em.cpp 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

44
namespace cv
45
{
46 47
namespace ml
{
48

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
49
const double minEigenValue = DBL_EPSILON;
50

51
class CV_EXPORTS EMImpl CV_FINAL : public EM
52
{
53
public:
54 55 56 57 58

    int nclusters;
    int covMatType;
    TermCriteria termCrit;

59 60
    inline TermCriteria getTermCriteria() const CV_OVERRIDE { return termCrit; }
    inline void setTermCriteria(const TermCriteria& val) CV_OVERRIDE { termCrit = val; }
61

62
    void setClustersNumber(int val) CV_OVERRIDE
63
    {
64
        nclusters = val;
65
        CV_Assert(nclusters >= 1);
66
    }
67

68
    int getClustersNumber() const CV_OVERRIDE
69 70 71
    {
        return nclusters;
    }
72

73
    void setCovarianceMatrixType(int val) CV_OVERRIDE
74
    {
75 76 77 78
        covMatType = val;
        CV_Assert(covMatType == COV_MAT_SPHERICAL ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_GENERIC);
79 80
    }

81
    int getCovarianceMatrixType() const CV_OVERRIDE
82
    {
83
        return covMatType;
84
    }
85

86 87 88 89 90 91 92 93 94
    EMImpl()
    {
        nclusters = DEFAULT_NCLUSTERS;
        covMatType=EM::COV_MAT_DIAGONAL;
        termCrit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, EM::DEFAULT_MAX_ITERS, 1e-6);
    }

    virtual ~EMImpl() {}

95
    void clear() CV_OVERRIDE
96 97 98 99 100
    {
        trainSamples.release();
        trainProbs.release();
        trainLogLikelihoods.release();
        trainLabels.release();
101

102 103 104
        weights.release();
        means.release();
        covs.clear();
105

106 107 108
        covsEigenValues.clear();
        invCovsEigenValues.clear();
        covsRotateMats.clear();
109

110 111
        logWeightDivDet.release();
    }
112

113
    bool train(const Ptr<TrainData>& data, int) CV_OVERRIDE
114
    {
115
        CV_Assert(!data.empty());
116
        Mat samples = data->getTrainSamples(), labels;
117
        return trainEM(samples, labels, noArray(), noArray());
118 119
    }

120
    bool trainEM(InputArray samples,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
121
               OutputArray logLikelihoods,
122
               OutputArray labels,
123
               OutputArray probs) CV_OVERRIDE
124 125 126 127 128
    {
        Mat samplesMat = samples.getMat();
        setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
        return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
    }
129

130
    bool trainE(InputArray samples,
131 132 133
                InputArray _means0,
                InputArray _covs0,
                InputArray _weights0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
134
                OutputArray logLikelihoods,
135
                OutputArray labels,
136
                OutputArray probs) CV_OVERRIDE
137 138 139 140
    {
        Mat samplesMat = samples.getMat();
        std::vector<Mat> covs0;
        _covs0.getMatVector(covs0);
141

142
        Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
143

144 145 146 147
        setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
                     !_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0);
        return doTrain(START_E_STEP, logLikelihoods, labels, probs);
    }
148

149
    bool trainM(InputArray samples,
150
                InputArray _probs0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
151
                OutputArray logLikelihoods,
152
                OutputArray labels,
153
                OutputArray probs) CV_OVERRIDE
154
    {
155 156
        Mat samplesMat = samples.getMat();
        Mat probs0 = _probs0.getMat();
157

158 159
        setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
        return doTrain(START_M_STEP, logLikelihoods, labels, probs);
160 161
    }

162
    float predict(InputArray _inputs, OutputArray _outputs, int) const CV_OVERRIDE
163 164 165
    {
        bool needprobs = _outputs.needed();
        Mat samples = _inputs.getMat(), probs, probsrow;
166
        int ptype = CV_64F;
167 168
        float firstres = 0.f;
        int i, nsamples = samples.rows;
169

