dlarft.c 9.47 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlarft.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b8 = 0.;

/* Subroutine */ int dlarft_(char *direct, char *storev, integer *n, integer *
	k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 
	integer *ldt)
{
    /* System generated locals */
    integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
30
    integer i__, j, prevlastv;
31 32 33 34
    doublereal vii;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
35 36 37 38
	    doublereal *, doublereal *, integer *);
    integer lastv;
    extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
39 40


41
/*  -- LAPACK auxiliary routine (version 3.2) -- */
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLARFT forms the triangular factor T of a real block reflector H */
/*  of order n, which is defined as a product of k elementary reflectors. */

/*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */

/*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */

/*  If STOREV = 'C', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th column of the array V, and */

/*     H  =  I - V * T * V' */

/*  If STOREV = 'R', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th row of the array V, and */

/*     H  =  I - V' * T * V */

/*  Arguments */
/*  ========= */

/*  DIRECT  (input) CHARACTER*1 */
/*          Specifies the order in which the elementary reflectors are */
/*          multiplied to form the block reflector: */
/*          = 'F': H = H(1) H(2) . . . H(k) (Forward) */
/*          = 'B': H = H(k) . . . H(2) H(1) (Backward) */

/*  STOREV  (input) CHARACTER*1 */
/*          Specifies how the vectors which define the elementary */
/*          reflectors are stored (see also Further Details): */
/*          = 'C': columnwise */
/*          = 'R': rowwise */

/*  N       (input) INTEGER */
/*          The order of the block reflector H. N >= 0. */

/*  K       (input) INTEGER */
/*          The order of the triangular factor T (= the number of */
/*          elementary reflectors). K >= 1. */

/*  V       (input/output) DOUBLE PRECISION array, dimension */
/*                               (LDV,K) if STOREV = 'C' */
/*                               (LDV,N) if STOREV = 'R' */
/*          The matrix V. See further details. */

/*  LDV     (input) INTEGER */
/*          The leading dimension of the array V. */
/*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */

/*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i). */

/*  T       (output) DOUBLE PRECISION array, dimension (LDT,K) */
/*          The k by k triangular factor T of the block reflector. */
/*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
/*          lower triangular. The rest of the array is not used. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= K. */

/*  Further Details */
/*  =============== */

/*  The shape of the matrix V and the storage of the vectors which define */
/*  the H(i) is best illustrated by the following example with n = 5 and */
/*  k = 3. The elements equal to 1 are not stored; the corresponding */
/*  array elements are modified but restored on exit. The rest of the */
/*  array is not used. */

/*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */

/*               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) */
/*                   ( v1  1    )                     (     1 v2 v2 v2 ) */
/*                   ( v1 v2  1 )                     (        1 v3 v3 ) */
/*                   ( v1 v2 v3 ) */
/*                   ( v1 v2 v3 ) */

/*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */

/*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) */
/*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) */
/*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) */
/*                   (     1 v3 ) */
/*                   (        1 ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --tau;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;

    /* Function Body */
    if (*n == 0) {
	return 0;
    }

    if (lsame_(direct, "F")) {
167
	prevlastv = *n;
168 169
	i__1 = *k;
	for (i__ = 1; i__ <= i__1; ++i__) {
170
	    prevlastv = max(i__,prevlastv);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	    if (tau[i__] == 0.) {

/*              H(i)  =  I */

		i__2 = i__;
		for (j = 1; j <= i__2; ++j) {
		    t[j + i__ * t_dim1] = 0.;
/* L10: */
		}
	    } else {

/*              general case */

		vii = v[i__ + i__ * v_dim1];
		v[i__ + i__ * v_dim1] = 1.;
		if (lsame_(storev, "C")) {
187 188 189 190 191 192 193 194
/*                 Skip any trailing zeros. */
		    i__2 = i__ + 1;
		    for (lastv = *n; lastv >= i__2; --lastv) {
			if (v[lastv + i__ * v_dim1] != 0.) {
			    break;
			}
		    }
		    j = min(lastv,prevlastv);
195

