanDistance(plHandle, clStridesIn[dim], clStridesOut[dim]))

            float scale = dft_scale ? 1.0f / (dft_rows ? dft_size.width : dft_size.area()) : 1.0f;
            CLAMDDFT_Assert(clAmdFftSetPlanScale(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD, scale))

            // ready to bake
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2322 2323
            cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
            CLAMDDFT_Assert(clAmdFftBakePlan(plHandle, 1, &queue, NULL, NULL))
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        }

        ~FftPlan()
        {
//            clAmdFftDestroyPlan(&plHandle);
        }

        friend class PlanCache;

    private:
        Size dft_size;
        int src_step, dst_step;
        bool doubleFP;
        bool inplace;
        int flags;
        FftType fftType;

        cl_context context;
        clAmdFftPlanHandle plHandle;
    };

public:
    static PlanCache & getInstance()
    {
2348
        CV_SINGLETON_LAZY_INIT_REF(PlanCache, new PlanCache())
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2349 2350 2351 2352 2353
    }

    clAmdFftPlanHandle getPlanHandle(const Size & dft_size, int src_step, int dst_step, bool doubleFP,
                                     bool inplace, int flags, FftType fftType)
    {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2354
        cl_context currentContext = (cl_context)ocl::Context::getDefault().ptr();
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2355

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2356
        for (size_t i = 0, size = planStorage.size(); i < size; ++i)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2357 2358
        {
            const FftPlan * const plan = planStorage[i];
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2359

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
            if (plan->dft_size == dft_size &&
                plan->flags == flags &&
                plan->src_step == src_step &&
                plan->dst_step == dst_step &&
                plan->doubleFP == doubleFP &&
                plan->fftType == fftType &&
                plan->inplace == inplace)
            {
                if (plan->context != currentContext)
                {
                    planStorage.erase(planStorage.begin() + i);
                    break;
                }

                return plan->plHandle;
            }
        }

        // no baked plan is found, so let's create a new one
2379
        Ptr<FftPlan> newPlan = Ptr<FftPlan>(new FftPlan(dft_size, src_step, dst_step, doubleFP, inplace, flags, fftType));
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        planStorage.push_back(newPlan);

        return newPlan->plHandle;
    }

    ~PlanCache()
    {
        planStorage.clear();
    }

protected:
    PlanCache() :
        planStorage()
    {
    }

2396
    std::vector<Ptr<FftPlan> > planStorage;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
};

extern "C" {

static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
{
    UMatData * u = (UMatData *)p;

    if( u && CV_XADD(&u->urefcount, -1) == 1 )
        u->currAllocator->deallocate(u);
    u = 0;

    clReleaseEvent(e), e = 0;
}

}

2414
static bool ocl_dft_amdfft(InputArray _src, OutputArray _dst, int flags)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    Size ssize = _src.size();

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
    if ( (!doubleSupport && depth == CV_64F) ||
         !(type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2) ||
         _src.offset() != 0)
        return false;

    // if is not a multiplication of prime numbers { 2, 3, 5 }
    if (ssize.area() != getOptimalDFTSize(ssize.area()))
        return false;

    int dst_complex_input = cn == 2 ? 1 : 0;
    bool dft_inverse = (flags & DFT_INVERSE) != 0 ? 1 : 0;
    int dft_complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
    bool dft_real_output = (flags & DFT_REAL_OUTPUT) != 0;

    CV_Assert(dft_complex_output + dft_real_output < 2);
    FftType fftType = (FftType)(dst_complex_input << 0 | dft_complex_output << 1);

    switch (fftType)
    {
    case C2C:
        _dst.create(ssize.height, ssize.width, CV_MAKE_TYPE(depth, 2));
        break;
    case R2C: // TODO implement it if possible
    case C2R: // TODO implement it if possible
    case R2R: // AMD Fft does not support this type
    default:
        return false;
    }

    UMat src = _src.getUMat(), dst = _dst.getUMat();
    bool inplace = src.u == dst.u;

    clAmdFftPlanHandle plHandle = PlanCache::getInstance().
            getPlanHandle(ssize, (int)src.step, (int)dst.step,
                          depth == CV_64F, inplace, flags, fftType);

    // get the bufferSize
    size_t bufferSize = 0;
    CLAMDDFT_Assert(clAmdFftGetTmpBufSize(plHandle, &bufferSize))
    UMat tmpBuffer(1, (int)bufferSize, CV_8UC1);

    cl_mem srcarg = (cl_mem)src.handle(ACCESS_READ);
    cl_mem dstarg = (cl_mem)dst.handle(ACCESS_RW);

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2464
    cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2465 2466 2467
    cl_event e = 0;

    CLAMDDFT_Assert(clAmdFftEnqueueTransform(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD,
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2468
                                       1, &queue, 0, NULL, &e,
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
                                       &srcarg, &dstarg, (cl_mem)tmpBuffer.handle(ACCESS_RW)))

    tmpBuffer.addref();
    clSetEventCallback(e, CL_COMPLETE, oclCleanupCallback, tmpBuffer.u);
    return true;
}

#undef DFT_ASSERT

}

#endif // HAVE_CLAMDFFT

2482 2483
namespace cv
{
2484 2485

template <typename T>
2486
static void complementComplex(T * ptr, size_t step, int n, int len, int dft_dims)
2487
{
2488 2489 2490
    T* p0 = (T*)ptr;
    size_t dstep = step/sizeof(p0[0]);
    for(int i = 0; i < len; i++ )
2491
    {
2492 2493
        T* p = p0 + dstep*i;
        T* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
2494

2495 2496 2497 2498
        for( int j = 1; j < (n+1)/2; j++ )
        {
            p[(n-j)*2] = q[j*2];
            p[(n-j)*2+1] = -q[j*2+1];
2499 2500
        }
    }
2501 2502
}

2503
static void complementComplexOutput(int depth, uchar * ptr, size_t step, int count, int len, int dft_dims)
2504 2505 2506
{
    if( depth == CV_32F )
        complementComplex((float*)ptr, step, count, len, dft_dims);
2507
    else
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        complementComplex((double*)ptr, step, count, len, dft_dims);
}

enum DftMode {
    InvalidDft = 0,
    FwdRealToCCS,
    FwdRealToComplex,
    FwdComplexToComplex,
    InvCCSToReal,
    InvComplexToReal,
    InvComplexToComplex,
};

enum DftDims {
    InvalidDim = 0,
    OneDim,
    OneDimColWise,
    TwoDims
};

inline const char * modeName(DftMode m)
{
    switch (m)
2531
    {
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    case InvalidDft: return "InvalidDft";
    case FwdRealToCCS: return "FwdRealToCCS";
    case FwdRealToComplex: return "FwdRealToComplex";
    case FwdComplexToComplex: return "FwdComplexToComplex";
    case InvCCSToReal: return "InvCCSToReal";
    case InvComplexToReal: return "InvComplexToReal";
    case InvComplexToComplex: return "InvComplexToComplex";
    }
    return 0;
}
2542

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
inline const char * dimsName(DftDims d)
{
    switch (d)
    {
    case InvalidDim: return "InvalidDim";
    case OneDim: return "OneDim";
    case OneDimColWise: return "OneDimColWise";
    case TwoDims: return "TwoDims";
    };
    return 0;
}

template <typename T>
inline bool isInv(T mode)
{
    switch ((DftMode)mode)
    {
        case InvCCSToReal:
        case InvComplexToReal:
        case InvComplexToComplex: return true;
        default: return false;
2564 2565
    }
}
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

inline DftMode determineMode(bool inv, int cn1, int cn2)
{
    if (!inv)
    {
        if (cn1 == 1 && cn2 == 1)
            return FwdRealToCCS;
        else if (cn1 == 1 && cn2 == 2)
            return FwdRealToComplex;
        else if (cn1 == 2 && cn2 == 2)
            return FwdComplexToComplex;
    }
    else
    {
        if (cn1 == 1 && cn2 == 1)
            return InvCCSToReal;
        else if (cn1 == 2 && cn2 == 1)
            return InvComplexToReal;
        else if (cn1 == 2 && cn2 == 2)
            return InvComplexToComplex;
    }
    return InvalidDft;
2588 2589
}

2590 2591

inline DftDims determineDims(int rows, int cols, bool isRowWise, bool isContinuous)
2592
{
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    // printf("%d x %d (%d, %d)\n", rows, cols, isRowWise, isContinuous);
    if (isRowWise)
        return OneDim;
    if (cols == 1 && rows > 1) // one-column-shaped input
    {
        if (isContinuous)
            return OneDim;
        else
            return OneDimColWise;
    }
    if (rows == 1)
        return OneDim;
    if (cols > 1 && rows > 1)
        return TwoDims;
    return InvalidDim;
}
2609

2610
class OcvDftImpl CV_FINAL : public hal::DFT2D
2611 2612
{
protected:
2613 2614
    Ptr<hal::DFT1D> contextA;
    Ptr<hal::DFT1D> contextB;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
    bool needBufferA;
    bool needBufferB;
    bool inv;
    int width;
    int height;
    DftMode mode;
    int elem_size;
    int complex_elem_size;
    int depth;
    bool real_transform;
    int nonzero_rows;
    bool isRowTransform;
    bool isScaled;
    std::vector<int> stages;
    bool useIpp;
    int src_channels;
    int dst_channels;

    AutoBuffer<uchar> tmp_bufA;
    AutoBuffer<uchar> tmp_bufB;
    AutoBuffer<uchar> buf0;
    AutoBuffer<uchar> buf1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2637

2638 2639
public:
    OcvDftImpl()
2640
    {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        needBufferA = false;
        needBufferB = false;
        inv = false;
        width = 0;
        height = 0;
        mode = InvalidDft;
        elem_size = 0;
        complex_elem_size = 0;
        depth = 0;
        real_transform = false;
        nonzero_rows = 0;
        isRowTransform = false;
        isScaled = false;
        useIpp = false;
        src_channels = 0;
        dst_channels = 0;
    }

    void init(int _width, int _height, int _depth, int _src_channels, int _dst_channels, int flags, int _nonzero_rows)
    {
        bool isComplex = _src_channels != _dst_channels;
        nonzero_rows = _nonzero_rows;
        width = _width;
        height = _height;
        depth = _depth;
        src_channels = _src_channels;
        dst_channels = _dst_channels;
        bool isInverse = (flags & CV_HAL_DFT_INVERSE) != 0;
        bool isInplace = (flags & CV_HAL_DFT_IS_INPLACE) != 0;
        bool isContinuous = (flags & CV_HAL_DFT_IS_CONTINUOUS) != 0;
        mode = determineMode(isInverse, _src_channels, _dst_channels);
        inv = isInverse;
        isRowTransform = (flags & CV_HAL_DFT_ROWS) != 0;
        isScaled = (flags & CV_HAL_DFT_SCALE) != 0;
        needBufferA = false;
        needBufferB = false;
        real_transform = (mode != FwdComplexToComplex && mode != InvComplexToComplex);

        elem_size = (depth == CV_32F) ? sizeof(float) : sizeof(double);
        complex_elem_size = elem_size * 2;
        if( !real_transform )
            elem_size = complex_elem_size;

#if defined USE_IPP_DFT
        CV_IPP_CHECK()
        {
            if (nonzero_rows == 0 && depth == CV_32F && ((width * height)>(int)(1<<6)))
            {
                if (mode == FwdComplexToComplex || mode == InvComplexToComplex || mode == FwdRealToCCS || mode == InvCCSToReal)
                {
                    useIpp = true;
                    return;
                }
            }
        }
2696 2697
#endif