170 171 172 173
        if( needprobs )
        {
            if( _outputs.fixedType() )
                ptype = _outputs.type();
174
            _outputs.create(samples.rows, nclusters, ptype);
175
            probs = _outputs.getMat();
176 177 178
        }
        else
            nsamples = std::min(nsamples, 1);
179

180
        for( i = 0; i < nsamples; i++ )
181
        {
182 183 184 185 186
            if( needprobs )
                probsrow = probs.row(i);
            Vec2d res = computeProbabilities(samples.row(i), needprobs ? &probsrow : 0, ptype);
            if( i == 0 )
                firstres = (float)res[1];
187
        }
188
        return firstres;
189 190
    }

191
    Vec2d predict2(InputArray _sample, OutputArray _probs) const CV_OVERRIDE
192
    {
193
        int ptype = CV_64F;
194 195
        Mat sample = _sample.getMat();
        CV_Assert(isTrained());
196

197 198 199 200 201 202 203
        CV_Assert(!sample.empty());
        if(sample.type() != CV_64FC1)
        {
            Mat tmp;
            sample.convertTo(tmp, CV_64FC1);
            sample = tmp;
        }
204
        sample = sample.reshape(1, 1);
205

206 207 208 209 210
        Mat probs;
        if( _probs.needed() )
        {
            if( _probs.fixedType() )
                ptype = _probs.type();
211
            _probs.create(1, nclusters, ptype);
212 213
            probs = _probs.getMat();
        }
214

215
        return computeProbabilities(sample, !probs.empty() ? &probs : 0, ptype);
216
    }
217

218
    bool isTrained() const CV_OVERRIDE
219
    {
220
        return !means.empty();
221 222
    }

223
    bool isClassifier() const CV_OVERRIDE
224
    {
225
        return true;
226 227
    }

228
    int getVarCount() const CV_OVERRIDE
229
    {
230
        return means.cols;
231 232
    }

233
    String getDefaultName() const CV_OVERRIDE
234
    {
235 236
        return "opencv_ml_em";
    }
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    static void checkTrainData(int startStep, const Mat& samples,
                               int nclusters, int covMatType, const Mat* probs, const Mat* means,
                               const std::vector<Mat>* covs, const Mat* weights)
    {
        // Check samples.
        CV_Assert(!samples.empty());
        CV_Assert(samples.channels() == 1);

        int nsamples = samples.rows;
        int dim = samples.cols;

        // Check training params.
        CV_Assert(nclusters > 0);
        CV_Assert(nclusters <= nsamples);
        CV_Assert(startStep == START_AUTO_STEP ||
                  startStep == START_E_STEP ||
                  startStep == START_M_STEP);
        CV_Assert(covMatType == COV_MAT_GENERIC ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_SPHERICAL);

        CV_Assert(!probs ||
            (!probs->empty() &&
             probs->rows == nsamples && probs->cols == nclusters &&
             (probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));

        CV_Assert(!weights ||
            (!weights->empty() &&
             (weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
             (weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));

        CV_Assert(!means ||
            (!means->empty() &&
             means->rows == nclusters && means->cols == dim &&
             means->channels() == 1));

        CV_Assert(!covs ||
            (!covs->empty() &&
             static_cast<int>(covs->size()) == nclusters));
        if(covs)
278
        {
279 280 281 282 283 284
            const Size covSize(dim, dim);
            for(size_t i = 0; i < covs->size(); i++)
            {
                const Mat& m = (*covs)[i];
                CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
            }
285
        }
286 287

        if(startStep == START_E_STEP)
288
        {
289
            CV_Assert(means);
290
        }
291
        else if(startStep == START_M_STEP)
292
        {
293
            CV_Assert(probs);
294
        }
295
    }
296

297
    static void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
298
    {
299 300
        if(src.type() == dstType && !isAlwaysClone)
            dst = src;
301
        else
302
            src.convertTo(dst, dstType);
303
    }
304

305
    static void preprocessProbability(Mat& probs)
306
    {
307
        max(probs, 0., probs);
308

