orb.cpp 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace std;
using namespace cv;
using namespace cv::gpu;

#if !defined (HAVE_CUDA)

51
cv::gpu::ORB_GPU::ORB_GPU(int, float, int, int, int, int, int, int) : fastDetector_(20) { throw_nogpu(); }
52 53 54 55 56 57 58 59 60 61 62 63 64 65
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::convertKeyPoints(Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::release() { throw_nogpu(); }
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat&) { throw_nogpu(); }

#else /* !defined (HAVE_CUDA) */

66
namespace cv { namespace gpu { namespace device
67 68 69 70 71
{
    namespace orb
    {
        int cull_gpu(int* loc, float* response, int size, int n_points);

72
        void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);
73 74 75

        void loadUMax(const int* u_max, int count);

76
        void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
            const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);

        void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
    }
}}}

namespace
{
    const float HARRIS_K = 0.04f;
    const int DESCRIPTOR_SIZE = 32;

    const int bit_pattern_31_[256 * 4] =
    {
        8,-3, 9,5/*mean (0), correlation (0)*/,
        4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
        1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
        -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
        -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
        -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
        10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
        -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
        -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
        7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
        -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
        -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
        -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
        12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
        -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
        -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
        11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
        4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
        5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
        3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
        -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
        -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
        -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
        -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
        -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
        -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
        5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
        5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
        1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
        9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
        4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
        2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
        -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
        -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
        4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
        0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
        -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
        -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
        -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
        8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
        0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
        7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
        -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
        10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
        -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
        10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
        -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
        -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
        3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
        5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
        -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
        3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
        2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
        -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
        -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
        -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
        -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
        6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
        -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
        -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
        -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
        3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
        -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
        -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
        2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
        -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
        -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
        5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
        -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
        -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
        -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
        10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
        7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
        -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
        -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
        7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
        -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
        -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
        -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
        7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
        -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
        1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
        2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
        -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
        -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
        7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
        1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
        9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
        -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
        -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
        7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
        12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
        6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
        5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
        2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
        3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
        2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
        9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
        -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
        -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
        1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
        6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
        2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
        6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
        3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
        7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
        -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
        -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
        -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
        -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
        8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
        4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
        -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
        4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
        -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
        -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
        7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
        -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
        -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
        8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
        -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
        1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
        7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
        -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
        11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
        -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
        3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
        5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
        0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
        -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
        0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
        -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
        5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
        3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
        -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
        -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
        -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
        6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
        -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
        -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
        1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
        4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
        -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
        2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
        -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
        4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
        -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
        -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
        7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
        4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
        -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
        7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
        7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
        -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
        -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
        -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
        2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
        10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
        -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
        8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
        2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
        -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
        -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
        -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
        5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
        -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
        -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
        -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
        -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
        -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
        2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
        -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
        -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
        -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
        -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
        6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
        -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
        11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
        7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
        -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
        -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
        -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
        -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
        -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
        -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
        -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
        -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
        1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
        1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
        9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
        5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
        -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
        -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
        -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
        -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
        8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
        2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
        7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
        -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
        -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
        4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
        3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
        -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
        5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
        4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
        -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
        0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
        -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
        3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
        -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
        8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
        -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
        2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
        10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
        6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
        -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
        -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
        -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
        -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
        -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
        4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
        2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
        6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
        3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
        11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
        -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
        4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
        2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
        -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
        -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
        -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
        6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
        0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
        -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
        -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
        -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
        5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
        2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
        -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
        9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
        11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
        3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
        -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
        3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
        -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
        5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
        8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
        7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
        -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
        7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
        9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
        7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
        -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
348 349
    };

350 351 352 353 354 355 356 357 358
    void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
    {
        RNG rng(0x12345678);

        pattern.create(2, ntuples * tupleSize, CV_32SC1);
        pattern.setTo(Scalar::all(0));

        int* pattern_x_ptr = pattern.ptr<int>(0);
        int* pattern_y_ptr = pattern.ptr<int>(1);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        for (int i = 0; i < ntuples; i++)
        {
            for (int k = 0; k < tupleSize; k++)
            {
                for(;;)
                {
                    int idx = rng.uniform(0, poolSize);
                    Point pt = pattern0[idx];

                    int k1;
                    for (k1 = 0; k1 < k; k1++)
                        if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
                            break;

                    if (k1 == k)
                    {
                        pattern_x_ptr[tupleSize * i + k] = pt.x;
                        pattern_y_ptr[tupleSize * i + k] = pt.y;
                        break;
                    }
                }
            }
        }
    }

    void makeRandomPattern(int patchSize, Point* pattern, int npoints)
    {
        // we always start with a fixed seed,
        // to make patterns the same on each run
389 390
        RNG rng(0x34985739);

391 392 393 394 395 396 397 398
        for (int i = 0; i < npoints; i++)
        {
            pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
            pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
        }
    }
}

