lsh.cpp 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2009, Xavier Delacour, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// 2009-01-12, Xavier Delacour <xavier.delacour@gmail.com>


// * hash perf could be improved
// * in particular, implement integer only (converted fixed from float input)

// * number of hash functions could be reduced (andoni paper)

// * redundant distance computations could be suppressed

// * rework CvLSHOperations interface-- move some of the loops into it to
// * allow efficient async storage


// Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. 2004. Locality-sensitive hashing 
// scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on 
// Computational Geometry (Brooklyn, New York, USA, June 08 - 11, 2004). SCG '04. ACM, New York, 
// NY, 253-262. DOI= http://doi.acm.org/10.1145/997817.997857 

#include "precomp.hpp"
#include <math.h>
#include <vector>
#include <algorithm>
#include <limits>

template <class T>
class memory_hash_ops : public CvLSHOperations {
  int d;
  std::vector<T> data;
  std::vector<int> free_data;
  struct node {
    int i, h2, next;
  };
  std::vector<node> nodes;
  std::vector<int> free_nodes;
  std::vector<int> bins;

public:
  memory_hash_ops(int _d, int n) : d(_d) {
    bins.resize(n, -1);
  }

  virtual int vector_add(const void* _p) {
    const T* p = (const T*)_p;
    int i;
    if (free_data.empty()) {
      i = (int)data.size();
      data.insert(data.end(), d, 0);
    } else {
      i = free_data.end()[-1];
      free_data.pop_back();
    }
    std::copy(p, p + d, data.begin() + i);
    return i / d;
  }
  virtual void vector_remove(int i) {
    free_data.push_back(i * d);
  }
  virtual const void* vector_lookup(int i) {
    return &data[i * d];
  }
  virtual void vector_reserve(int n) {
    data.reserve(n * d);
  }
  virtual unsigned int vector_count() {
    return (unsigned)(data.size() / d - free_data.size());
  }

  virtual void hash_insert(lsh_hash h, int /*l*/, int i) {
    int ii;
    if (free_nodes.empty()) {
      ii = (int)nodes.size();
      nodes.push_back(node());
    } else {
      ii = free_nodes.end()[-1];
      free_nodes.pop_back();
    }
    node& n = nodes[ii];
    int h1 = h.h1 % bins.size();
    n.i = i;
    n.h2 = h.h2;
    n.next = bins[h1];
    bins[h1] = ii;
  }
  virtual void hash_remove(lsh_hash h, int /*l*/, int i) {
    int h1 = h.h1 % bins.size();
    for (int ii = bins[h1], iin, iip = -1; ii != -1; iip = ii, ii = iin) {
      iin = nodes[ii].next;
      if (nodes[ii].h2 == h.h2 && nodes[ii].i == i) {
	free_nodes.push_back(ii);
	if (iip == -1)
	  bins[h1] = iin;
	else
	  nodes[iip].next = iin;
      }
    }
  }
  virtual int hash_lookup(lsh_hash h, int /*l*/, int* ret_i, int ret_i_max) {
    int h1 = h.h1 % bins.size();
    int k = 0;
    for (int ii = bins[h1]; ii != -1 && k < ret_i_max; ii = nodes[ii].next)
      if (nodes[ii].h2 == h.h2)
	ret_i[k++] = nodes[ii].i;
    return k;
  }
};