309 310
        const double uniformProbability = (double)(1./probs.cols);
        for(int y = 0; y < probs.rows; y++)
311
        {
312
            Mat sampleProbs = probs.row(y);
313

314 315 316 317 318 319 320
            double maxVal = 0;
            minMaxLoc(sampleProbs, 0, &maxVal);
            if(maxVal < FLT_EPSILON)
                sampleProbs.setTo(uniformProbability);
            else
                normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
        }
321 322
    }

323 324 325 326 327 328 329
    void setTrainData(int startStep, const Mat& samples,
                      const Mat* probs0,
                      const Mat* means0,
                      const std::vector<Mat>* covs0,
                      const Mat* weights0)
    {
        clear();
330

331
        checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
332

333 334 335
        bool isKMeansInit = (startStep == START_AUTO_STEP) || (startStep == START_E_STEP && (covs0 == 0 || weights0 == 0));
        // Set checked data
        preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
336

337 338 339 340 341 342
        // set probs
        if(probs0 && startStep == START_M_STEP)
        {
            preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
            preprocessProbability(trainProbs);
        }
343

344 345 346 347
        // set weights
        if(weights0 && (startStep == START_E_STEP && covs0))
        {
            weights0->convertTo(weights, CV_64FC1);
348
            weights = weights.reshape(1,1);
349 350
            preprocessProbability(weights);
        }
351

352 353 354 355 356 357 358 359 360 361 362
        // set means
        if(means0 && (startStep == START_E_STEP/* || startStep == START_AUTO_STEP*/))
            means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);

        // set covs
        if(covs0 && (startStep == START_E_STEP && weights0))
        {
            covs.resize(nclusters);
            for(size_t i = 0; i < covs0->size(); i++)
                (*covs0)[i].convertTo(covs[i], CV_64FC1);
        }
363
    }
364

365
    void decomposeCovs()
366
    {
367 368 369 370 371 372
        CV_Assert(!covs.empty());
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
373
        {
374 375 376 377 378 379 380 381 382 383 384
            CV_Assert(!covs[clusterIndex].empty());

            SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);

            if(covMatType == COV_MAT_SPHERICAL)
            {
                double maxSingularVal = svd.w.at<double>(0);
                covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
            }
            else if(covMatType == COV_MAT_DIAGONAL)
            {
art-programmer's avatar
art-programmer committed
385
                covsEigenValues[clusterIndex] = covs[clusterIndex].diag().clone(); //Preserve the original order of eigen values.
386 387 388 389 390 391 392 393
            }
            else //COV_MAT_GENERIC
            {
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
394 395 396
        }
    }

397
    void clusterTrainSamples()
398
    {
399
        int nsamples = trainSamples.rows;
400

401
        // Cluster samples, compute/update means
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        // Convert samples and means to 32F, because kmeans requires this type.
        Mat trainSamplesFlt, meansFlt;
        if(trainSamples.type() != CV_32FC1)
            trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
        else
            trainSamplesFlt = trainSamples;
        if(!means.empty())
        {
            if(means.type() != CV_32FC1)
                means.convertTo(meansFlt, CV_32FC1);
            else
                meansFlt = means;
        }

        Mat labels;
        kmeans(trainSamplesFlt, nclusters, labels,
               TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
               10, KMEANS_PP_CENTERS, meansFlt);
421

422 423 424 425 426 427 428 429 430
        // Convert samples and means back to 64F.
        CV_Assert(meansFlt.type() == CV_32FC1);
        if(trainSamples.type() != CV_64FC1)
        {
            Mat trainSamplesBuffer;
            trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
            trainSamples = trainSamplesBuffer;
        }
        meansFlt.convertTo(means, CV_64FC1);
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        // Compute weights and covs
        weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            Mat clusterSamples;
            for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
            {
                if(labels.at<int>(sampleIndex) == clusterIndex)
                {
                    const Mat sample = trainSamples.row(sampleIndex);
                    clusterSamples.push_back(sample);
                }
            }
            CV_Assert(!clusterSamples.empty());
447