399
cv::gpu::ORB_GPU::ORB_GPU(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) :
400
    nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K),
401 402
    scoreType_(scoreType), patchSize_(patchSize),
    fastDetector_(DEFAULT_FAST_THRESHOLD)
403
{
404 405
    CV_Assert(patchSize_ >= 2);

406
    // fill the extractors and descriptors for the corresponding scales
407 408
    float factor = 1.0f / scaleFactor_;
    float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));
409

410
    n_features_per_level_.resize(nLevels_);
411
    size_t sum_n_features = 0;
412
    for (int level = 0; level < nLevels_ - 1; ++level)
413 414 415 416 417
    {
        n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
        sum_n_features += n_features_per_level_[level];
        n_desired_features_per_scale *= factor;
    }
418
    n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;
419 420

    // pre-compute the end of a row in a circular patch
421
    int half_patch_size = patchSize_ / 2;
422
    vector<int> u_max(half_patch_size + 2);
423 424
    for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
        u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
425

426
    // Make sure we are symmetric
427
    for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
428 429 430 431 432 433 434
    {
        while (u_max[v_0] == u_max[v_0 + 1])
            ++v_0;
        u_max[v] = v_0;
        ++v_0;
    }
    CV_Assert(u_max.size() < 32);
435
    cv::gpu::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));
436

437 438 439 440
    // Calc pattern
    const int npoints = 512;
    Point pattern_buf[npoints];
    const Point* pattern0 = (const Point*)bit_pattern_31_;
441
    if (patchSize_ != 31)
442 443
    {
        pattern0 = pattern_buf;
444
        makeRandomPattern(patchSize_, pattern_buf, npoints);
445
    }
446 447

    CV_Assert(WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4);
448 449 450

    Mat h_pattern;

451
    if (WTA_K_ == 2)
452 453
    {
        h_pattern.create(2, npoints, CV_32SC1);
454

455 456 457 458 459 460 461 462 463 464 465 466
        int* pattern_x_ptr = h_pattern.ptr<int>(0);
        int* pattern_y_ptr = h_pattern.ptr<int>(1);

        for (int i = 0; i < npoints; ++i)
        {
            pattern_x_ptr[i] = pattern0[i].x;
            pattern_y_ptr[i] = pattern0[i].y;
        }
    }
    else
    {
        int ntuples = descriptorSize() * 4;
467
        initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
468 469 470
    }

    pattern_.upload(h_pattern);
471

472 473 474
    blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101);

    blurForDescriptor = false;
475 476 477 478
}

namespace
{
479
    inline float getScale(float scaleFactor, int firstLevel, int level)
480
    {
481
        return pow(scaleFactor, level - firstLevel);
482 483 484 485 486 487 488 489
    }
}

void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mask)
{
    CV_Assert(image.type() == CV_8UC1);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));

490 491
    imagePyr_.resize(nLevels_);
    maskPyr_.resize(nLevels_);
492

493
    for (int level = 0; level < nLevels_; ++level)
494
    {
495
        float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);
496 497 498 499

        Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));

        ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
500 501
        ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
        maskPyr_[level].setTo(Scalar::all(255));
502

503
        // Compute the resized image
504
        if (level != firstLevel_)
505
        {
506
            if (level < firstLevel_)
507 508 509 510 511 512 513 514 515 516 517
            {
                resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);

                if (!mask.empty())
                    resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR);
            }
            else
            {
                resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR);

                if (!mask.empty())
Marina Kolpakova's avatar
Marina Kolpakova committed
518
                {
519
                    resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR);
Marina Kolpakova's avatar
Marina Kolpakova committed
520 521
                    threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO);
                }
522 523 524 525 526 527 528
            }
        }
        else
        {
            image.copyTo(imagePyr_[level]);

            if (!mask.empty())
529
                mask.copyTo(maskPyr_[level]);
530 531 532 533 534
        }

        // Filter keypoints by image border
        ensureSizeIsEnough(sz, CV_8UC1, buf_);
        buf_.setTo(Scalar::all(0));
535
        Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
536 537
        buf_(inner).setTo(Scalar::all(255));

538
        bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
539 540 541 542 543 544 545 546 547 548 549 550 551
    }
}

namespace
{
    //takes keypoints and culls them by the response
    void cull(GpuMat& keypoints, int& count, int n_points)
    {
        using namespace cv::gpu::device::orb;

        //this is only necessary if the keypoints size is greater than the number of desired points.
        if (count > n_points)
        {
552
            if (n_points == 0)
553 554 555 556 557 558 559 560 561 562 563 564 565 566
            {
                keypoints.release();
                return;
            }

            count = cull_gpu(keypoints.ptr<int>(FAST_GPU::LOCATION_ROW), keypoints.ptr<float>(FAST_GPU::RESPONSE_ROW), count, n_points);
        }
    }
}

void cv::gpu::ORB_GPU::computeKeyPointsPyramid()
{
    using namespace cv::gpu::device::orb;

567
    int half_patch_size = patchSize_ / 2;
568

569 570
    keyPointsPyr_.resize(nLevels_);
    keyPointsCount_.resize(nLevels_);
571

