slasd6.c 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#include "clapack.h"

/* Table of constant values */

static integer c__0 = 0;
static real c_b7 = 1.f;
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int slasd6_(integer *icompq, integer *nl, integer *nr, 
	integer *sqre, real *d__, real *vf, real *vl, real *alpha, real *beta, 
	 integer *idxq, integer *perm, integer *givptr, integer *givcol, 
	integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real *
	difl, real *difr, real *z__, integer *k, real *c__, real *s, real *
	work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, 
	    poles_dim1, poles_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    integer i__, m, n, n1, n2, iw, idx, idxc, idxp, ivfw, ivlw;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slasd7_(integer *, integer *, integer *, integer *, 
	    integer *, real *, real *, real *, real *, real *, real *, real *, 
	     real *, real *, real *, integer *, integer *, integer *, integer 
	    *, integer *, integer *, integer *, real *, integer *, real *, 
	    real *, integer *), slasd8_(integer *, integer *, real *, real *, 
	    real *, real *, real *, real *, integer *, real *, real *, 
	    integer *);
    integer isigma;
    extern /* Subroutine */ int xerbla_(char *, integer *), slascl_(
	    char *, integer *, integer *, real *, real *, integer *, integer *
, real *, integer *, integer *), slamrg_(integer *, 
	    integer *, real *, integer *, integer *, integer *);
    real orgnrm;


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASD6 computes the SVD of an updated upper bidiagonal matrix B */
/*  obtained by merging two smaller ones by appending a row. This */
/*  routine is used only for the problem which requires all singular */
/*  values and optionally singular vector matrices in factored form. */
/*  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
/*  A related subroutine, SLASD1, handles the case in which all singular */
/*  values and singular vectors of the bidiagonal matrix are desired. */

/*  SLASD6 computes the SVD as follows: */

/*                ( D1(in)  0    0     0 ) */
/*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in) */
/*                (   0     0   D2(in) 0 ) */

/*      = U(out) * ( D(out) 0) * VT(out) */

/*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
/*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
/*  elsewhere; and the entry b is empty if SQRE = 0. */

/*  The singular values of B can be computed using D1, D2, the first */
/*  components of all the right singular vectors of the lower block, and */
/*  the last components of all the right singular vectors of the upper */
/*  block. These components are stored and updated in VF and VL, */
/*  respectively, in SLASD6. Hence U and VT are not explicitly */
/*  referenced. */

/*  The singular values are stored in D. The algorithm consists of two */
/*  stages: */

/*        The first stage consists of deflating the size of the problem */
/*        when there are multiple singular values or if there is a zero */
/*        in the Z vector. For each such occurence the dimension of the */
/*        secular equation problem is reduced by one. This stage is */
/*        performed by the routine SLASD7. */

/*        The second stage consists of calculating the updated */
/*        singular values. This is done by finding the roots of the */
/*        secular equation via the routine SLASD4 (as called by SLASD8). */
/*        This routine also updates VF and VL and computes the distances */
/*        between the updated singular values and the old singular */
/*        values. */

/*  SLASD6 is called from SLASDA. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ (input) INTEGER */
/*         Specifies whether singular vectors are to be computed in */
/*         factored form: */
/*         = 0: Compute singular values only. */
/*         = 1: Compute singular vectors in factored form as well. */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block.  NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block.  NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has row dimension N = NL + NR + 1, */
/*         and column dimension M = N + SQRE. */

/*  D      (input/output) REAL array, dimension (NL+NR+1). */
/*         On entry D(1:NL,1:NL) contains the singular values of the */
/*         upper block, and D(NL+2:N) contains the singular values */
/*         of the lower block. On exit D(1:N) contains the singular */
/*         values of the modified matrix. */

/*  VF     (input/output) REAL array, dimension (M) */
/*         On entry, VF(1:NL+1) contains the first components of all */
/*         right singular vectors of the upper block; and VF(NL+2:M) */
/*         contains the first components of all right singular vectors */
/*         of the lower block. On exit, VF contains the first components */
/*         of all right singular vectors of the bidiagonal matrix. */

/*  VL     (input/output) REAL array, dimension (M) */
/*         On entry, VL(1:NL+1) contains the  last components of all */
/*         right singular vectors of the upper block; and VL(NL+2:M) */
/*         contains the last components of all right singular vectors of */
/*         the lower block. On exit, VL contains the last components of */
/*         all right singular vectors of the bidiagonal matrix. */

/*  ALPHA  (input/output) REAL */
/*         Contains the diagonal element associated with the added row. */

/*  BETA   (input/output) REAL */
/*         Contains the off-diagonal element associated with the added */
/*         row. */