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        DftDims dims = determineDims(height, width, isRowTransform, isContinuous);
        if (dims == TwoDims)
        {
            stages.resize(2);
            if (mode == InvCCSToReal || mode == InvComplexToReal)
            {
                stages[0] = 1;
                stages[1] = 0;
            }
            else
            {
                stages[0] = 0;
                stages[1] = 1;
            }
        }
        else
        {
            stages.resize(1);
            if (dims == OneDimColWise)
                stages[0] = 1;
            else
                stages[0] = 0;
        }
2721

2722 2723 2724 2725 2726 2727 2728
        for(uint stageIndex = 0; stageIndex < stages.size(); ++stageIndex)
        {
            if (stageIndex == 1)
            {
                isInplace = true;
                isComplex = false;
            }
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
            int stage = stages[stageIndex];
            bool isLastStage = (stageIndex + 1 == stages.size());

            int len, count;

            int f = 0;
            if (inv)
                f |= CV_HAL_DFT_INVERSE;
            if (isScaled)
                f |= CV_HAL_DFT_SCALE;
            if (isRowTransform)
                f |= CV_HAL_DFT_ROWS;
            if (isComplex)
                f |= CV_HAL_DFT_COMPLEX_OUTPUT;
            if (real_transform)
                f |= CV_HAL_DFT_REAL_OUTPUT;
            if (!isLastStage)
                f |= CV_HAL_DFT_TWO_STAGE;

            if( stage == 0 ) // row-wise transform
            {
                if (width == 1 && !isRowTransform )
                {
                    len = height;
                    count = width;
                }
                else
                {
                    len = width;
                    count = height;
                }
                needBufferA = isInplace;
2762
                contextA = hal::DFT1D::create(len, count, depth, f, &needBufferA);
2763 2764 2765 2766 2767 2768 2769 2770 2771
                if (needBufferA)
                    tmp_bufA.allocate(len * complex_elem_size);
            }
            else
            {
                len = height;
                count = width;
                f |= CV_HAL_DFT_STAGE_COLS;
                needBufferB = isInplace;
2772
                contextB = hal::DFT1D::create(len, count, depth, f, &needBufferB);
2773 2774 2775 2776 2777 2778 2779 2780
                if (needBufferB)
                    tmp_bufB.allocate(len * complex_elem_size);

                buf0.allocate(len * complex_elem_size);
                buf1.allocate(len * complex_elem_size);
            }
        }
    }
2781

2782
    void apply(const uchar * src, size_t src_step, uchar * dst, size_t dst_step) CV_OVERRIDE
2783
    {
2784 2785
#if defined USE_IPP_DFT
        if (useIpp)
Elena Gvozdeva's avatar
Elena Gvozdeva committed
2786
        {
2787 2788
            int ipp_norm_flag = !isScaled ? 8 : inv ? 2 : 1;
            if (!isRowTransform)
2789
            {
2790
                if (mode == FwdComplexToComplex || mode == InvComplexToComplex)
2791
                {
2792
                    if (ippi_DFT_C_32F(src, src_step, dst, dst_step, width, height, inv, ipp_norm_flag))
2793 2794 2795 2796 2797 2798
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP);
                        return;
                    }
                    setIppErrorStatus();
                }
2799
                else if (mode == FwdRealToCCS || mode == InvCCSToReal)
2800
                {
2801
                    if (ippi_DFT_R_32F(src, src_step, dst, dst_step, width, height, inv, ipp_norm_flag))
2802 2803 2804 2805 2806 2807
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP);
                        return;
                    }
                    setIppErrorStatus();
                }
2808
            }
2809
            else
2810
            {
2811
                if (mode == FwdComplexToComplex || mode == InvComplexToComplex)
2812 2813
                {
                    ippiDFT_C_Func ippiFunc = inv ? (ippiDFT_C_Func)ippiDFTInv_CToC_32fc_C1R : (ippiDFT_C_Func)ippiDFTFwd_CToC_32fc_C1R;
2814
                    if (Dft_C_IPPLoop(src, src_step, dst, dst_step, width, height, IPPDFT_C_Functor(ippiFunc),ipp_norm_flag))
2815 2816 2817 2818 2819 2820
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
                        return;
                    }
                    setIppErrorStatus();
                }
2821
                else if (mode == FwdRealToCCS || mode == InvCCSToReal)
2822 2823
                {
                    ippiDFT_R_Func ippiFunc = inv ? (ippiDFT_R_Func)ippiDFTInv_PackToR_32f_C1R : (ippiDFT_R_Func)ippiDFTFwd_RToPack_32f_C1R;
2824
                    if (Dft_R_IPPLoop(src, src_step, dst, dst_step, width, height, IPPDFT_R_Functor(ippiFunc),ipp_norm_flag))
2825 2826 2827 2828 2829 2830
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
                        return;
                    }
                    setIppErrorStatus();
                }
2831
            }
2832
            return;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
2833 2834 2835
        }
#endif

2836 2837 2838 2839
        for(uint stageIndex = 0; stageIndex < stages.size(); ++stageIndex)
        {
            int stage_src_channels = src_channels;
            int stage_dst_channels = dst_channels;
2840

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            if (stageIndex == 1)
            {
                src = dst;
                src_step = dst_step;
                stage_src_channels = stage_dst_channels;
            }

            int stage = stages[stageIndex];
            bool isLastStage = (stageIndex + 1 == stages.size());
            bool isComplex = stage_src_channels != stage_dst_channels;

            if( stage == 0 )
                rowDft(src, src_step, dst, dst_step, isComplex, isLastStage);
            else
                colDft(src, src_step, dst, dst_step, stage_src_channels, stage_dst_channels, isLastStage);
        }
    }

protected:
2860

2861
    void rowDft(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, bool isComplex, bool isLastStage)
2862
    {
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
        int len, count;
        if (width == 1 && !isRowTransform )
        {
            len = height;
            count = width;
        }
        else
        {
            len = width;
            count = height;
        }
        int dptr_offset = 0;
        int dst_full_len = len*elem_size;

        if( needBufferA )
        {
            if (mode == FwdRealToCCS && (len & 1) && len > 1)
                dptr_offset = elem_size;
        }

        if( !inv && isComplex )
            dst_full_len += (len & 1) ? elem_size : complex_elem_size;

        int nz = nonzero_rows;
        if( nz <= 0 || nz > count )
            nz = count;
2889

2890 2891
        int i;
        for( i = 0; i < nz; i++ )
2892
        {
2893 2894 2895 2896 2897
            const uchar* sptr = src_data + src_step * i;
            uchar* dptr0 = dst_data + dst_step * i;
            uchar* dptr = dptr0;

            if( needBufferA )
2898
                dptr = tmp_bufA.data();
2899

2900
            contextA->apply(sptr, dptr);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

            if( needBufferA )
                memcpy( dptr0, dptr + dptr_offset, dst_full_len );
        }

        for( ; i < count; i++ )
        {
            uchar* dptr0 = dst_data + dst_step * i;
            memset( dptr0, 0, dst_full_len );
        }
        if(isLastStage &&  mode == FwdRealToComplex)
            complementComplexOutput(depth, dst_data, dst_step, len, nz, 1);
    }

2915
    void colDft(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int stage_src_channels, int stage_dst_channels, bool isLastStage)
2916 2917 2918 2919 2920 2921 2922 2923
    {
        int len = height;
        int count = width;
        int a = 0, b = count;
        uchar *dbuf0, *dbuf1;
        const uchar* sptr0 = src_data;
        uchar* dptr0 = dst_data;

2924
        dbuf0 = buf0.data(), dbuf1 = buf1.data();
2925 2926 2927

        if( needBufferB )
        {
2928 2929
            dbuf1 = tmp_bufB.data();
            dbuf0 = buf1.data();
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
        }

        if( real_transform )
        {
            int even;
            a = 1;
            even = (count & 1) == 0;
            b = (count+1)/2;
            if( !inv )
            {
2940 2941
                memset( buf0.data(), 0, len*complex_elem_size );
                CopyColumn( sptr0, src_step, buf0.data(), complex_elem_size, len, elem_size );
2942 2943 2944
                sptr0 += stage_dst_channels*elem_size;
                if( even )
                {
2945
                    memset( buf1.data(), 0, len*complex_elem_size );
2946
                    CopyColumn( sptr0 + (count-2)*elem_size, src_step,
2947
                                buf1.data(), complex_elem_size, len, elem_size );
2948 2949 2950 2951
                }
            }
            else if( stage_src_channels == 1 )
            {
2952 2953
                CopyColumn( sptr0, src_step, buf0.data(), elem_size, len, elem_size );
                ExpandCCS( buf0.data(), len, elem_size );
2954 2955 2956
                if( even )
                {
                    CopyColumn( sptr0 + (count-1)*elem_size, src_step,
2957 2958
                                buf1.data(), elem_size, len, elem_size );
                    ExpandCCS( buf1.data(), len, elem_size );
2959 2960 2961 2962
                }
                sptr0 += elem_size;
            }
            else
2963
            {
2964
                CopyColumn( sptr0, src_step, buf0.data(), complex_elem_size, len, complex_elem_size );
2965 2966 2967
                if( even )
                {
                    CopyColumn( sptr0 + b*complex_elem_size, src_step,
2968
                                   buf1.data(), complex_elem_size, len, complex_elem_size );
2969 2970 2971 2972 2973
                }
                sptr0 += complex_elem_size;
            }

            if( even )
2974 2975
                contextB->apply(buf1.data(), dbuf1);
            contextB->apply(buf0.data(), dbuf0);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

            if( stage_dst_channels == 1 )
            {
                if( !inv )
                {
                    // copy the half of output vector to the first/last column.
                    // before doing that, defgragment the vector
                    memcpy( dbuf0 + elem_size, dbuf0, elem_size );
                    CopyColumn( dbuf0 + elem_size, elem_size, dptr0,
                                   dst_step, len, elem_size );
                    if( even )
                    {
                        memcpy( dbuf1 + elem_size, dbuf1, elem_size );
                        CopyColumn( dbuf1 + elem_size, elem_size,
                                       dptr0 + (count-1)*elem_size,
                                       dst_step, len, elem_size );
                    }
                    dptr0 += elem_size;
                }
                else
                {
                    // copy the real part of the complex vector to the first/last column
                    CopyColumn( dbuf0, complex_elem_size, dptr0, dst_step, len, elem_size );
                    if( even )
                        CopyColumn( dbuf1, complex_elem_size, dptr0 + (count-1)*elem_size,
                                       dst_step, len, elem_size );
                    dptr0 += elem_size;
                }
            }
            else
            {
                assert( !inv );
                CopyColumn( dbuf0, complex_elem_size, dptr0,
                               dst_step, len, complex_elem_size );
                if( even )
                    CopyColumn( dbuf1, complex_elem_size,
                                   dptr0 + b*complex_elem_size,
                                   dst_step, len, complex_elem_size );
                dptr0 += complex_elem_size;
3015 3016
            }
        }
3017 3018

        for(int i = a; i < b; i += 2 )
3019
        {
3020 3021
            if( i+1 < b )
            {
3022 3023
                CopyFrom2Columns( sptr0, src_step, buf0.data(), buf1.data(), len, complex_elem_size );
                contextB->apply(buf1.data(), dbuf1);
3024 3025
            }
            else
3026
                CopyColumn( sptr0, src_step, buf0.data(), complex_elem_size, len, complex_elem_size );
3027

3028
            contextB->apply(buf0.data(), dbuf0);
3029 3030 3031 3032 3033 3034 3035

            if( i+1 < b )
                CopyTo2Columns( dbuf0, dbuf1, dptr0, dst_step, len, complex_elem_size );
            else
                CopyColumn( dbuf0, complex_elem_size, dptr0, dst_step, len, complex_elem_size );
            sptr0 += 2*complex_elem_size;
            dptr0 += 2*complex_elem_size;
3036
        }
3037 3038 3039 3040
        if(isLastStage && mode == FwdRealToComplex)
            complementComplexOutput(depth, dst_data, dst_step, count, len, 2);
    }
};
3041