template <class T,int cvtype>
class pstable_l2_func {
  CvMat *a, *b, *r1, *r2;
  int d, k;
  double r;
  pstable_l2_func(const pstable_l2_func& x);
  pstable_l2_func& operator= (const pstable_l2_func& rhs);
public:
  typedef T scalar_type;
  typedef T accum_type;
  pstable_l2_func(int _d, int _k, double _r, CvRNG& rng)
    : d(_d), k(_k), r(_r) {
    assert(sizeof(T) == CV_ELEM_SIZE1(cvtype));
    a = cvCreateMat(k, d, cvtype);
    b = cvCreateMat(k, 1, cvtype);
    r1 = cvCreateMat(k, 1, CV_32SC1);
    r2 = cvCreateMat(k, 1, CV_32SC1);
    cvRandArr(&rng, a, CV_RAND_NORMAL, cvScalar(0), cvScalar(1));
    cvRandArr(&rng, b, CV_RAND_UNI, cvScalar(0), cvScalar(r));
    cvRandArr(&rng, r1, CV_RAND_UNI,
	      cvScalar(std::numeric_limits<int>::min()),
	      cvScalar(std::numeric_limits<int>::max()));
    cvRandArr(&rng, r2, CV_RAND_UNI,
	      cvScalar(std::numeric_limits<int>::min()),
	      cvScalar(std::numeric_limits<int>::max()));
  }
  ~pstable_l2_func() {
    cvReleaseMat(&a);
    cvReleaseMat(&b);
    cvReleaseMat(&r1);
    cvReleaseMat(&r2);
  }

  // * factor all L functions into this (reduces number of matrices to 4 total; 
  // * simpler syntax in lsh_table). give parameter l here that tells us which 
  // * row to use etc.

  lsh_hash operator() (const T* x) const {
    const T* aj = (const T*)a->data.ptr;
    const T* bj = (const T*)b->data.ptr;   

    lsh_hash h;
    h.h1 = h.h2 = 0;
    for (int j = 0; j < k; ++j) {
      accum_type s = 0;
      for (int jj = 0; jj < d; ++jj)
	s += aj[jj] * x[jj];
      s += *bj;
      s = accum_type(s/r);
      int si = int(s);
      h.h1 += r1->data.i[j] * si;
      h.h2 += r2->data.i[j] * si;

      aj += d;
      bj++;
    }
    return h;
  }
  accum_type distance(const T* p, const T* q) const {
    accum_type s = 0;
    for (int j = 0; j < d; ++j) {
      accum_type d1 = p[j] - q[j];
      s += d1 * d1;
    }
    return s;
  }
};

template <class H>
class lsh_table {
public:
  typedef typename H::scalar_type scalar_type;
  typedef typename H::accum_type accum_type;
private:
  std::vector<H*> g;
  CvLSHOperations* ops;
  int d, L, k;
  double r;

  static accum_type comp_dist(const std::pair<int,accum_type>& x,
			      const std::pair<int,accum_type>& y) {
    return x.second < y.second;
  }

  lsh_table(const lsh_table& x);
  lsh_table& operator= (const lsh_table& rhs);
public:
  lsh_table(CvLSHOperations* _ops, int _d, int Lval, int _k, double _r, CvRNG& rng)
    : ops(_ops), d(_d), L(Lval), k(_k), r(_r) {
    g.resize(L);
    for (int j = 0; j < L; ++j)
      g[j] = new H(d, k, r, rng);
  }
  ~lsh_table() {
    for (int j = 0; j < L; ++j)
      delete g[j];
    delete ops;
  }

  int dims() const {
    return d;
  }
  unsigned int size() const {
    return ops->vector_count();
  }

  void add(const scalar_type* data, int n, int* ret_indices = 0) {
    for (int j=0;j<n;++j) {
      const scalar_type* x = data+j*d;
      int i = ops->vector_add(x);
      if (ret_indices)
	ret_indices[j] = i;

      for (int l = 0; l < L; ++l) {
	lsh_hash h = (*g[l])(x);
	ops->hash_insert(h, l, i);
      }
    }
  }
  void remove(const int* indices, int n) {
    for (int j = 0; j < n; ++j) {
      int i = indices[n];
      const scalar_type* x = (const scalar_type*)ops->vector_lookup(i);

      for (int l = 0; l < L; ++l) {
	lsh_hash h = (*g[l])(x);
	ops->hash_remove(h, l, i);
      }
      ops->vector_remove(i);
    }
  }
  void query(const scalar_type* q, int k0, int emax, double* dist, int* results) {
    int* tmp = (int*)cvStackAlloc(sizeof(int) * emax);
    typedef std::pair<int, accum_type> dr_type; // * swap int and accum_type here, for naming consistency
    dr_type* dr = (dr_type*)cvStackAlloc(sizeof(dr_type) * k0);
    int k1 = 0;

