test_mltests.cpp 4.74 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace cv;
using namespace std;

CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
    validationFN = "avalidation.xml";
}

int CV_AMLTest::run_test_case( int testCaseIdx )
{
    int code = cvtest::TS::OK;
    code = prepare_test_case( testCaseIdx );

    if (code == cvtest::TS::OK)
    {
        //#define GET_STAT
#ifdef GET_STAT
61
        const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
62 63 64 65 66 67 68
        printf("%s, %s      ", name, data_name);
        const int icount = 100;
        float res[icount];
        for (int k = 0; k < icount; k++)
        {
#endif
            data.mix_train_and_test_idx();
69
            code = train( testCaseIdx );
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#ifdef GET_STAT
            float case_result = get_error();

            res[k] = case_result;
        }
        float mean = 0, sigma = 0;
        for (int k = 0; k < icount; k++)
        {
            mean += res[k];
        }
        mean = mean /icount;
        for (int k = 0; k < icount; k++)
        {
            sigma += (res[k] - mean)*(res[k] - mean);
        }
        sigma = sqrt(sigma/icount);
        printf("%f, %f\n", mean, sigma);
#endif
    }
    return code;
}

int CV_AMLTest::validate_test_results( int testCaseIdx )
{
    int iters;
    float mean, sigma;
    // read validation params
97
    FileNode resultNode =
98
        validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
99
    resultNode["iter_count"] >> iters;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if ( iters > 0)
    {
        resultNode["mean"] >> mean;
        resultNode["sigma"] >> sigma;
        float curErr = get_error( testCaseIdx, CV_TEST_ERROR );
        const int coeff = 4;
        ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f",
                                testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
        if ( abs( curErr - mean) > coeff*sigma )
        {
            ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
            return cvtest::TS::FAIL_BAD_ACCURACY;
        }
        else
            ts->printf( cvtest::TS::LOG, ".\n" );

    }
    else
    {
        ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
        return cvtest::TS::FAIL_INVALID_TEST_DATA;
    }
    return cvtest::TS::OK;
}

TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
TEST(ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }

/* End of file. */