3042
class OcvDftBasicImpl CV_FINAL : public hal::DFT1D
3043 3044 3045 3046 3047 3048
{
public:
    OcvDftOptions opt;
    int _factors[34];
    AutoBuffer<uchar> wave_buf;
    AutoBuffer<int> itab_buf;
3049
#ifdef USE_IPP_DFT
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
    AutoBuffer<uchar> ippbuf;
    AutoBuffer<uchar> ippworkbuf;
#endif

public:
    OcvDftBasicImpl()
    {
        opt.factors = _factors;
    }
    void init(int len, int count, int depth, int flags, bool *needBuffer)
    {
        int prev_len = opt.n;

        int stage = (flags & CV_HAL_DFT_STAGE_COLS) != 0 ? 1 : 0;
        int complex_elem_size = depth == CV_32F ? sizeof(Complex<float>) : sizeof(Complex<double>);
        opt.isInverse = (flags & CV_HAL_DFT_INVERSE) != 0;
        bool real_transform = (flags & CV_HAL_DFT_REAL_OUTPUT) != 0;
        opt.isComplex = (stage == 0) && (flags & CV_HAL_DFT_COMPLEX_OUTPUT) != 0;
        bool needAnotherStage = (flags & CV_HAL_DFT_TWO_STAGE) != 0;

        opt.scale = 1;
        opt.tab_size = len;
        opt.n = len;

        opt.useIpp = false;
    #ifdef USE_IPP_DFT
        opt.ipp_spec = 0;
        opt.ipp_work = 0;

        if( CV_IPP_CHECK_COND && (opt.n*count >= 64) ) // use IPP DFT if available
3080
        {
3081
            int ipp_norm_flag = (flags & CV_HAL_DFT_SCALE) == 0 ? 8 : opt.isInverse ? 2 : 1;
3082 3083 3084
            int specsize=0, initsize=0, worksize=0;
            IppDFTGetSizeFunc getSizeFunc = 0;
            IppDFTInitFunc initFunc = 0;
3085

3086 3087 3088
            if( real_transform && stage == 0 )
            {
                if( depth == CV_32F )
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3089 3090
                {
                    getSizeFunc = ippsDFTGetSize_R_32f;
3091
                    initFunc = (IppDFTInitFunc)ippsDFTInit_R_32f;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3092
                }
3093
                else
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3094 3095
                {
                    getSizeFunc = ippsDFTGetSize_R_64f;
3096
                    initFunc = (IppDFTInitFunc)ippsDFTInit_R_64f;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3097
                }
3098 3099 3100 3101
            }
            else
            {
                if( depth == CV_32F )
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3102 3103
                {
                    getSizeFunc = ippsDFTGetSize_C_32fc;
3104
                    initFunc = (IppDFTInitFunc)ippsDFTInit_C_32fc;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3105
                }
3106
                else
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3107 3108
                {
                    getSizeFunc = ippsDFTGetSize_C_64fc;
3109
                    initFunc = (IppDFTInitFunc)ippsDFTInit_C_64fc;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
3110
                }
3111
            }
3112
            if( getSizeFunc(opt.n, ipp_norm_flag, ippAlgHintNone, &specsize, &initsize, &worksize) >= 0 )
3113 3114
            {
                ippbuf.allocate(specsize + initsize + 64);
3115 3116 3117 3118 3119 3120
                opt.ipp_spec = alignPtr(&ippbuf[0], 32);
                ippworkbuf.allocate(worksize + 32);
                opt.ipp_work = alignPtr(&ippworkbuf[0], 32);
                uchar* initbuf = alignPtr((uchar*)opt.ipp_spec + specsize, 32);
                if( initFunc(opt.n, ipp_norm_flag, ippAlgHintNone, opt.ipp_spec, initbuf) >= 0 )
                    opt.useIpp = true;
3121
            }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3122 3123
            else
                setIppErrorStatus();
3124
        }
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    #endif

        if (!opt.useIpp)
        {
            if (len != prev_len)
            {
                opt.nf = DFTFactorize( opt.n, opt.factors );
            }
            bool inplace_transform = opt.factors[0] == opt.factors[opt.nf-1];
            if (len != prev_len || (!inplace_transform && opt.isInverse && real_transform))
            {
                wave_buf.allocate(opt.n*complex_elem_size);
3137
                opt.wave = wave_buf.data();
3138
                itab_buf.allocate(opt.n);
3139
                opt.itab = itab_buf.data();
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
                DFTInit( opt.n, opt.nf, opt.factors, opt.itab, complex_elem_size,
                         opt.wave, stage == 0 && opt.isInverse && real_transform );
            }
            // otherwise reuse the tables calculated on the previous stage
            if (needBuffer)
            {
                if( (stage == 0 && ((*needBuffer && !inplace_transform) || (real_transform && (len & 1)))) ||
                    (stage == 1 && !inplace_transform) )
                {
                    *needBuffer = true;
                }
            }
        }
3153 3154
        else
        {
3155
            if (needBuffer)
3156
            {
3157
                *needBuffer = false;
3158 3159 3160 3161
            }
        }

        {
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
            static DFTFunc dft_tbl[6] =
            {
                (DFTFunc)DFT_32f,
                (DFTFunc)RealDFT_32f,
                (DFTFunc)CCSIDFT_32f,
                (DFTFunc)DFT_64f,
                (DFTFunc)RealDFT_64f,
                (DFTFunc)CCSIDFT_64f
            };
            int idx = 0;
            if (stage == 0)
            {
                if (real_transform)
                {
                    if (!opt.isInverse)
                        idx = 1;
                    else
                        idx = 2;
                }
            }
            if (depth == CV_64F)
                idx += 3;
3184

3185
            opt.dft_func = dft_tbl[idx];
3186 3187
        }

3188
        if(!needAnotherStage && (flags & CV_HAL_DFT_SCALE) != 0)
3189
        {
3190 3191 3192 3193 3194 3195
            int rowCount = count;
            if (stage == 0 && (flags & CV_HAL_DFT_ROWS) != 0)
                rowCount = 1;
            opt.scale = 1./(len * rowCount);
        }
    }
3196

3197
    void apply(const uchar *src, uchar *dst) CV_OVERRIDE
3198 3199 3200
    {
        opt.dft_func(opt, src, dst);
    }
3201

3202 3203
    void free() {}
};
3204

3205
struct ReplacementDFT1D : public hal::DFT1D
3206
{
3207 3208 3209 3210 3211
    cvhalDFT *context;
    bool isInitialized;

    ReplacementDFT1D() : context(0), isInitialized(false) {}
    bool init(int len, int count, int depth, int flags, bool *needBuffer)
3212
    {
3213 3214 3215
        int res = cv_hal_dftInit1D(&context, len, count, depth, flags, needBuffer);
        isInitialized = (res == CV_HAL_ERROR_OK);
        return isInitialized;
3216
    }
3217
    void apply(const uchar *src, uchar *dst) CV_OVERRIDE
3218
    {
3219 3220 3221 3222
        if (isInitialized)
        {
            CALL_HAL(dft1D, cv_hal_dft1D, context, src, dst);
        }
3223
    }
3224
    ~ReplacementDFT1D()
3225
    {
3226
        if (isInitialized)
3227
        {
3228
            CALL_HAL(dftFree1D, cv_hal_dftFree1D, context);
3229 3230
        }
    }
3231
};
3232

3233
struct ReplacementDFT2D : public hal::DFT2D
3234
{
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
    cvhalDFT *context;
    bool isInitialized;

    ReplacementDFT2D() : context(0), isInitialized(false) {}
    bool init(int width, int height, int depth,
              int src_channels, int dst_channels,
              int flags, int nonzero_rows)
    {
        int res = cv_hal_dftInit2D(&context, width, height, depth, src_channels, dst_channels, flags, nonzero_rows);
        isInitialized = (res == CV_HAL_ERROR_OK);
        return isInitialized;
    }
3247
    void apply(const uchar *src, size_t src_step, uchar *dst, size_t dst_step) CV_OVERRIDE
3248
    {
3249
        if (isInitialized)
3250
        {
3251
            CALL_HAL(dft2D, cv_hal_dft2D, context, src, src_step, dst, dst_step);
3252 3253
        }
    }
3254
    ~ReplacementDFT2D()
3255
    {
3256 3257 3258 3259
        if (isInitialized)
        {
            CALL_HAL(dftFree2D, cv_hal_dftFree1D, context);
        }
3260
    }
3261
};
3262

3263
namespace hal {
3264

3265
//================== 1D ======================
3266

3267
Ptr<DFT1D> DFT1D::create(int len, int count, int depth, int flags, bool *needBuffer)
3268 3269
{
    {
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        ReplacementDFT1D *impl = new ReplacementDFT1D();
        if (impl->init(len, count, depth, flags, needBuffer))
        {
            return Ptr<DFT1D>(impl);
        }
        delete impl;
    }
    {
        OcvDftBasicImpl *impl = new OcvDftBasicImpl();
        impl->init(len, count, depth, flags, needBuffer);
        return Ptr<DFT1D>(impl);
3281 3282 3283
    }
}

3284 3285 3286 3287 3288
//================== 2D ======================

Ptr<DFT2D> DFT2D::create(int width, int height, int depth,
                         int src_channels, int dst_channels,
                         int flags, int nonzero_rows)
3289 3290
{
    {
3291 3292
        ReplacementDFT2D *impl = new ReplacementDFT2D();
        if (impl->init(width, height, depth, src_channels, dst_channels, flags, nonzero_rows))
3293
        {
3294
            return Ptr<DFT2D>(impl);
3295
        }
3296
        delete impl;
3297 3298
    }
    {
3299
        if(width == 1 && nonzero_rows > 0 )
3300
        {
3301 3302 3303
            CV_Error( CV_StsNotImplemented,
            "This mode (using nonzero_rows with a single-column matrix) breaks the function's logic, so it is prohibited.\n"
            "For fast convolution/correlation use 2-column matrix or single-row matrix instead" );
3304
        }
3305 3306 3307
        OcvDftImpl *impl = new OcvDftImpl();
        impl->init(width, height, depth, src_channels, dst_channels, flags, nonzero_rows);
        return Ptr<DFT2D>(impl);
3308 3309
    }
}
3310

3311 3312
} // cv::hal::
} // cv::
3313 3314


3315 3316
void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
{
3317
    CV_INSTRUMENT_REGION();
3318

3319 3320 3321 3322 3323
#ifdef HAVE_CLAMDFFT
    CV_OCL_RUN(ocl::haveAmdFft() && ocl::Device::getDefault().type() != ocl::Device::TYPE_CPU &&
            _dst.isUMat() && _src0.dims() <= 2 && nonzero_rows == 0,
               ocl_dft_amdfft(_src0, _dst, flags))
#endif
3324

3325 3326 3327 3328
#ifdef HAVE_OPENCL
    CV_OCL_RUN(_dst.isUMat() && _src0.dims() <= 2,
               ocl_dft(_src0, _dst, flags, nonzero_rows))
#endif
3329

3330 3331 3332 3333
    Mat src0 = _src0.getMat(), src = src0;
    bool inv = (flags & DFT_INVERSE) != 0;
    int type = src.type();
    int depth = src.depth();
3334

3335
    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
3336

3337 3338 3339
    // Fail if DFT_COMPLEX_INPUT is specified, but src is not 2 channels.
    CV_Assert( !((flags & DFT_COMPLEX_INPUT) && src.channels() != 2) );