448 449 450 451
            calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
                CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
            weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
        }
452

453
        decomposeCovs();
454
    }
455

456
    void computeLogWeightDivDet()
457
    {
458 459 460 461 462 463 464 465 466 467 468 469 470 471
        CV_Assert(!covsEigenValues.empty());

        Mat logWeights;
        cv::max(weights, DBL_MIN, weights);
        log(weights, logWeights);

        logWeightDivDet.create(1, nclusters, CV_64FC1);
        // note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            double logDetCov = 0.;
            const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total());
            for(int di = 0; di < evalCount; di++)
472
                logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0));
473 474 475

            logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
        }
476 477
    }

478
    bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
479
    {
480 481 482
        int dim = trainSamples.cols;
        // Precompute the empty initial train data in the cases of START_E_STEP and START_AUTO_STEP
        if(startStep != START_M_STEP)
483
        {
484 485 486 487 488
            if(covs.empty())
            {
                CV_Assert(weights.empty());
                clusterTrainSamples();
            }
489
        }
490 491

        if(!covs.empty() && covsEigenValues.empty() )
492
        {
493 494
            CV_Assert(invCovsEigenValues.empty());
            decomposeCovs();
495
        }
496

497 498
        if(startStep == START_M_STEP)
            mStep();
499

500
        double trainLogLikelihood, prevTrainLogLikelihood = 0.;
501 502 503
        int maxIters = (termCrit.type & TermCriteria::MAX_ITER) ?
            termCrit.maxCount : DEFAULT_MAX_ITERS;
        double epsilon = (termCrit.type & TermCriteria::EPS) ? termCrit.epsilon : 0.;
504

505 506 507 508
        for(int iter = 0; ; iter++)
        {
            eStep();
            trainLogLikelihood = sum(trainLogLikelihoods)[0];
509

510 511 512 513 514 515 516 517
            if(iter >= maxIters - 1)
                break;

            double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
            if( iter != 0 &&
                (trainLogLikelihoodDelta < -DBL_EPSILON ||
                 trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
                break;
518

519
            mStep();
520

521 522 523 524
            prevTrainLogLikelihood = trainLogLikelihood;
        }

        if( trainLogLikelihood <= -DBL_MAX/10000. )
525
        {
526 527
            clear();
            return false;
528 529
        }

530 531 532 533
        // postprocess covs
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
534
            if(covMatType == COV_MAT_SPHERICAL)
535 536 537 538
            {
                covs[clusterIndex].create(dim, dim, CV_64FC1);
                setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
            }
539
            else if(covMatType == COV_MAT_DIAGONAL)
540 541 542 543
            {
                covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
            }
        }
544

545 546 547 548 549 550
        if(labels.needed())
            trainLabels.copyTo(labels);
        if(probs.needed())
            trainProbs.copyTo(probs);
        if(logLikelihoods.needed())
            trainLogLikelihoods.copyTo(logLikelihoods);
551

552 553 554 555
        trainSamples.release();
        trainProbs.release();
        trainLabels.release();
        trainLogLikelihoods.release();
556

557 558
        return true;
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    Vec2d computeProbabilities(const Mat& sample, Mat* probs, int ptype) const
    {
        // L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
        // q = arg(max_k(L_ik))
        // probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
        // see Alex Smola's blog http://blog.smola.org/page/2 for
        // details on the log-sum-exp trick

        int stype = sample.type();
        CV_Assert(!means.empty());
        CV_Assert((stype == CV_32F || stype == CV_64F) && (ptype == CV_32F || ptype == CV_64F));
        CV_Assert(sample.size() == Size(means.cols, 1));

        int dim = sample.cols;

        Mat L(1, nclusters, CV_64FC1), centeredSample(1, dim, CV_64F);
        int i, label = 0;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            const double* mptr = means.ptr<double>(clusterIndex);
            double* dptr = centeredSample.ptr<double>();
            if( stype == CV_32F )
            {
                const float* sptr = sample.ptr<float>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
            else
            {
                const double* sptr = sample.ptr<double>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
593

