slarrc.c 4.13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#include "clapack.h"

/* Subroutine */ int slarrc_(char *jobt, integer *n, real *vl, real *vu, real 
	*d__, real *e, real *pivmin, integer *eigcnt, integer *lcnt, integer *
	rcnt, integer *info)
{
    /* System generated locals */
    integer i__1;
    real r__1;

    /* Local variables */
    integer i__;
    real sl, su, tmp, tmp2;
    logical matt;
    extern logical lsame_(char *, char *);
    real lpivot, rpivot;


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Find the number of eigenvalues of the symmetric tridiagonal matrix T */
/*  that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T */
/*  if JOBT = 'L'. */

/*  Arguments */
/*  ========= */

/*  JOBT    (input) CHARACTER*1 */
/*          = 'T':  Compute Sturm count for matrix T. */
/*          = 'L':  Compute Sturm count for matrix L D L^T. */

/*  N       (input) INTEGER */
/*          The order of the matrix. N > 0. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          The lower and upper bounds for the eigenvalues. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. */
/*          JOBT = 'L': The N diagonal elements of the diagonal matrix D. */

/*  E       (input) DOUBLE PRECISION array, dimension (N) */
/*          JOBT = 'T': The N-1 offdiagonal elements of the matrix T. */
/*          JOBT = 'L': The N-1 offdiagonal elements of the matrix L. */

/*  PIVMIN  (input) DOUBLE PRECISION */
/*          The minimum pivot in the Sturm sequence for T. */

/*  EIGCNT  (output) INTEGER */
/*          The number of eigenvalues of the symmetric tridiagonal matrix T */
/*          that are in the interval (VL,VU] */

/*  LCNT    (output) INTEGER */
/*  RCNT    (output) INTEGER */
/*          The left and right negcounts of the interval. */

/*  INFO    (output) INTEGER */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Beresford Parlett, University of California, Berkeley, USA */
/*     Jim Demmel, University of California, Berkeley, USA */
/*     Inderjit Dhillon, University of Texas, Austin, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Christof Voemel, University of California, Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    *lcnt = 0;
    *rcnt = 0;
    *eigcnt = 0;
    matt = lsame_(jobt, "T");
    if (matt) {
/*        Sturm sequence count on T */
	lpivot = d__[1] - *vl;
	rpivot = d__[1] - *vu;
	if (lpivot <= 0.f) {
	    ++(*lcnt);
	}
	if (rpivot <= 0.f) {
	    ++(*rcnt);
	}
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	    r__1 = e[i__];
	    tmp = r__1 * r__1;
	    lpivot = d__[i__ + 1] - *vl - tmp / lpivot;
	    rpivot = d__[i__ + 1] - *vu - tmp / rpivot;
	    if (lpivot <= 0.f) {
		++(*lcnt);
	    }
	    if (rpivot <= 0.f) {
		++(*rcnt);
	    }
/* L10: */
	}
    } else {
/*        Sturm sequence count on L D L^T */
	sl = -(*vl);
	su = -(*vu);
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    lpivot = d__[i__] + sl;
	    rpivot = d__[i__] + su;
	    if (lpivot <= 0.f) {
		++(*lcnt);
	    }
	    if (rpivot <= 0.f) {
		++(*rcnt);
	    }
	    tmp = e[i__] * d__[i__] * e[i__];

	    tmp2 = tmp / lpivot;
	    if (tmp2 == 0.f) {
		sl = tmp - *vl;
	    } else {
		sl = sl * tmp2 - *vl;
	    }

	    tmp2 = tmp / rpivot;
	    if (tmp2 == 0.f) {
		su = tmp - *vu;
	    } else {
		su = su * tmp2 - *vu;
	    }
/* L20: */
	}
	lpivot = d__[*n] + sl;
	rpivot = d__[*n] + su;
	if (lpivot <= 0.f) {
	    ++(*lcnt);
	}
	if (rpivot <= 0.f) {
	    ++(*rcnt);
	}
    }
    *eigcnt = *rcnt - *lcnt;
    return 0;

/*     end of SLARRC */

} /* slarrc_ */