3340 3341 3342 3343 3344 3345
    if( !inv && src.channels() == 1 && (flags & DFT_COMPLEX_OUTPUT) )
        _dst.create( src.size(), CV_MAKETYPE(depth, 2) );
    else if( inv && src.channels() == 2 && (flags & DFT_REAL_OUTPUT) )
        _dst.create( src.size(), depth );
    else
        _dst.create( src.size(), type );
3346

3347
    Mat dst = _dst.getMat();
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    int f = 0;
    if (src.isContinuous() && dst.isContinuous())
        f |= CV_HAL_DFT_IS_CONTINUOUS;
    if (inv)
        f |= CV_HAL_DFT_INVERSE;
    if (flags & DFT_ROWS)
        f |= CV_HAL_DFT_ROWS;
    if (flags & DFT_SCALE)
        f |= CV_HAL_DFT_SCALE;
    if (src.data == dst.data)
        f |= CV_HAL_DFT_IS_INPLACE;
3360 3361
    Ptr<hal::DFT2D> c = hal::DFT2D::create(src.cols, src.rows, depth, src.channels(), dst.channels(), f, nonzero_rows);
    c->apply(src.data, src.step, dst.data, dst.step);
3362 3363 3364
}


3365
void cv::idft( InputArray src, OutputArray dst, int flags, int nonzero_rows )
3366
{
3367
    CV_INSTRUMENT_REGION();
3368

3369 3370 3371
    dft( src, dst, flags | DFT_INVERSE, nonzero_rows );
}

3372 3373
#ifdef HAVE_OPENCL

3374 3375 3376 3377 3378
namespace cv {

static bool ocl_mulSpectrums( InputArray _srcA, InputArray _srcB,
                              OutputArray _dst, int flags, bool conjB )
{
3379 3380
    int atype = _srcA.type(), btype = _srcB.type(),
            rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    Size asize = _srcA.size(), bsize = _srcB.size();
    CV_Assert(asize == bsize);

    if ( !(atype == CV_32FC2 && btype == CV_32FC2) || flags != 0 )
        return false;

    UMat A = _srcA.getUMat(), B = _srcB.getUMat();
    CV_Assert(A.size() == B.size());

    _dst.create(A.size(), atype);
    UMat dst = _dst.getUMat();

    ocl::Kernel k("mulAndScaleSpectrums",
                  ocl::core::mulspectrums_oclsrc,
                  format("%s", conjB ? "-D CONJ" : ""));
    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnlyNoSize(A), ocl::KernelArg::ReadOnlyNoSize(B),
3400
           ocl::KernelArg::WriteOnly(dst), rowsPerWI);
3401

3402
    size_t globalsize[2] = { (size_t)asize.width, ((size_t)asize.height + rowsPerWI - 1) / rowsPerWI };
3403 3404 3405 3406 3407
    return k.run(2, globalsize, NULL, false);
}

}

3408 3409
#endif

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
namespace {

#define VAL(buf, elem) (((T*)((char*)data ## buf + (step ## buf * (elem))))[0])
#define MUL_SPECTRUMS_COL(A, B, C) \
    VAL(C, 0) = VAL(A, 0) * VAL(B, 0); \
    for (size_t j = 1; j <= rows - 2; j += 2) \
    { \
        double a_re = VAL(A, j), a_im = VAL(A, j + 1); \
        double b_re = VAL(B, j), b_im = VAL(B, j + 1); \
        if (conjB) b_im = -b_im; \
        double c_re = a_re * b_re - a_im * b_im; \
        double c_im = a_re * b_im + a_im * b_re; \
        VAL(C, j) = (T)c_re; VAL(C, j + 1) = (T)c_im; \
    } \
    if ((rows & 1) == 0) \
        VAL(C, rows-1) = VAL(A, rows-1) * VAL(B, rows-1)

template <typename T, bool conjB> static inline
void mulSpectrums_processCol_noinplace(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows)
{
    MUL_SPECTRUMS_COL(A, B, C);
}

template <typename T, bool conjB> static inline
void mulSpectrums_processCol_inplaceA(const T* dataB, T* dataAC, size_t stepB, size_t stepAC, size_t rows)
{
    MUL_SPECTRUMS_COL(AC, B, AC);
}
template <typename T, bool conjB, bool inplaceA> static inline
void mulSpectrums_processCol(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows)
{
    if (inplaceA)
        mulSpectrums_processCol_inplaceA<T, conjB>(dataB, dataC, stepB, stepC, rows);
    else
        mulSpectrums_processCol_noinplace<T, conjB>(dataA, dataB, dataC, stepA, stepB, stepC, rows);
}
#undef MUL_SPECTRUMS_COL
#undef VAL

template <typename T, bool conjB, bool inplaceA> static inline
void mulSpectrums_processCols(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows, size_t cols)
{
    mulSpectrums_processCol<T, conjB, inplaceA>(dataA, dataB, dataC, stepA, stepB, stepC, rows);
    if ((cols & 1) == 0)
    {
        mulSpectrums_processCol<T, conjB, inplaceA>(dataA + cols - 1, dataB + cols - 1, dataC + cols - 1, stepA, stepB, stepC, rows);
    }
}

#define VAL(buf, elem) (data ## buf[(elem)])
#define MUL_SPECTRUMS_ROW(A, B, C) \
    for (size_t j = j0; j < j1; j += 2) \
    { \
        double a_re = VAL(A, j), a_im = VAL(A, j + 1); \
        double b_re = VAL(B, j), b_im = VAL(B, j + 1); \
        if (conjB) b_im = -b_im; \
        double c_re = a_re * b_re - a_im * b_im; \
        double c_im = a_re * b_im + a_im * b_re; \
        VAL(C, j) = (T)c_re; VAL(C, j + 1) = (T)c_im; \
    }
template <typename T, bool conjB> static inline
void mulSpectrums_processRow_noinplace(const T* dataA, const T* dataB, T* dataC, size_t j0, size_t j1)
{
    MUL_SPECTRUMS_ROW(A, B, C);
}
template <typename T, bool conjB> static inline
void mulSpectrums_processRow_inplaceA(const T* dataB, T* dataAC, size_t j0, size_t j1)
{
    MUL_SPECTRUMS_ROW(AC, B, AC);
}
template <typename T, bool conjB, bool inplaceA> static inline
void mulSpectrums_processRow(const T* dataA, const T* dataB, T* dataC, size_t j0, size_t j1)
{
    if (inplaceA)
        mulSpectrums_processRow_inplaceA<T, conjB>(dataB, dataC, j0, j1);
    else
        mulSpectrums_processRow_noinplace<T, conjB>(dataA, dataB, dataC, j0, j1);
}
#undef MUL_SPECTRUMS_ROW
#undef VAL

template <typename T, bool conjB, bool inplaceA> static inline
void mulSpectrums_processRows(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows, size_t cols, size_t j0, size_t j1, bool is_1d_CN1)
{
    while (rows-- > 0)
    {
        if (is_1d_CN1)
            dataC[0] = dataA[0]*dataB[0];
        mulSpectrums_processRow<T, conjB, inplaceA>(dataA, dataB, dataC, j0, j1);
        if (is_1d_CN1 && (cols & 1) == 0)
            dataC[j1] = dataA[j1]*dataB[j1];

        dataA = (const T*)(((char*)dataA) + stepA);
        dataB = (const T*)(((char*)dataB) + stepB);
        dataC =       (T*)(((char*)dataC) + stepC);
    }
}


template <typename T, bool conjB, bool inplaceA> static inline
void mulSpectrums_Impl_(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows, size_t cols, size_t j0, size_t j1, bool is_1d, bool isCN1)
{
    if (!is_1d && isCN1)
    {
        mulSpectrums_processCols<T, conjB, inplaceA>(dataA, dataB, dataC, stepA, stepB, stepC, rows, cols);
    }
    mulSpectrums_processRows<T, conjB, inplaceA>(dataA, dataB, dataC, stepA, stepB, stepC, rows, cols, j0, j1, is_1d && isCN1);
}
template <typename T, bool conjB> static inline
void mulSpectrums_Impl(const T* dataA, const T* dataB, T* dataC, size_t stepA, size_t stepB, size_t stepC, size_t rows, size_t cols, size_t j0, size_t j1, bool is_1d, bool isCN1)
{
    if (dataA == dataC)
        mulSpectrums_Impl_<T, conjB, true>(dataA, dataB, dataC, stepA, stepB, stepC, rows, cols, j0, j1, is_1d, isCN1);
    else
        mulSpectrums_Impl_<T, conjB, false>(dataA, dataB, dataC, stepA, stepB, stepC, rows, cols, j0, j1, is_1d, isCN1);
}

} // namespace

3529
void cv::mulSpectrums( InputArray _srcA, InputArray _srcB,
3530
                       OutputArray _dst, int flags, bool conjB )
3531
{
3532
    CV_INSTRUMENT_REGION();
3533

3534
    CV_OCL_RUN(_dst.isUMat() && _srcA.dims() <= 2 && _srcB.dims() <= 2,
3535 3536
            ocl_mulSpectrums(_srcA, _srcB, _dst, flags, conjB))

3537
    Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
3538
    int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
3539
    size_t rows = srcA.rows, cols = srcA.cols;
3540 3541 3542 3543

    CV_Assert( type == srcB.type() && srcA.size() == srcB.size() );
    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );

3544 3545
    _dst.create( srcA.rows, srcA.cols, type );
    Mat dst = _dst.getMat();
3546

3547 3548 3549 3550 3551 3552 3553 3554 3555
    // correct inplace support
    // Case 'dst.data == srcA.data' is handled by implementation,
    // because it is used frequently (filter2D, matchTemplate)
    if (dst.data == srcB.data)
        srcB = srcB.clone(); // workaround for B only

    bool is_1d = (flags & DFT_ROWS)
        || (rows == 1)
        || (cols == 1 && srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous());
3556 3557 3558 3559

    if( is_1d && !(flags & DFT_ROWS) )
        cols = cols + rows - 1, rows = 1;

3560 3561 3562
    bool isCN1 = cn == 1;
    size_t j0 = isCN1 ? 1 : 0;
    size_t j1 = cols*cn - (((cols & 1) == 0 && cn == 1) ? 1 : 0);
3563

3564
    if (depth == CV_32F)
3565
    {
3566 3567 3568
        const float* dataA = srcA.ptr<float>();
        const float* dataB = srcB.ptr<float>();
        float* dataC = dst.ptr<float>();
3569 3570 3571 3572
        if (!conjB)
            mulSpectrums_Impl<float, false>(dataA, dataB, dataC, srcA.step, srcB.step, dst.step, rows, cols, j0, j1, is_1d, isCN1);
        else
            mulSpectrums_Impl<float, true>(dataA, dataB, dataC, srcA.step, srcB.step, dst.step, rows, cols, j0, j1, is_1d, isCN1);
3573 3574 3575
    }
    else
    {
3576 3577 3578
        const double* dataA = srcA.ptr<double>();
        const double* dataB = srcB.ptr<double>();
        double* dataC = dst.ptr<double>();
3579 3580 3581 3582
        if (!conjB)
            mulSpectrums_Impl<double, false>(dataA, dataB, dataC, srcA.step, srcB.step, dst.step, rows, cols, j0, j1, is_1d, isCN1);
        else
            mulSpectrums_Impl<double, true>(dataA, dataB, dataC, srcA.step, srcB.step, dst.step, rows, cols, j0, j1, is_1d, isCN1);
3583 3584 3585 3586 3587 3588 3589 3590
    }
}


/****************************************************************************************\
                               Discrete Cosine Transform
\****************************************************************************************/

3591 3592 3593
namespace cv
{

3594 3595 3596 3597
/* DCT is calculated using DFT, as described here:
   http://www.ece.utexas.edu/~bevans/courses/ee381k/lectures/09_DCT/lecture9/:
*/
template<typename T> static void
3598
DCT( const OcvDftOptions & c, const T* src, size_t src_step, T* dft_src, T* dft_dst, T* dst, size_t dst_step,
3599
     const Complex<T>* dct_wave )
3600 3601
{
    static const T sin_45 = (T)0.70710678118654752440084436210485;
3602 3603

    int n = c.n;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    int j, n2 = n >> 1;