/*  IDXQ   (output) INTEGER array, dimension (N) */
/*         This contains the permutation which will reintegrate the */
/*         subproblem just solved back into sorted order, i.e. */
/*         D( IDXQ( I = 1, N ) ) will be in ascending order. */

/*  PERM   (output) INTEGER array, dimension ( N ) */
/*         The permutations (from deflation and sorting) to be applied */
/*         to each block. Not referenced if ICOMPQ = 0. */

/*  GIVPTR (output) INTEGER */
/*         The number of Givens rotations which took place in this */
/*         subproblem. Not referenced if ICOMPQ = 0. */

/*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGCOL (input) INTEGER */
/*         leading dimension of GIVCOL, must be at least N. */

/*  GIVNUM (output) REAL array, dimension ( LDGNUM, 2 ) */
/*         Each number indicates the C or S value to be used in the */
/*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGNUM (input) INTEGER */
/*         The leading dimension of GIVNUM and POLES, must be at least N. */

/*  POLES  (output) REAL array, dimension ( LDGNUM, 2 ) */
/*         On exit, POLES(1,*) is an array containing the new singular */
/*         values obtained from solving the secular equation, and */
/*         POLES(2,*) is an array containing the poles in the secular */
/*         equation. Not referenced if ICOMPQ = 0. */

/*  DIFL   (output) REAL array, dimension ( N ) */
/*         On exit, DIFL(I) is the distance between I-th updated */
/*         (undeflated) singular value and the I-th (undeflated) old */
/*         singular value. */

/*  DIFR   (output) REAL array, */
/*                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and */
/*                  dimension ( N ) if ICOMPQ = 0. */
/*         On exit, DIFR(I, 1) is the distance between I-th updated */
/*         (undeflated) singular value and the I+1-th (undeflated) old */
/*         singular value. */

/*         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
/*         normalizing factors for the right singular vector matrix. */

/*         See SLASD8 for details on DIFL and DIFR. */

/*  Z      (output) REAL array, dimension ( M ) */
/*         The first elements of this array contain the components */
/*         of the deflation-adjusted updating row vector. */

/*  K      (output) INTEGER */
/*         Contains the dimension of the non-deflated matrix, */
/*         This is the order of the related secular equation. 1 <= K <=N. */

/*  C      (output) REAL */
/*         C contains garbage if SQRE =0 and the C-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  S      (output) REAL */
/*         S contains garbage if SQRE =0 and the S-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  WORK   (workspace) REAL array, dimension ( 4 * M ) */

/*  IWORK  (workspace) INTEGER array, dimension ( 3 * N ) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --vf;
    --vl;
    --idxq;
    --perm;
    givcol_dim1 = *ldgcol;
    givcol_offset = 1 + givcol_dim1;
    givcol -= givcol_offset;
    poles_dim1 = *ldgnum;
    poles_offset = 1 + poles_dim1;
    poles -= poles_offset;
    givnum_dim1 = *ldgnum;
    givnum_offset = 1 + givnum_dim1;
    givnum -= givnum_offset;
    --difl;
    --difr;
    --z__;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    n = *nl + *nr + 1;
    m = n + *sqre;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*nl < 1) {
	*info = -2;
    } else if (*nr < 1) {
	*info = -3;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -4;
    } else if (*ldgcol < n) {
	*info = -14;
    } else if (*ldgnum < n) {
	*info = -16;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLASD6", &i__1);
	return 0;
    }

/*     The following values are for bookkeeping purposes only.  They are */
/*     integer pointers which indicate the portion of the workspace */
/*     used by a particular array in SLASD7 and SLASD8. */

    isigma = 1;
    iw = isigma + n;
    ivfw = iw + m;
    ivlw = ivfw + m;

    idx = 1;
    idxc = idx + n;
    idxp = idxc + n;

/*     Scale. */

/* Computing MAX */
    r__1 = dabs(*alpha), r__2 = dabs(*beta);
    orgnrm = dmax(r__1,r__2);
    d__[*nl + 1] = 0.f;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((r__1 = d__[i__], dabs(r__1)) > orgnrm) {
	    orgnrm = (r__1 = d__[i__], dabs(r__1));
	}
/* L10: */
    }
    slascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
    *alpha /= orgnrm;
    *beta /= orgnrm;

/*     Sort and Deflate singular values. */

    slasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
	    work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
	    iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
	    givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s, 
	    info);

/*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */

    slasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1], 
	    ldgnum, &work[isigma], &work[iw], info);

/*     Save the poles if ICOMPQ = 1. */

    if (*icompq == 1) {
	scopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
	scopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
    }

/*     Unscale. */

    slascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);

/*     Prepare the IDXQ sorting permutation. */

    n1 = *k;
    n2 = n - *k;
    slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);

    return 0;

/*     End of SLASD6 */

} /* slasd6_ */