196
/*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)' * V(i:j,i) */
197

198
		    i__2 = j - i__ + 1;
199 200 201 202 203 204
		    i__3 = i__ - 1;
		    d__1 = -tau[i__];
		    dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1], 
			     ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b8, &t[
			    i__ * t_dim1 + 1], &c__1);
		} else {
205 206 207 208 209 210 211 212
/*                 Skip any trailing zeros. */
		    i__2 = i__ + 1;
		    for (lastv = *n; lastv >= i__2; --lastv) {
			if (v[i__ + lastv * v_dim1] != 0.) {
			    break;
			}
		    }
		    j = min(lastv,prevlastv);
213

214
/*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)' */
215 216

		    i__2 = i__ - 1;
217
		    i__3 = j - i__ + 1;
218 219 220 221 222 223 224 225 226 227 228 229 230
		    d__1 = -tau[i__];
		    dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ * 
			    v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
			    c_b8, &t[i__ * t_dim1 + 1], &c__1);
		}
		v[i__ + i__ * v_dim1] = vii;

/*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */

		i__2 = i__ - 1;
		dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
			t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
		t[i__ + i__ * t_dim1] = tau[i__];
231 232 233 234 235
		if (i__ > 1) {
		    prevlastv = max(prevlastv,lastv);
		} else {
		    prevlastv = lastv;
		}
236 237 238 239
	    }
/* L20: */
	}
    } else {
240
	prevlastv = 1;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	for (i__ = *k; i__ >= 1; --i__) {
	    if (tau[i__] == 0.) {

/*              H(i)  =  I */

		i__1 = *k;
		for (j = i__; j <= i__1; ++j) {
		    t[j + i__ * t_dim1] = 0.;
/* L30: */
		}
	    } else {

/*              general case */

		if (i__ < *k) {
		    if (lsame_(storev, "C")) {
			vii = v[*n - *k + i__ + i__ * v_dim1];
			v[*n - *k + i__ + i__ * v_dim1] = 1.;
259 260 261 262 263 264 265 266
/*                    Skip any leading zeros. */
			i__1 = i__ - 1;
			for (lastv = 1; lastv <= i__1; ++lastv) {
			    if (v[lastv + i__ * v_dim1] != 0.) {
				break;
			    }
			}
			j = max(lastv,prevlastv);
267 268

/*                    T(i+1:k,i) := */
269
/*                            - tau(i) * V(j:n-k+i,i+1:k)' * V(j:n-k+i,i) */
270

271
			i__1 = *n - *k + i__ - j + 1;
272 273
			i__2 = *k - i__;
			d__1 = -tau[i__];
274 275
			dgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__ 
				+ 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &
276 277 278 279 280 281
				c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], &
				c__1);
			v[*n - *k + i__ + i__ * v_dim1] = vii;
		    } else {
			vii = v[i__ + (*n - *k + i__) * v_dim1];
			v[i__ + (*n - *k + i__) * v_dim1] = 1.;
282 283 284 285 286 287 288 289
/*                    Skip any leading zeros. */
			i__1 = i__ - 1;
			for (lastv = 1; lastv <= i__1; ++lastv) {
			    if (v[i__ + lastv * v_dim1] != 0.) {
				break;
			    }
			}
			j = max(lastv,prevlastv);
290 291

/*                    T(i+1:k,i) := */
292
/*                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)' */
293 294

			i__1 = *k - i__;
295
			i__2 = *n - *k + i__ - j + 1;
296 297
			d__1 = -tau[i__];
			dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 
298 299
				1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], 
				ldv, &c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1);
300 301 302 303 304 305 306 307 308 309
			v[i__ + (*n - *k + i__) * v_dim1] = vii;
		    }

/*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */

		    i__1 = *k - i__;
		    dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ 
			    + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
			     t_dim1], &c__1)
			    ;
310 311 312 313 314
		    if (i__ > 1) {
			prevlastv = min(prevlastv,lastv);
		    } else {
			prevlastv = lastv;
		    }
315 316 317 318 319 320 321 322 323 324 325
		}
		t[i__ + i__ * t_dim1] = tau[i__];
	    }
/* L40: */
	}
    }
    return 0;

/*     End of DLARFT */

} /* dlarft_ */