    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);
    T* dst1 = dst + (n-1)*dst_step;

    if( n == 1 )
    {
        dst[0] = src[0];
        return;
    }

    for( j = 0; j < n2; j++, src += src_step*2 )
    {
        dft_src[j] = src[0];
        dft_src[n-j-1] = src[src_step];
    }

3622
    RealDFT(c, dft_src, dft_dst);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
    src = dft_dst;

    dst[0] = (T)(src[0]*dct_wave->re*sin_45);
    dst += dst_step;
    for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
                                    dst += dst_step, dst1 -= dst_step )
    {
        T t0 = dct_wave->re*src[j*2-1] - dct_wave->im*src[j*2];
        T t1 = -dct_wave->im*src[j*2-1] - dct_wave->re*src[j*2];
        dst[0] = t0;
        dst1[0] = t1;
    }

    dst[0] = src[n-1]*dct_wave->re;
}


template<typename T> static void
3641
IDCT( const OcvDftOptions & c, const T* src, size_t src_step, T* dft_src, T* dft_dst, T* dst, size_t dst_step,
3642
      const Complex<T>* dct_wave)
3643 3644
{
    static const T sin_45 = (T)0.70710678118654752440084436210485;
3645
    int n = c.n;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
    int j, n2 = n >> 1;

    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);
    const T* src1 = src + (n-1)*src_step;

    if( n == 1 )
    {
        dst[0] = src[0];
        return;
    }

    dft_src[0] = (T)(src[0]*2*dct_wave->re*sin_45);
    src += src_step;
    for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
                                    src += src_step, src1 -= src_step )
    {
        T t0 = dct_wave->re*src[0] - dct_wave->im*src1[0];
        T t1 = -dct_wave->im*src[0] - dct_wave->re*src1[0];
        dft_src[j*2-1] = t0;
        dft_src[j*2] = t1;
    }

    dft_src[n-1] = (T)(src[0]*2*dct_wave->re);
3670
    CCSIDFT(c, dft_src, dft_dst);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

    for( j = 0; j < n2; j++, dst += dst_step*2 )
    {
        dst[0] = dft_dst[j];
        dst[dst_step] = dft_dst[n-j-1];
    }
}


static void
DCTInit( int n, int elem_size, void* _wave, int inv )
{
    static const double DctScale[] =
    {
    0.707106781186547570, 0.500000000000000000, 0.353553390593273790,
    0.250000000000000000, 0.176776695296636890, 0.125000000000000000,
    0.088388347648318447, 0.062500000000000000, 0.044194173824159223,
    0.031250000000000000, 0.022097086912079612, 0.015625000000000000,
    0.011048543456039806, 0.007812500000000000, 0.005524271728019903,
    0.003906250000000000, 0.002762135864009952, 0.001953125000000000,
    0.001381067932004976, 0.000976562500000000, 0.000690533966002488,
    0.000488281250000000, 0.000345266983001244, 0.000244140625000000,
    0.000172633491500622, 0.000122070312500000, 0.000086316745750311,
    0.000061035156250000, 0.000043158372875155, 0.000030517578125000
    };

    int i;
    Complex<double> w, w1;
    double t, scale;
3700

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
    if( n == 1 )
        return;

    assert( (n&1) == 0 );

    if( (n & (n - 1)) == 0 )
    {
        int m;
        for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
            ;
        scale = (!inv ? 2 : 1)*DctScale[m];
        w1.re = DFTTab[m+2][0];
        w1.im = -DFTTab[m+2][1];
    }
    else
    {
        t = 1./(2*n);
        scale = (!inv ? 2 : 1)*std::sqrt(t);
        w1.im = sin(-CV_PI*t);
        w1.re = std::sqrt(1. - w1.im*w1.im);
    }
    n >>= 1;
3723

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    if( elem_size == sizeof(Complex<double>) )
    {
        Complex<double>* wave = (Complex<double>*)_wave;

        w.re = scale;
        w.im = 0.;

        for( i = 0; i <= n; i++ )
        {
            wave[i] = w;
            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
    else
    {
        Complex<float>* wave = (Complex<float>*)_wave;
        assert( elem_size == sizeof(Complex<float>) );
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
        w.re = (float)scale;
        w.im = 0.f;

        for( i = 0; i <= n; i++ )
        {
            wave[i].re = (float)w.re;
            wave[i].im = (float)w.im;
            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
}


3759 3760
typedef void (*DCTFunc)(const OcvDftOptions & c, const void* src, size_t src_step, void* dft_src,
                        void* dft_dst, void* dst, size_t dst_step, const void* dct_wave);
3761

3762 3763
static void DCT_32f(const OcvDftOptions & c, const float* src, size_t src_step, float* dft_src, float* dft_dst,
                    float* dst, size_t dst_step, const Complexf* dct_wave)
3764
{
3765
    DCT(c, src, src_step, dft_src, dft_dst, dst, dst_step, dct_wave);
3766 3767
}

3768 3769
static void IDCT_32f(const OcvDftOptions & c, const float* src, size_t src_step, float* dft_src, float* dft_dst,
                    float* dst, size_t dst_step, const Complexf* dct_wave)
3770
{
3771
    IDCT(c, src, src_step, dft_src, dft_dst, dst, dst_step, dct_wave);
3772 3773
}

3774 3775
static void DCT_64f(const OcvDftOptions & c, const double* src, size_t src_step, double* dft_src, double* dft_dst,
                    double* dst, size_t dst_step, const Complexd* dct_wave)
3776
{
3777
    DCT(c, src, src_step, dft_src, dft_dst, dst, dst_step, dct_wave);
3778 3779
}

3780 3781
static void IDCT_64f(const OcvDftOptions & c, const double* src, size_t src_step, double* dft_src, double* dft_dst,
                     double* dst, size_t dst_step, const Complexd* dct_wave)
3782
{
3783
    IDCT(c, src, src_step, dft_src, dft_dst, dst, dst_step, dct_wave);
3784
}
3785 3786

}
3787

3788
#ifdef HAVE_IPP
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3789 3790 3791
namespace cv
{

3792 3793 3794 3795 3796
#if IPP_VERSION_X100 >= 900
typedef IppStatus (CV_STDCALL * ippiDCTFunc)(const Ipp32f* pSrc, int srcStep, Ipp32f* pDst, int dstStep, const void* pDCTSpec, Ipp8u* pBuffer);
typedef IppStatus (CV_STDCALL * ippiDCTInit)(void* pDCTSpec, IppiSize roiSize, Ipp8u* pMemInit );
typedef IppStatus (CV_STDCALL * ippiDCTGetSize)(IppiSize roiSize, int* pSizeSpec, int* pSizeInit, int* pSizeBuf);
#elif IPP_VERSION_X100 >= 700
3797 3798 3799 3800
typedef IppStatus (CV_STDCALL * ippiDCTFunc)(const Ipp32f*, int, Ipp32f*, int, const void*, Ipp8u*);
typedef IppStatus (CV_STDCALL * ippiDCTInitAlloc)(void**, IppiSize, IppHintAlgorithm);
typedef IppStatus (CV_STDCALL * ippiDCTFree)(void* pDCTSpec);
typedef IppStatus (CV_STDCALL * ippiDCTGetBufSize)(const void*, int*);
3801
#endif
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3802

3803
class DctIPPLoop_Invoker : public ParallelLoopBody
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3804
{
3805
public:
3806
    DctIPPLoop_Invoker(const uchar * _src, size_t _src_step, uchar * _dst, size_t _dst_step, int _width, bool _inv, bool *_ok) :
3807
        ParallelLoopBody(), src(_src), src_step(_src_step), dst(_dst), dst_step(_dst_step), width(_width), inv(_inv), ok(_ok)
3808 3809 3810
    {
        *ok = true;
    }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3811

3812
    virtual void operator()(const Range& range) const CV_OVERRIDE
3813
    {
3814 3815 3816 3817
        if(*ok == false)
            return;

#if IPP_VERSION_X100 >= 900
3818
        IppiSize srcRoiSize = {width, 1};
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

        int specSize    = 0;
        int initSize    = 0;
        int bufferSize  = 0;

        Ipp8u* pDCTSpec = NULL;
        Ipp8u* pBuffer  = NULL;
        Ipp8u* pInitBuf = NULL;

        #define IPP_RETURN              \
            if(pDCTSpec)                \
                ippFree(pDCTSpec);      \
            if(pBuffer)                 \
                ippFree(pBuffer);       \
            if(pInitBuf)                \
                ippFree(pInitBuf);      \
            return;

3837
        ippiDCTFunc     ippiDCT_32f_C1R   = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R         : (ippiDCTFunc)ippiDCTFwd_32f_C1R;
3838 3839 3840 3841 3842 3843 3844 3845 3846
        ippiDCTInit     ippDctInit     = inv ? (ippiDCTInit)ippiDCTInvInit_32f         : (ippiDCTInit)ippiDCTFwdInit_32f;
        ippiDCTGetSize  ippDctGetSize  = inv ? (ippiDCTGetSize)ippiDCTInvGetSize_32f   : (ippiDCTGetSize)ippiDCTFwdGetSize_32f;

        if(ippDctGetSize(srcRoiSize, &specSize, &initSize, &bufferSize) < 0)
        {
            *ok = false;
            return;
        }

3847
        pDCTSpec = (Ipp8u*)CV_IPP_MALLOC(specSize);
3848 3849 3850 3851 3852 3853
        if(!pDCTSpec && specSize)
        {
            *ok = false;
            return;
        }

3854
        pBuffer  = (Ipp8u*)CV_IPP_MALLOC(bufferSize);
3855 3856 3857 3858 3859
        if(!pBuffer && bufferSize)
        {
            *ok = false;
            IPP_RETURN
        }
3860
        pInitBuf = (Ipp8u*)CV_IPP_MALLOC(initSize);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
        if(!pInitBuf && initSize)
        {
            *ok = false;
            IPP_RETURN
        }

        if(ippDctInit(pDCTSpec, srcRoiSize, pInitBuf) < 0)
        {
            *ok = false;
            IPP_RETURN
        }

        for(int i = range.start; i < range.end; ++i)
        {
3875
            if(CV_INSTRUMENT_FUN_IPP(ippiDCT_32f_C1R, (float*)(src + src_step * i), static_cast<int>(src_step), (float*)(dst + dst_step * i), static_cast<int>(dst_step), pDCTSpec, pBuffer) < 0)
3876 3877 3878 3879 3880 3881 3882 3883
            {
                *ok = false;
                IPP_RETURN
            }
        }
        IPP_RETURN
#undef IPP_RETURN
#elif IPP_VERSION_X100 >= 700
3884 3885 3886 3887
        void* pDCTSpec;
        AutoBuffer<uchar> buf;
        uchar* pBuffer = 0;
        int bufSize=0;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3888

3889
        IppiSize srcRoiSize = {width, 1};
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3890

3891
        CV_SUPPRESS_DEPRECATED_START
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3892

3893
        ippiDCTFunc ippDctFun           = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R             : (ippiDCTFunc)ippiDCTFwd_32f_C1R;
3894 3895 3896
        ippiDCTInitAlloc ippInitAlloc   = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f   : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
        ippiDCTFree ippFree             = inv ? (ippiDCTFree)ippiDCTInvFree_32f             : (ippiDCTFree)ippiDCTFwdFree_32f;
        ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3897

Elena Gvozdeva's avatar
Elena Gvozdeva committed
3898
        if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
3899
        {
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3900 3901
            buf.allocate( bufSize );
            pBuffer = (uchar*)buf;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3902