594 595
            Mat rotatedCenteredSample = covMatType != COV_MAT_GENERIC ?
                    centeredSample : centeredSample * covsRotateMats[clusterIndex];
596

597 598 599 600 601 602 603 604 605
            double Lval = 0;
            for(int di = 0; di < dim; di++)
            {
                double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0);
                double val = rotatedCenteredSample.at<double>(di);
                Lval += w * val * val;
            }
            CV_DbgAssert(!logWeightDivDet.empty());
            L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
606

607 608 609
            if(L.at<double>(clusterIndex) > L.at<double>(label))
                label = clusterIndex;
        }
610

611 612 613 614 615 616 617 618
        double maxLVal = L.at<double>(label);
        double expDiffSum = 0;
        for( i = 0; i < L.cols; i++ )
        {
            double v = std::exp(L.at<double>(i) - maxLVal);
            L.at<double>(i) = v;
            expDiffSum += v; // sum_j(exp(L_ij - L_iq))
        }
619

620
        CV_Assert(expDiffSum > 0);
621 622
        if(probs)
            L.convertTo(*probs, ptype, 1./expDiffSum);
623

624 625 626
        Vec2d res;
        res[0] = std::log(expDiffSum)  + maxLVal - 0.5 * dim * CV_LOG2PI;
        res[1] = label;
627

628 629
        return res;
    }
630

631
    void eStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
632
    {
633
        // Compute probs_ik from means_k, covs_k and weights_k.
634
        trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
635 636
        trainLabels.create(trainSamples.rows, 1, CV_32SC1);
        trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
637

638 639 640 641
        computeLogWeightDivDet();

        CV_DbgAssert(trainSamples.type() == CV_64FC1);
        CV_DbgAssert(means.type() == CV_64FC1);
642

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
643
        for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
644 645 646 647 648 649
        {
            Mat sampleProbs = trainProbs.row(sampleIndex);
            Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs, CV_64F);
            trainLogLikelihoods.at<double>(sampleIndex) = res[0];
            trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]);
        }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
650 651
    }

652
    void mStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
653
    {
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        // Update means_k, covs_k and weights_k from probs_ik
        int dim = trainSamples.cols;

        // Update weights
        // not normalized first
        reduce(trainProbs, weights, 0, CV_REDUCE_SUM);

        // Update means
        means.create(nclusters, dim, CV_64FC1);
        means = Scalar(0);

        const double minPosWeight = trainSamples.rows * DBL_EPSILON;
        double minWeight = DBL_MAX;
        int minWeightClusterIndex = -1;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
672

673 674 675 676 677
            if(weights.at<double>(clusterIndex) < minWeight)
            {
                minWeight = weights.at<double>(clusterIndex);
                minWeightClusterIndex = clusterIndex;
            }
678

679 680 681 682 683
            Mat clusterMean = means.row(clusterIndex);
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
                clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
            clusterMean /= weights.at<double>(clusterIndex);
        }
684

685 686 687 688 689 690 691
        // Update covsEigenValues and invCovsEigenValues
        covs.resize(nclusters);
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
692
        {
693 694
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
695

696 697
            if(covMatType != COV_MAT_SPHERICAL)
                covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
698
            else
699 700 701 702 703 704 705 706 707 708 709 710
                covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);

            if(covMatType == COV_MAT_GENERIC)
                covs[clusterIndex].create(dim, dim, CV_64FC1);

            Mat clusterCov = covMatType != COV_MAT_GENERIC ?
                covsEigenValues[clusterIndex] : covs[clusterIndex];

            clusterCov = Scalar(0);

            Mat centeredSample;
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
711
            {
712 713 714 715 716
                centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);

                if(covMatType == COV_MAT_GENERIC)
                    clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
                else
717
                {
718 719 720 721 722 723
                    double p = trainProbs.at<double>(sampleIndex, clusterIndex);
                    for(int di = 0; di < dim; di++ )
                    {
                        double val = centeredSample.at<double>(di);
                        clusterCov.at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0) += p*val*val;
                    }
724
                }
725 726
            }

