fast.cpp 6.62 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA)

cv::gpu::FAST_GPU::FAST_GPU(int, bool, double) { throw_nogpu(); }
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::FAST_GPU::release() { throw_nogpu(); }
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_nogpu(); return 0; }
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat&) { throw_nogpu(); return 0; }

#else /* !defined (HAVE_CUDA) */

62
cv::gpu::FAST_GPU::FAST_GPU(int _threshold, bool _nonmaxSupression, double _keypointsRatio) :
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    nonmaxSupression(_nonmaxSupression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
{
}

void cv::gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
    if (image.empty())
        return;

    (*this)(image, mask, d_keypoints_);
    downloadKeypoints(d_keypoints_, keypoints);
}

void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (d_keypoints.empty())
        return;

    Mat h_keypoints(d_keypoints);
    convertKeypoints(h_keypoints, keypoints);
}

void cv::gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (h_keypoints.empty())
        return;

    CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);

    int npoints = h_keypoints.cols;

    keypoints.resize(npoints);

    const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
    const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);

    for (int i = 0; i < npoints; ++i)
    {
        KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
        keypoints[i] = kp;
    }
}

void cv::gpu::FAST_GPU::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
    calcKeyPointsLocation(img, mask);
    keypoints.cols = getKeyPoints(keypoints);
}

112
namespace cv { namespace gpu { namespace device
113
{
114
    namespace fast
115
    {
116 117
        int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold);
        int nonmaxSupression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response);
118 119 120 121 122 123 124 125 126
    }
}}}

int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
{
    using namespace cv::gpu::device::fast;

    CV_Assert(img.type() == CV_8UC1);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
127 128 129

    if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
        CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
130 131 132 133 134 135 136 137 138 139 140

    int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());

    ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);

    if (nonmaxSupression)
    {
        ensureSizeIsEnough(img.size(), CV_32SC1, score_);
        score_.setTo(Scalar::all(0));
    }

141
    count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSupression ? score_ : PtrStepSzi(), threshold);
142 143 144 145 146 147 148 149 150
    count_ = std::min(count_, maxKeypoints);

    return count_;
}

int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
{
    using namespace cv::gpu::device::fast;

151 152
    if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
        CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
153

154 155 156 157 158 159 160 161 162 163 164 165
    if (count_ == 0)
        return 0;

    ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);

    if (nonmaxSupression)
        return nonmaxSupression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));

    GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
    kpLoc_.colRange(0, count_).copyTo(locRow);
    keypoints.row(1).setTo(Scalar::all(0));

166
    return count_;
167 168 169 170 171 172 173 174 175 176 177
}

void cv::gpu::FAST_GPU::release()
{
    kpLoc_.release();
    score_.release();

    d_keypoints_.release();
}

#endif /* !defined (HAVE_CUDA) */