Elena Gvozdeva's avatar
Elena Gvozdeva committed
3903
            for( int i = range.start; i < range.end; ++i)
3904
            {
3905
                if(ippDctFun((float*)(src + src_step * i), static_cast<int>(src_step), (float*)(dst + dst_step * i), static_cast<int>(dst_step), pDCTSpec, (Ipp8u*)pBuffer) < 0)
3906
                {
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3907
                    *ok = false;
3908 3909 3910
                    break;
                }
            }
3911
        }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3912 3913
        else
            *ok = false;
3914

Elena Gvozdeva's avatar
Elena Gvozdeva committed
3915 3916
        if (pDCTSpec)
            ippFree(pDCTSpec);
3917 3918

        CV_SUPPRESS_DEPRECATED_END
3919 3920 3921 3922
#else
        CV_UNUSED(range);
        *ok = false;
#endif
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3923 3924
    }

3925
private:
3926
    const uchar * src;
3927
    size_t src_step;
3928
    uchar * dst;
3929
    size_t dst_step;
3930
    int width;
3931 3932 3933 3934
    bool inv;
    bool *ok;
};

3935
static bool DctIPPLoop(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, bool inv)
3936 3937
{
    bool ok;
3938
    parallel_for_(Range(0, height), DctIPPLoop_Invoker(src, src_step, dst, dst_step, width, inv, &ok), height/(double)(1<<4) );
3939
    return ok;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3940 3941
}

3942
static bool ippi_DCT_32f(const uchar * src, size_t src_step, uchar * dst, size_t dst_step, int width, int height, bool inv, bool row)
Elena Gvozdeva's avatar
Elena Gvozdeva committed
3943
{
3944
    CV_INSTRUMENT_REGION_IPP();
3945

3946
    if(row)
3947
        return DctIPPLoop(src, src_step, dst, dst_step, width, height, inv);
3948 3949
    else
    {
3950
#if IPP_VERSION_X100 >= 900
3951
        IppiSize srcRoiSize = {width, height};
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

        int specSize    = 0;
        int initSize    = 0;
        int bufferSize  = 0;

        Ipp8u* pDCTSpec = NULL;
        Ipp8u* pBuffer  = NULL;
        Ipp8u* pInitBuf = NULL;

        #define IPP_RELEASE             \
            if(pDCTSpec)                \
                ippFree(pDCTSpec);      \
            if(pBuffer)                 \
                ippFree(pBuffer);       \
            if(pInitBuf)                \
                ippFree(pInitBuf);      \

3969
        ippiDCTFunc     ippiDCT_32f_C1R      = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R         : (ippiDCTFunc)ippiDCTFwd_32f_C1R;
3970 3971 3972 3973 3974 3975
        ippiDCTInit     ippDctInit     = inv ? (ippiDCTInit)ippiDCTInvInit_32f         : (ippiDCTInit)ippiDCTFwdInit_32f;
        ippiDCTGetSize  ippDctGetSize  = inv ? (ippiDCTGetSize)ippiDCTInvGetSize_32f   : (ippiDCTGetSize)ippiDCTFwdGetSize_32f;

        if(ippDctGetSize(srcRoiSize, &specSize, &initSize, &bufferSize) < 0)
            return false;

3976
        pDCTSpec = (Ipp8u*)CV_IPP_MALLOC(specSize);
3977 3978 3979
        if(!pDCTSpec && specSize)
            return false;

3980
        pBuffer  = (Ipp8u*)CV_IPP_MALLOC(bufferSize);
3981 3982 3983 3984 3985
        if(!pBuffer && bufferSize)
        {
            IPP_RELEASE
            return false;
        }
3986
        pInitBuf = (Ipp8u*)CV_IPP_MALLOC(initSize);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
        if(!pInitBuf && initSize)
        {
            IPP_RELEASE
            return false;
        }

        if(ippDctInit(pDCTSpec, srcRoiSize, pInitBuf) < 0)
        {
            IPP_RELEASE
            return false;
        }

3999
        if(CV_INSTRUMENT_FUN_IPP(ippiDCT_32f_C1R, (float*)src, static_cast<int>(src_step), (float*)dst, static_cast<int>(dst_step), pDCTSpec, pBuffer) < 0)
4000 4001 4002 4003 4004 4005 4006 4007 4008
        {
            IPP_RELEASE
            return false;
        }

        IPP_RELEASE
        return true;
#undef IPP_RELEASE
#elif IPP_VERSION_X100 >= 700
4009 4010 4011 4012 4013
        IppStatus status;
        void* pDCTSpec;
        AutoBuffer<uchar> buf;
        uchar* pBuffer = 0;
        int bufSize=0;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4014

4015
        IppiSize srcRoiSize = {width, height};
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4016

4017
        CV_SUPPRESS_DEPRECATED_START
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4018

4019
        ippiDCTFunc ippDctFun           = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R             : (ippiDCTFunc)ippiDCTFwd_32f_C1R;
4020 4021 4022
        ippiDCTInitAlloc ippInitAlloc   = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f   : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
        ippiDCTFree ippFree             = inv ? (ippiDCTFree)ippiDCTInvFree_32f             : (ippiDCTFree)ippiDCTFwdFree_32f;
        ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4023

Elena Gvozdeva's avatar
Elena Gvozdeva committed
4024
        status = ippStsErr;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4025

Elena Gvozdeva's avatar
Elena Gvozdeva committed
4026
        if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
4027
        {
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4028 4029
            buf.allocate( bufSize );
            pBuffer = (uchar*)buf;
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4030

4031
            status = ippDctFun((float*)src, static_cast<int>(src_step), (float*)dst, static_cast<int>(dst_step), pDCTSpec, (Ipp8u*)pBuffer);
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4032 4033
        }

Elena Gvozdeva's avatar
Elena Gvozdeva committed
4034 4035
        if (pDCTSpec)
            ippFree(pDCTSpec);
4036 4037 4038 4039

        CV_SUPPRESS_DEPRECATED_END

        return status >= 0;
4040 4041 4042 4043
#else
        CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(inv); CV_UNUSED(row);
        return false;
#endif
4044
    }
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4045 4046
}
}
4047
#endif
Elena Gvozdeva's avatar
Elena Gvozdeva committed
4048

4049
namespace cv {
4050

4051
class OcvDctImpl CV_FINAL : public hal::DCT2D
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
{
public:
    OcvDftOptions opt;

    int _factors[34];
    AutoBuffer<uint> wave_buf;
    AutoBuffer<int> itab_buf;

    DCTFunc dct_func;
    bool isRowTransform;
    bool isInverse;
    bool isContinuous;
    int start_stage;
    int end_stage;
    int width;
    int height;
    int depth;

    void init(int _width, int _height, int _depth, int flags)
4071
    {
4072 4073 4074 4075 4076 4077 4078
        width = _width;
        height = _height;
        depth = _depth;
        isInverse = (flags & CV_HAL_DFT_INVERSE) != 0;
        isRowTransform = (flags & CV_HAL_DFT_ROWS) != 0;
        isContinuous = (flags & CV_HAL_DFT_IS_CONTINUOUS) != 0;
        static DCTFunc dct_tbl[4] =
4079
        {
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
            (DCTFunc)DCT_32f,
            (DCTFunc)IDCT_32f,
            (DCTFunc)DCT_64f,
            (DCTFunc)IDCT_64f
        };
        dct_func = dct_tbl[(int)isInverse + (depth == CV_64F)*2];
        opt.nf = 0;
        opt.isComplex = false;
        opt.isInverse = false;
        opt.noPermute = false;
        opt.scale = 1.;
        opt.factors = _factors;

        if (isRowTransform || height == 1 || (width == 1 && isContinuous))
        {
            start_stage = end_stage = 0;
4096 4097 4098
        }
        else
        {
4099 4100
            start_stage = (width == 1);
            end_stage = 1;
4101
        }
4102
    }
4103
    void apply(const uchar *src, size_t src_step, uchar *dst, size_t dst_step) CV_OVERRIDE
4104 4105
    {
        CV_IPP_RUN(IPP_VERSION_X100 >= 700 && depth == CV_32F, ippi_DCT_32f(src, src_step, dst, dst_step, width, height, isInverse, isRowTransform))
4106

4107 4108 4109 4110 4111 4112
        AutoBuffer<uchar> dct_wave;
        AutoBuffer<uchar> src_buf, dst_buf;
        uchar *src_dft_buf = 0, *dst_dft_buf = 0;
        int prev_len = 0;
        int elem_size = (depth == CV_32F) ? sizeof(float) : sizeof(double);
        int complex_elem_size = elem_size*2;
4113

4114 4115 4116 4117 4118 4119
        for(int stage = start_stage ; stage <= end_stage; stage++ )
        {
            const uchar* sptr = src;
            uchar* dptr = dst;
            size_t sstep0, sstep1, dstep0, dstep1;
            int len, count;
4120

4121
            if( stage == 0 )
4122
            {
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
                len = width;
                count = height;
                if( len == 1 && !isRowTransform )
                {
                    len = height;
                    count = 1;
                }
                sstep0 = src_step;
                dstep0 = dst_step;
                sstep1 = dstep1 = elem_size;
            }
            else
            {
                len = height;
                count = width;
                sstep1 = src_step;
                dstep1 = dst_step;
                sstep0 = dstep0 = elem_size;
4141 4142
            }

4143 4144
            opt.n = len;
            opt.tab_size = len;
4145

4146
            if( len != prev_len )
4147
            {
4148 4149 4150 4151 4152 4153 4154
                if( len > 1 && (len & 1) )
                    CV_Error( CV_StsNotImplemented, "Odd-size DCT\'s are not implemented" );

                opt.nf = DFTFactorize( len, opt.factors );
                bool inplace_transform = opt.factors[0] == opt.factors[opt.nf-1];

                wave_buf.allocate(len*complex_elem_size);
4155
                opt.wave = wave_buf.data();
4156
                itab_buf.allocate(len);
4157
                opt.itab = itab_buf.data();
4158 4159 4160 4161
                DFTInit( len, opt.nf, opt.factors, opt.itab, complex_elem_size, opt.wave, isInverse );

                dct_wave.allocate((len/2 + 1)*complex_elem_size);
                src_buf.allocate(len*elem_size);
4162
                src_dft_buf = src_buf.data();
4163 4164 4165
                if(!inplace_transform)
                {
                    dst_buf.allocate(len*elem_size);
4166
                    dst_dft_buf = dst_buf.data();
4167 4168 4169
                }
                else
                {
4170
                    dst_dft_buf = src_buf.data();
4171
                }
4172
                DCTInit( len, complex_elem_size, dct_wave.data(), isInverse);
4173
                prev_len = len;
4174
            }
4175
            // otherwise reuse the tables calculated on the previous stage
4176
            for(unsigned i = 0; i < static_cast<unsigned>(count); i++ )
4177
            {
4178
                dct_func( opt, sptr + i*sstep0, sstep1, src_dft_buf, dst_dft_buf,
4179
                          dptr + i*dstep0, dstep1, dct_wave.data());
4180
            }
4181 4182
            src = dst;
            src_step = dst_step;
4183
        }
4184 4185 4186
    }
};

4187
struct ReplacementDCT2D : public hal::DCT2D
4188
{
4189 4190 4191 4192 4193
    cvhalDFT *context;
    bool isInitialized;