727 728 729 730 731 732 733 734 735 736 737 738
            if(covMatType == COV_MAT_SPHERICAL)
                clusterCov /= dim;

            clusterCov /= weights.at<double>(clusterIndex);

            // Update covsRotateMats for COV_MAT_GENERIC only
            if(covMatType == COV_MAT_GENERIC)
            {
                SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
739

740
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
741

742 743 744 745 746
            // update invCovsEigenValues
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
        }

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
747
        {
748 749 750 751 752 753 754 755 756 757
            if(weights.at<double>(clusterIndex) <= minPosWeight)
            {
                Mat clusterMean = means.row(clusterIndex);
                means.row(minWeightClusterIndex).copyTo(clusterMean);
                covs[minWeightClusterIndex].copyTo(covs[clusterIndex]);
                covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]);
                if(covMatType == COV_MAT_GENERIC)
                    covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]);
                invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]);
            }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
758
        }
759

760 761 762
        // Normalize weights
        weights /= trainSamples.rows;
    }
763

764 765
    void write_params(FileStorage& fs) const
    {
766 767 768 769 770 771
        fs << "nclusters" << nclusters;
        fs << "cov_mat_type" << (covMatType == COV_MAT_SPHERICAL ? String("spherical") :
                                 covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
                                 covMatType == COV_MAT_GENERIC ? String("generic") :
                                 format("unknown_%d", covMatType));
        writeTermCrit(fs, termCrit);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
772
    }
773

774
    void write(FileStorage& fs) const CV_OVERRIDE
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
775
    {
776
        writeFormat(fs);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        fs << "training_params" << "{";
        write_params(fs);
        fs << "}";
        fs << "weights" << weights;
        fs << "means" << means;

        size_t i, n = covs.size();

        fs << "covs" << "[";
        for( i = 0; i < n; i++ )
            fs << covs[i];
        fs << "]";
    }

    void read_params(const FileNode& fn)
    {
793
        nclusters = (int)fn["nclusters"];
794
        String s = (String)fn["cov_mat_type"];
795
        covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
796 797
                             s == "diagonal" ? COV_MAT_DIAGONAL :
                             s == "generic" ? COV_MAT_GENERIC : -1;
798 799
        CV_Assert(covMatType >= 0);
        termCrit = readTermCrit(fn);
800 801
    }

802
    void read(const FileNode& fn) CV_OVERRIDE
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    {
        clear();
        read_params(fn["training_params"]);

        fn["weights"] >> weights;
        fn["means"] >> means;

        FileNode cfn = fn["covs"];
        FileNodeIterator cfn_it = cfn.begin();
        int i, n = (int)cfn.size();
        covs.resize(n);

        for( i = 0; i < n; i++, ++cfn_it )
            (*cfn_it) >> covs[i];

        decomposeCovs();
        computeLogWeightDivDet();
820
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
821

822 823 824
    Mat getWeights() const CV_OVERRIDE { return weights; }
    Mat getMeans() const CV_OVERRIDE { return means; }
    void getCovs(std::vector<Mat>& _covs) const CV_OVERRIDE
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    {
        _covs.resize(covs.size());
        std::copy(covs.begin(), covs.end(), _covs.begin());
    }

    // all inner matrices have type CV_64FC1
    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    Mat weights;
    Mat means;
    std::vector<Mat> covs;

    std::vector<Mat> covsEigenValues;
    std::vector<Mat> covsRotateMats;
    std::vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
};

846
Ptr<EM> EM::create()
847
{
848
    return makePtr<EMImpl>();
849 850
}

851 852 853 854 855
Ptr<EM> EM::load(const String& filepath, const String& nodeName)
{
    return Algorithm::load<EM>(filepath, nodeName);
}

856
}
857
} // namespace cv
858 859

/* End of file. */