572
    for (int level = 0; level < nLevels_; ++level)
573
    {
574
        keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]);
575

576 577 578
        if (keyPointsCount_[level] == 0)
            continue;

579 580
        ensureSizeIsEnough(3, keyPointsCount_[level], CV_32FC1, keyPointsPyr_[level]);

581 582
        GpuMat fastKpRange = keyPointsPyr_[level].rowRange(0, 2);
        keyPointsCount_[level] = fastDetector_.getKeyPoints(fastKpRange);
583

584 585 586
        if (keyPointsCount_[level] == 0)
            continue;

587
        int n_features = static_cast<int>(n_features_per_level_[level]);
588

589
        if (scoreType_ == ORB::HARRIS_SCORE)
590 591 592 593 594 595
        {
            // Keep more points than necessary as FAST does not give amazing corners
            cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features);

            // Compute the Harris cornerness (better scoring than FAST)
            HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0);
596
        }
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

        //cull to the final desired level, using the new Harris scores or the original FAST scores.
        cull(keyPointsPyr_[level], keyPointsCount_[level], n_features);

        // Compute orientation
        IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0);
    }
}

void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
{
    using namespace cv::gpu::device::orb;

    int nAllkeypoints = 0;

612
    for (int level = 0; level < nLevels_; ++level)
613 614 615 616 617 618 619 620 621 622 623 624
        nAllkeypoints += keyPointsCount_[level];

    if (nAllkeypoints == 0)
    {
        descriptors.release();
        return;
    }

    ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors);

    int offset = 0;

625
    for (int level = 0; level < nLevels_; ++level)
626 627 628 629
    {
        if (keyPointsCount_[level] == 0)
            continue;

630 631 632 633 634 635 636 637 638
        GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);

        if (blurForDescriptor)
        {
            // preprocess the resized image
            ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
            blurFilter->apply(imagePyr_[level], buf_, Rect(0, 0, imagePyr_[level].cols, imagePyr_[level].rows));
        }

639
        computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
640
            keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0);
641 642 643 644 645 646 647 648 649 650 651

        offset += keyPointsCount_[level];
    }
}

void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
{
    using namespace cv::gpu::device::orb;

    int nAllkeypoints = 0;

652
    for (int level = 0; level < nLevels_; ++level)
653 654 655 656 657 658 659 660 661 662 663
        nAllkeypoints += keyPointsCount_[level];

    if (nAllkeypoints == 0)
    {
        keypoints.release();
        return;
    }

    ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints);

    int offset = 0;
664

665
    for (int level = 0; level < nLevels_; ++level)
666
    {
667 668 669
        if (keyPointsCount_[level] == 0)
            continue;

670
        float sf = getScale(scaleFactor_, firstLevel_, level);
671

672 673
        GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);

674
        float locScale = level != firstLevel_ ? sf : 1.0f;
675 676 677

        mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0);

678
        GpuMat range = keyPointsRange.rowRange(2, 4);
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
679
        keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range);
680

681
        keyPointsRange.row(4).setTo(Scalar::all(level));
682
        keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf));
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

        offset += keyPointsCount_[level];
    }
}

void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (d_keypoints.empty())
    {
        keypoints.clear();
        return;
    }

    Mat h_keypoints(d_keypoints);

    convertKeyPoints(h_keypoints, keypoints);
}

void cv::gpu::ORB_GPU::convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (d_keypoints.empty())
    {
        keypoints.clear();
        return;
    }

    CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT);

    float* x_ptr = d_keypoints.ptr<float>(X_ROW);
    float* y_ptr = d_keypoints.ptr<float>(Y_ROW);
    float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW);
    float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW);
    float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW);
    float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW);

    keypoints.resize(d_keypoints.cols);

    for (int i = 0; i < d_keypoints.cols; ++i)
    {
        KeyPoint kp;

        kp.pt.x = x_ptr[i];
        kp.pt.y = y_ptr[i];
        kp.response = response_ptr[i];
        kp.angle = angle_ptr[i];
        kp.octave = static_cast<int>(octave_ptr[i]);
        kp.size = size_ptr[i];

        keypoints[i] = kp;
    }
}

void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
{
    buildScalePyramids(image, mask);
    computeKeyPointsPyramid();
    mergeKeyPoints(keypoints);
}

void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
{
    buildScalePyramids(image, mask);
    computeKeyPointsPyramid();
    computeDescriptors(descriptors);
    mergeKeyPoints(keypoints);
}

void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
    (*this)(image, mask, d_keypoints_);
    downloadKeyPoints(d_keypoints_, keypoints);
}

void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
{
    (*this)(image, mask, d_keypoints_, descriptors);
    downloadKeyPoints(d_keypoints_, keypoints);
}

void cv::gpu::ORB_GPU::release()
{
    imagePyr_.clear();
765
    maskPyr_.clear();
766 767 768 769 770 771 772 773 774 775 776

    buf_.release();

    keyPointsPyr_.clear();

    fastDetector_.release();

    d_keypoints_.release();
}

#endif /* !defined (HAVE_CUDA) */