    ReplacementDCT2D() : context(0), isInitialized(false) {}
    bool init(int width, int height, int depth, int flags)
4194
    {
4195 4196 4197
        int res = hal_ni_dctInit2D(&context, width, height, depth, flags);
        isInitialized = (res == CV_HAL_ERROR_OK);
        return isInitialized;
4198
    }
4199
    void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) CV_OVERRIDE
4200
    {
4201
        if (isInitialized)
4202
        {
4203
            CALL_HAL(dct2D, cv_hal_dct2D, context, src_data, src_step, dst_data, dst_step);
4204 4205
        }
    }
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
    ~ReplacementDCT2D()
    {
        if (isInitialized)
        {
            CALL_HAL(dctFree2D, cv_hal_dctFree2D, context);
        }
    }
};

namespace hal {
4216

4217
Ptr<DCT2D> DCT2D::create(int width, int height, int depth, int flags)
4218 4219
{
    {
4220 4221
        ReplacementDCT2D *impl = new ReplacementDCT2D();
        if (impl->init(width, height, depth, flags))
4222
        {
4223
            return Ptr<DCT2D>(impl);
4224
        }
4225 4226 4227 4228 4229 4230
        delete impl;
    }
    {
        OcvDctImpl *impl = new OcvDctImpl();
        impl->init(width, height, depth, flags);
        return Ptr<DCT2D>(impl);
4231 4232 4233 4234 4235 4236 4237 4238
    }
}

} // cv::hal::
} // cv::

void cv::dct( InputArray _src0, OutputArray _dst, int flags )
{
4239
    CV_INSTRUMENT_REGION();
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
    Mat src0 = _src0.getMat(), src = src0;
    int type = src.type(), depth = src.depth();

    CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
    _dst.create( src.rows, src.cols, type );
    Mat dst = _dst.getMat();

    int f = 0;
    if ((flags & DFT_ROWS) != 0)
        f |= CV_HAL_DFT_ROWS;
    if ((flags & DCT_INVERSE) != 0)
        f |= CV_HAL_DFT_INVERSE;
    if (src.isContinuous() && dst.isContinuous())
        f |= CV_HAL_DFT_IS_CONTINUOUS;

4256 4257
    Ptr<hal::DCT2D> c = hal::DCT2D::create(src.cols, src.rows, depth, f);
    c->apply(src.data, src.step, dst.data, dst.step);
4258 4259 4260
}


4261
void cv::idct( InputArray src, OutputArray dst, int flags )
4262
{
4263
    CV_INSTRUMENT_REGION();
4264

4265 4266 4267
    dct( src, dst, flags | DCT_INVERSE );
}

4268 4269 4270
namespace cv
{

4271
static const int optimalDFTSizeTab[] = {
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,
50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160,
162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375,
384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675, 720,
729, 750, 768, 800, 810, 864, 900, 960, 972, 1000, 1024, 1080, 1125, 1152, 1200,
1215, 1250, 1280, 1296, 1350, 1440, 1458, 1500, 1536, 1600, 1620, 1728, 1800, 1875,
1920, 1944, 2000, 2025, 2048, 2160, 2187, 2250, 2304, 2400, 2430, 2500, 2560, 2592,
2700, 2880, 2916, 3000, 3072, 3125, 3200, 3240, 3375, 3456, 3600, 3645, 3750, 3840,
3888, 4000, 4050, 4096, 4320, 4374, 4500, 4608, 4800, 4860, 5000, 5120, 5184, 5400,
5625, 5760, 5832, 6000, 6075, 6144, 6250, 6400, 6480, 6561, 6750, 6912, 7200, 7290,
7500, 7680, 7776, 8000, 8100, 8192, 8640, 8748, 9000, 9216, 9375, 9600, 9720, 10000,
10125, 10240, 10368, 10800, 10935, 11250, 11520, 11664, 12000, 12150, 12288, 12500,
12800, 12960, 13122, 13500, 13824, 14400, 14580, 15000, 15360, 15552, 15625, 16000,
16200, 16384, 16875, 17280, 17496, 18000, 18225, 18432, 18750, 19200, 19440, 19683,
20000, 20250, 20480, 20736, 21600, 21870, 22500, 23040, 23328, 24000, 24300, 24576,
25000, 25600, 25920, 26244, 27000, 27648, 28125, 28800, 29160, 30000, 30375, 30720,
31104, 31250, 32000, 32400, 32768, 32805, 33750, 34560, 34992, 36000, 36450, 36864,
37500, 38400, 38880, 39366, 40000, 40500, 40960, 41472, 43200, 43740, 45000, 46080,
46656, 46875, 48000, 48600, 49152, 50000, 50625, 51200, 51840, 52488, 54000, 54675,
55296, 56250, 57600, 58320, 59049, 60000, 60750, 61440, 62208, 62500, 64000, 64800,
65536, 65610, 67500, 69120, 69984, 72000, 72900, 73728, 75000, 76800, 77760, 78125,
78732, 80000, 81000, 81920, 82944, 84375, 86400, 87480, 90000, 91125, 92160, 93312,
93750, 96000, 97200, 98304, 98415, 100000, 101250, 102400, 103680, 104976, 108000,
109350, 110592, 112500, 115200, 116640, 118098, 120000, 121500, 122880, 124416, 125000,
128000, 129600, 131072, 131220, 135000, 138240, 139968, 140625, 144000, 145800, 147456,
150000, 151875, 153600, 155520, 156250, 157464, 160000, 162000, 163840, 164025, 165888,
168750, 172800, 174960, 177147, 180000, 182250, 184320, 186624, 187500, 192000, 194400,
196608, 196830, 200000, 202500, 204800, 207360, 209952, 216000, 218700, 221184, 225000,
230400, 233280, 234375, 236196, 240000, 243000, 245760, 248832, 250000, 253125, 256000,
259200, 262144, 262440, 270000, 273375, 276480, 279936, 281250, 288000, 291600, 294912,
295245, 300000, 303750, 307200, 311040, 312500, 314928, 320000, 324000, 327680, 328050,
331776, 337500, 345600, 349920, 354294, 360000, 364500, 368640, 373248, 375000, 384000,
388800, 390625, 393216, 393660, 400000, 405000, 409600, 414720, 419904, 421875, 432000,
437400, 442368, 450000, 455625, 460800, 466560, 468750, 472392, 480000, 486000, 491520,
492075, 497664, 500000, 506250, 512000, 518400, 524288, 524880, 531441, 540000, 546750,
552960, 559872, 562500, 576000, 583200, 589824, 590490, 600000, 607500, 614400, 622080,
625000, 629856, 640000, 648000, 655360, 656100, 663552, 675000, 691200, 699840, 703125,
708588, 720000, 729000, 737280, 746496, 750000, 759375, 768000, 777600, 781250, 786432,
787320, 800000, 810000, 819200, 820125, 829440, 839808, 843750, 864000, 874800, 884736,
885735, 900000, 911250, 921600, 933120, 937500, 944784, 960000, 972000, 983040, 984150,
995328, 1000000, 1012500, 1024000, 1036800, 1048576, 1049760, 1062882, 1080000, 1093500,
1105920, 1119744, 1125000, 1152000, 1166400, 1171875, 1179648, 1180980, 1200000,
1215000, 1228800, 1244160, 1250000, 1259712, 1265625, 1280000, 1296000, 1310720,
1312200, 1327104, 1350000, 1366875, 1382400, 1399680, 1406250, 1417176, 1440000,
1458000, 1474560, 1476225, 1492992, 1500000, 1518750, 1536000, 1555200, 1562500,
1572864, 1574640, 1594323, 1600000, 1620000, 1638400, 1640250, 1658880, 1679616,
1687500, 1728000, 1749600, 1769472, 1771470, 1800000, 1822500, 1843200, 1866240,
1875000, 1889568, 1920000, 1944000, 1953125, 1966080, 1968300, 1990656, 2000000,
2025000, 2048000, 2073600, 2097152, 2099520, 2109375, 2125764, 2160000, 2187000,
2211840, 2239488, 2250000, 2278125, 2304000, 2332800, 2343750, 2359296, 2361960,
2400000, 2430000, 2457600, 2460375, 2488320, 2500000, 2519424, 2531250, 2560000,
2592000, 2621440, 2624400, 2654208, 2657205, 2700000, 2733750, 2764800, 2799360,
2812500, 2834352, 2880000, 2916000, 2949120, 2952450, 2985984, 3000000, 3037500,
3072000, 3110400, 3125000, 3145728, 3149280, 3188646, 3200000, 3240000, 3276800,
3280500, 3317760, 3359232, 3375000, 3456000, 3499200, 3515625, 3538944, 3542940,
3600000, 3645000, 3686400, 3732480, 3750000, 3779136, 3796875, 3840000, 3888000,
3906250, 3932160, 3936600, 3981312, 4000000, 4050000, 4096000, 4100625, 4147200,
4194304, 4199040, 4218750, 4251528, 4320000, 4374000, 4423680, 4428675, 4478976,
4500000, 4556250, 4608000, 4665600, 4687500, 4718592, 4723920, 4782969, 4800000,
4860000, 4915200, 4920750, 4976640, 5000000, 5038848, 5062500, 5120000, 5184000,
5242880, 5248800, 5308416, 5314410, 5400000, 5467500, 5529600, 5598720, 5625000,
5668704, 5760000, 5832000, 5859375, 5898240, 5904900, 5971968, 6000000, 6075000,
6144000, 6220800, 6250000, 6291456, 6298560, 6328125, 6377292, 6400000, 6480000,
6553600, 6561000, 6635520, 6718464, 6750000, 6834375, 6912000, 6998400, 7031250,
7077888, 7085880, 7200000, 7290000, 7372800, 7381125, 7464960, 7500000, 7558272,
7593750, 7680000, 7776000, 7812500, 7864320, 7873200, 7962624, 7971615, 8000000,
8100000, 8192000, 8201250, 8294400, 8388608, 8398080, 8437500, 8503056, 8640000,
8748000, 8847360, 8857350, 8957952, 9000000, 9112500, 9216000, 9331200, 9375000,
9437184, 9447840, 9565938, 9600000, 9720000, 9765625, 9830400, 9841500, 9953280,
10000000, 10077696, 10125000, 10240000, 10368000, 10485760, 10497600, 10546875, 10616832,
10628820, 10800000, 10935000, 11059200, 11197440, 11250000, 11337408, 11390625, 11520000,
11664000, 11718750, 11796480, 11809800, 11943936, 12000000, 12150000, 12288000, 12301875,
12441600, 12500000, 12582912, 12597120, 12656250, 12754584, 12800000, 12960000, 13107200,
13122000, 13271040, 13286025, 13436928, 13500000, 13668750, 13824000, 13996800, 14062500,
14155776, 14171760, 14400000, 14580000, 14745600, 14762250, 14929920, 15000000, 15116544,
15187500, 15360000, 15552000, 15625000, 15728640, 15746400, 15925248, 15943230, 16000000,
16200000, 16384000, 16402500, 16588800, 16777216, 16796160, 16875000, 17006112, 17280000,
17496000, 17578125, 17694720, 17714700, 17915904, 18000000, 18225000, 18432000, 18662400,
18750000, 18874368, 18895680, 18984375, 19131876, 19200000, 19440000, 19531250, 19660800,
19683000, 19906560, 20000000, 20155392, 20250000, 20480000, 20503125, 20736000, 20971520,
20995200, 21093750, 21233664, 21257640, 21600000, 21870000, 22118400, 22143375, 22394880,
22500000, 22674816, 22781250, 23040000, 23328000, 23437500, 23592960, 23619600, 23887872,
23914845, 24000000, 24300000, 24576000, 24603750, 24883200, 25000000, 25165824, 25194240,
25312500, 25509168, 25600000, 25920000, 26214400, 26244000, 26542080, 26572050, 26873856,
27000000, 27337500, 27648000, 27993600, 28125000, 28311552, 28343520, 28800000, 29160000,
29296875, 29491200, 29524500, 29859840, 30000000, 30233088, 30375000, 30720000, 31104000,
31250000, 31457280, 31492800, 31640625, 31850496, 31886460, 32000000, 32400000, 32768000,
32805000, 33177600, 33554432, 33592320, 33750000, 34012224, 34171875, 34560000, 34992000,
35156250, 35389440, 35429400, 35831808, 36000000, 36450000, 36864000, 36905625, 37324800,
37500000, 37748736, 37791360, 37968750, 38263752, 38400000, 38880000, 39062500, 39321600,
39366000, 39813120, 39858075, 40000000, 40310784, 40500000, 40960000, 41006250, 41472000,
41943040, 41990400, 42187500, 42467328, 42515280, 43200000, 43740000, 44236800, 44286750,
44789760, 45000000, 45349632, 45562500, 46080000, 46656000, 46875000, 47185920, 47239200,
47775744, 47829690, 48000000, 48600000, 48828125, 49152000, 49207500, 49766400, 50000000,
50331648, 50388480, 50625000, 51018336, 51200000, 51840000, 52428800, 52488000, 52734375,
53084160, 53144100, 53747712, 54000000, 54675000, 55296000, 55987200, 56250000, 56623104,
56687040, 56953125, 57600000, 58320000, 58593750, 58982400, 59049000, 59719680, 60000000,
60466176, 60750000, 61440000, 61509375, 62208000, 62500000, 62914560, 62985600, 63281250,
63700992, 63772920, 64000000, 64800000, 65536000, 65610000, 66355200, 66430125, 67108864,
67184640, 67500000, 68024448, 68343750, 69120000, 69984000, 70312500, 70778880, 70858800,
71663616, 72000000, 72900000, 73728000, 73811250, 74649600, 75000000, 75497472, 75582720,
75937500, 76527504, 76800000, 77760000, 78125000, 78643200, 78732000, 79626240, 79716150,
80000000, 80621568, 81000000, 81920000, 82012500, 82944000, 83886080, 83980800, 84375000,
84934656, 85030560, 86400000, 87480000, 87890625, 88473600, 88573500, 89579520, 90000000,
90699264, 91125000, 92160000, 93312000, 93750000, 94371840, 94478400, 94921875, 95551488,
95659380, 96000000, 97200000, 97656250, 98304000, 98415000, 99532800, 100000000,
100663296, 100776960, 101250000, 102036672, 102400000, 102515625, 103680000, 104857600,
104976000, 105468750, 106168320, 106288200, 107495424, 108000000, 109350000, 110592000,
110716875, 111974400, 112500000, 113246208, 113374080, 113906250, 115200000, 116640000,
117187500, 117964800, 118098000, 119439360, 119574225, 120000000, 120932352, 121500000,
122880000, 123018750, 124416000, 125000000, 125829120, 125971200, 126562500, 127401984,
127545840, 128000000, 129600000, 131072000, 131220000, 132710400, 132860250, 134217728,
134369280, 135000000, 136048896, 136687500, 138240000, 139968000, 140625000, 141557760,
141717600, 143327232, 144000000, 145800000, 146484375, 147456000, 147622500, 149299200,
150000000, 150994944, 151165440, 151875000, 153055008, 153600000, 155520000, 156250000,
157286400, 157464000, 158203125, 159252480, 159432300, 160000000, 161243136, 162000000,
163840000, 164025000, 165888000, 167772160, 167961600, 168750000, 169869312, 170061120,
170859375, 172800000, 174960000, 175781250, 176947200, 177147000, 179159040, 180000000,
181398528, 182250000, 184320000, 184528125, 186624000, 187500000, 188743680, 188956800,
189843750, 191102976, 191318760, 192000000, 194400000, 195312500, 196608000, 196830000,
199065600, 199290375, 200000000, 201326592, 201553920, 202500000, 204073344, 204800000,
205031250, 207360000, 209715200, 209952000, 210937500, 212336640, 212576400, 214990848,
216000000, 218700000, 221184000, 221433750, 223948800, 225000000, 226492416, 226748160,
227812500, 230400000, 233280000, 234375000, 235929600, 236196000, 238878720, 239148450,
240000000, 241864704, 243000000, 244140625, 245760000, 246037500, 248832000, 250000000,
251658240, 251942400, 253125000, 254803968, 255091680, 256000000, 259200000, 262144000,
262440000, 263671875, 265420800, 265720500, 268435456, 268738560, 270000000, 272097792,
273375000, 276480000, 279936000, 281250000, 283115520, 283435200, 284765625, 286654464,
288000000, 291600000, 292968750, 294912000, 295245000, 298598400, 300000000, 301989888,
302330880, 303750000, 306110016, 307200000, 307546875, 311040000, 312500000, 314572800,
314928000, 316406250, 318504960, 318864600, 320000000, 322486272, 324000000, 327680000,
328050000, 331776000, 332150625, 335544320, 335923200, 337500000, 339738624, 340122240,
341718750, 345600000, 349920000, 351562500, 353894400, 354294000, 358318080, 360000000,
362797056, 364500000, 368640000, 369056250, 373248000, 375000000, 377487360, 377913600,
379687500, 382205952, 382637520, 384000000, 388800000, 390625000, 393216000, 393660000,
398131200, 398580750, 400000000, 402653184, 403107840, 405000000, 408146688, 409600000,
410062500, 414720000, 419430400, 419904000, 421875000, 424673280, 425152800, 429981696,
432000000, 437400000, 439453125, 442368000, 442867500, 447897600, 450000000, 452984832,
453496320, 455625000, 460800000, 466560000, 468750000, 471859200, 472392000, 474609375,
477757440, 478296900, 480000000, 483729408, 486000000, 488281250, 491520000, 492075000,
497664000, 500000000, 503316480, 503884800, 506250000, 509607936, 510183360, 512000000,
512578125, 518400000, 524288000, 524880000, 527343750, 530841600, 531441000, 536870912,
537477120, 540000000, 544195584, 546750000, 552960000, 553584375, 559872000, 562500000,
566231040, 566870400, 569531250, 573308928, 576000000, 583200000, 585937500, 589824000,
590490000, 597196800, 597871125, 600000000, 603979776, 604661760, 607500000, 612220032,
614400000, 615093750, 622080000, 625000000, 629145600, 629856000, 632812500, 637009920,
637729200, 640000000, 644972544, 648000000, 655360000, 656100000, 663552000, 664301250,
671088640, 671846400, 675000000, 679477248, 680244480, 683437500, 691200000, 699840000,
703125000, 707788800, 708588000, 716636160, 720000000, 725594112, 729000000, 732421875,
737280000, 738112500, 746496000, 750000000, 754974720, 755827200, 759375000, 764411904,
765275040, 768000000, 777600000, 781250000, 786432000, 787320000, 791015625, 796262400,
797161500, 800000000, 805306368, 806215680, 810000000, 816293376, 819200000, 820125000,
829440000, 838860800, 839808000, 843750000, 849346560, 850305600, 854296875, 859963392,
864000000, 874800000, 878906250, 884736000, 885735000, 895795200, 900000000, 905969664,
906992640, 911250000, 921600000, 922640625, 933120000, 937500000, 943718400, 944784000,
949218750, 955514880, 956593800, 960000000, 967458816, 972000000, 976562500, 983040000,
984150000, 995328000, 996451875, 1000000000, 1006632960, 1007769600, 1012500000,
1019215872, 1020366720, 1024000000, 1025156250, 1036800000, 1048576000, 1049760000,
1054687500, 1061683200, 1062882000, 1073741824, 1074954240, 1080000000, 1088391168,
1093500000, 1105920000, 1107168750, 1119744000, 1125000000, 1132462080, 1133740800,
1139062500, 1146617856, 1152000000, 1166400000, 1171875000, 1179648000, 1180980000,
1194393600, 1195742250, 1200000000, 1207959552, 1209323520, 1215000000, 1220703125,
1224440064, 1228800000, 1230187500, 1244160000, 1250000000, 1258291200, 1259712000,
1265625000, 1274019840, 1275458400, 1280000000, 1289945088, 1296000000, 1310720000,
1312200000, 1318359375, 1327104000, 1328602500, 1342177280, 1343692800, 1350000000,
1358954496, 1360488960, 1366875000, 1382400000, 1399680000, 1406250000, 1415577600,
1417176000, 1423828125, 1433272320, 1440000000, 1451188224, 1458000000, 1464843750,
1474560000, 1476225000, 1492992000, 1500000000, 1509949440, 1511654400, 1518750000,
1528823808, 1530550080, 1536000000, 1537734375, 1555200000, 1562500000, 1572864000,
1574640000, 1582031250, 1592524800, 1594323000, 1600000000, 1610612736, 1612431360,
1620000000, 1632586752, 1638400000, 1640250000, 1658880000, 1660753125, 1677721600,
1679616000, 1687500000, 1698693120, 1700611200, 1708593750, 1719926784, 1728000000,
1749600000, 1757812500, 1769472000, 1771470000, 1791590400, 1800000000, 1811939328,
1813985280, 1822500000, 1843200000, 1845281250, 1866240000, 1875000000, 1887436800,
1889568000, 1898437500, 1911029760, 1913187600, 1920000000, 1934917632, 1944000000,
1953125000, 1966080000, 1968300000, 1990656000, 1992903750, 2000000000, 2013265920,
2015539200, 2025000000, 2038431744, 2040733440, 2048000000, 2050312500, 2073600000,
4449 4450 4451
2097152000, 2099520000, 2109375000, 2123366400, 2125764000
};