    // * handle k0 >= emax, in which case don't track max distance

    for (int l = 0; l < L && emax > 0; ++l) {
      lsh_hash h = (*g[l])(q);
      int m = ops->hash_lookup(h, l, tmp, emax);
      for (int j = 0; j < m && emax > 0; ++j, --emax) {
	int i = tmp[j];
	const scalar_type* p = (const scalar_type*)ops->vector_lookup(i);
	accum_type pd = (*g[l]).distance(p, q);
	if (k1 < k0) {
	  dr[k1++] = std::make_pair(i, pd);
	  std::push_heap(dr, dr + k1, comp_dist);
	} else if (pd < dr[0].second) {
	  std::pop_heap(dr, dr + k0, comp_dist);
	  dr[k0 - 1] = std::make_pair(i, pd);
	  std::push_heap(dr, dr + k0, comp_dist);
	}
      }
    }

    for (int j = 0; j < k1; ++j)
      dist[j] = dr[j].second, results[j] = dr[j].first;
    std::fill(dist + k1, dist + k0, 0);
    std::fill(results + k1, results + k0, -1);
  }
  void query(const scalar_type* data, int n, int k0, int emax, double* dist, int* results) {
    for (int j = 0; j < n; ++j) {
      query(data, k0, emax, dist, results);
      data += d; // * this may not agree with step for some scalar_types
      dist += k0;
      results += k0;
    }
  }
};

typedef lsh_table<pstable_l2_func<float, CV_32FC1> > lsh_pstable_l2_32f;
typedef lsh_table<pstable_l2_func<double, CV_64FC1> > lsh_pstable_l2_64f;

struct CvLSH {
  int type;
  union {
    lsh_pstable_l2_32f* lsh_32f;
    lsh_pstable_l2_64f* lsh_64f;
  } u;
};

CvLSH* cvCreateLSH(CvLSHOperations* ops, int d, int L, int k, int type, double r, int64 seed) {
  CvLSH* lsh = 0;
  CvRNG rng = cvRNG(seed);

  if (type != CV_32FC1 && type != CV_64FC1)
    CV_Error(CV_StsUnsupportedFormat, "vectors must be either CV_32FC1 or CV_64FC1");
  lsh = new CvLSH;
  lsh->type = type;
  switch (type) {
  case CV_32FC1: lsh->u.lsh_32f = new lsh_pstable_l2_32f(ops, d, L, k, r, rng); break;
  case CV_64FC1: lsh->u.lsh_64f = new lsh_pstable_l2_64f(ops, d, L, k, r, rng); break;
  }

  return lsh;
}

CvLSH* cvCreateMemoryLSH(int d, int n, int L, int k, int type, double r, int64 seed) {
  CvLSHOperations* ops = 0;

  switch (type) {
  case CV_32FC1: ops = new memory_hash_ops<float>(d,n); break;
  case CV_64FC1: ops = new memory_hash_ops<double>(d,n); break;
  }
  return cvCreateLSH(ops, d, L, k, type, r, seed);
}

void cvReleaseLSH(CvLSH** lsh) {
  switch ((*lsh)->type) {
  case CV_32FC1: delete (*lsh)->u.lsh_32f; break;
  case CV_64FC1: delete (*lsh)->u.lsh_64f; break;
  default: assert(0);
  }
  delete *lsh;
  *lsh = 0;
}

unsigned int LSHSize(CvLSH* lsh) {
  switch (lsh->type) {
  case CV_32FC1: return lsh->u.lsh_32f->size(); break;
  case CV_64FC1: return lsh->u.lsh_64f->size(); break;
  default: assert(0);
  }
  return 0;
}


void cvLSHAdd(CvLSH* lsh, const CvMat* data, CvMat* indices) {
  int dims, n;
  int* ret_indices = 0;

  switch (lsh->type) {
  case CV_32FC1: dims = lsh->u.lsh_32f->dims(); break;
  case CV_64FC1: dims = lsh->u.lsh_64f->dims(); break;
  default: assert(0); return;
  }

  n = data->rows;

  if (dims != data->cols)
    CV_Error(CV_StsBadSize, "data must be n x d, where d is what was used to construct LSH");

  if (CV_MAT_TYPE(data->type) != lsh->type)
    CV_Error(CV_StsUnsupportedFormat, "type of data and constructed LSH must agree");
  if (indices) {
    if (CV_MAT_TYPE(indices->type) != CV_32SC1)
      CV_Error(CV_StsUnsupportedFormat, "indices must be CV_32SC1");
    if (indices->rows * indices->cols != n)
      CV_Error(CV_StsBadSize, "indices must be n x 1 or 1 x n for n x d data");
    ret_indices = indices->data.i;
  }

  switch (lsh->type) {
  case CV_32FC1: lsh->u.lsh_32f->add(data->data.fl, n, ret_indices); break;
  case CV_64FC1: lsh->u.lsh_64f->add(data->data.db, n, ret_indices); break;
  default: assert(0); return;
  }
}

void cvLSHRemove(CvLSH* lsh, const CvMat* indices) {
  int n;

  if (CV_MAT_TYPE(indices->type) != CV_32SC1)
    CV_Error(CV_StsUnsupportedFormat, "indices must be CV_32SC1");
  n = indices->rows * indices->cols;
  switch (lsh->type) {
  case CV_32FC1: lsh->u.lsh_32f->remove(indices->data.i, n); break;
  case CV_64FC1: lsh->u.lsh_64f->remove(indices->data.i, n); break;
  default: assert(0); return;
  }
}

void cvLSHQuery(CvLSH* lsh, const CvMat* data, CvMat* indices, CvMat* dist, int k, int emax) {
  int dims;

  switch (lsh->type) {
  case CV_32FC1: dims = lsh->u.lsh_32f->dims(); break;
  case CV_64FC1: dims = lsh->u.lsh_64f->dims(); break;
  default: assert(0); return;
  }

  if (k<1)
    CV_Error(CV_StsOutOfRange, "k must be positive");
  if (CV_MAT_TYPE(data->type) != lsh->type)
    CV_Error(CV_StsUnsupportedFormat, "type of data and constructed LSH must agree");
  if (dims != data->cols)
    CV_Error(CV_StsBadSize, "data must be n x d, where d is what was used to construct LSH");
  if (dist->rows != data->rows || dist->cols != k)
    CV_Error(CV_StsBadSize, "dist must be n x k for n x d data");
  if (dist->rows != indices->rows || dist->cols != indices->cols)
    CV_Error(CV_StsBadSize, "dist and indices must be same size");
  if (CV_MAT_TYPE(dist->type) != CV_64FC1)
    CV_Error(CV_StsUnsupportedFormat, "dist must be CV_64FC1");
  if (CV_MAT_TYPE(indices->type) != CV_32SC1)
    CV_Error(CV_StsUnsupportedFormat, "indices must be CV_32SC1");

  switch (lsh->type) {
  case CV_32FC1: lsh->u.lsh_32f->query(data->data.fl, data->rows,
				       k, emax, dist->data.db, indices->data.i); break;
  case CV_64FC1: lsh->u.lsh_64f->query(data->data.db, data->rows,
				       k, emax, dist->data.db, indices->data.i); break;
  default: assert(0); return;
  }
}