4452
}
4453

4454
int cv::getOptimalDFTSize( int size0 )
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
{
    int a = 0, b = sizeof(optimalDFTSizeTab)/sizeof(optimalDFTSizeTab[0]) - 1;
    if( (unsigned)size0 >= (unsigned)optimalDFTSizeTab[b] )
        return -1;

    while( a < b )
    {
        int c = (a + b) >> 1;
        if( size0 <= optimalDFTSizeTab[c] )
            b = c;
        else
            a = c+1;
    }

    return optimalDFTSizeTab[b];
}

CV_IMPL void
cvDFT( const CvArr* srcarr, CvArr* dstarr, int flags, int nonzero_rows )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
    int _flags = ((flags & CV_DXT_INVERSE) ? cv::DFT_INVERSE : 0) |
        ((flags & CV_DXT_SCALE) ? cv::DFT_SCALE : 0) |
        ((flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0);

4480
    CV_Assert( src.size == dst.size );
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501

    if( src.type() != dst.type() )
    {
        if( dst.channels() == 2 )
            _flags |= cv::DFT_COMPLEX_OUTPUT;
        else
            _flags |= cv::DFT_REAL_OUTPUT;
    }

    cv::dft( src, dst, _flags, nonzero_rows );
    CV_Assert( dst.data == dst0.data ); // otherwise it means that the destination size or type was incorrect
}


CV_IMPL void
cvMulSpectrums( const CvArr* srcAarr, const CvArr* srcBarr,
                CvArr* dstarr, int flags )
{
    cv::Mat srcA = cv::cvarrToMat(srcAarr),
        srcB = cv::cvarrToMat(srcBarr),
        dst = cv::cvarrToMat(dstarr);
4502
    CV_Assert( srcA.size == dst.size && srcA.type() == dst.type() );
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513

    cv::mulSpectrums(srcA, srcB, dst,
        (flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0,
        (flags & CV_DXT_MUL_CONJ) != 0 );
}


CV_IMPL void
cvDCT( const CvArr* srcarr, CvArr* dstarr, int flags )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
4514
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
    int _flags = ((flags & CV_DXT_INVERSE) ? cv::DCT_INVERSE : 0) |
            ((flags & CV_DXT_ROWS) ? cv::DCT_ROWS : 0);
    cv::dct( src, dst, _flags );
}


CV_IMPL int
cvGetOptimalDFTSize( int size0 )
{
    return cv::getOptimalDFTSize(size0);
}

/* End of file. */