pca.cpp 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/****************************************************************************************\
*                                          PCA                                           *
\****************************************************************************************/

namespace cv
{

PCA::PCA() {}

PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents)
{
    operator()(data, _mean, flags, maxComponents);
}

PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance)
{
    operator()(data, _mean, flags, retainedVariance);
}

PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents)
{
    Mat data = _data.getMat(), _mean = __mean.getMat();
    int covar_flags = CV_COVAR_SCALE;
Dmitry-Me's avatar
Dmitry-Me committed
69
    int len, in_count;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    Size mean_sz;

    CV_Assert( data.channels() == 1 );
    if( flags & CV_PCA_DATA_AS_COL )
    {
        len = data.rows;
        in_count = data.cols;
        covar_flags |= CV_COVAR_COLS;
        mean_sz = Size(1, len);
    }
    else
    {
        len = data.cols;
        in_count = data.rows;
        covar_flags |= CV_COVAR_ROWS;
        mean_sz = Size(len, 1);
    }

    int count = std::min(len, in_count), out_count = count;
    if( maxComponents > 0 )
        out_count = std::min(count, maxComponents);

    // "scrambled" way to compute PCA (when cols(A)>rows(A)):
    // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
    if( len <= in_count )
        covar_flags |= CV_COVAR_NORMAL;

    int ctype = std::max(CV_32F, data.depth());
    mean.create( mean_sz, ctype );

    Mat covar( count, count, ctype );

    if( !_mean.empty() )
    {
        CV_Assert( _mean.size() == mean_sz );
        _mean.convertTo(mean, ctype);
        covar_flags |= CV_COVAR_USE_AVG;
    }

    calcCovarMatrix( data, covar, mean, covar_flags, ctype );
    eigen( covar, eigenvalues, eigenvectors );

    if( !(covar_flags & CV_COVAR_NORMAL) )
    {
        // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
        // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
        Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
        if( data.type() != ctype || tmp_mean.data == mean.data )
        {
            data.convertTo( tmp_data, ctype );
            subtract( tmp_data, tmp_mean, tmp_data );
        }
        else
        {
            subtract( data, tmp_mean, tmp_mean );
            tmp_data = tmp_mean;
        }

        Mat evects1(count, len, ctype);
        gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
            (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
        eigenvectors = evects1;

        // normalize eigenvectors
Dmitry-Me's avatar
Dmitry-Me committed
134
        int i;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        for( i = 0; i < out_count; i++ )
        {
            Mat vec = eigenvectors.row(i);
            normalize(vec, vec);
        }
    }

    if( count > out_count )
    {
        // use clone() to physically copy the data and thus deallocate the original matrices
        eigenvalues = eigenvalues.rowRange(0,out_count).clone();
        eigenvectors = eigenvectors.rowRange(0,out_count).clone();
    }
    return *this;
}

void PCA::write(FileStorage& fs ) const
{
    CV_Assert( fs.isOpened() );

    fs << "name" << "PCA";
    fs << "vectors" << eigenvectors;
    fs << "values" << eigenvalues;
    fs << "mean" << mean;
}

Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
161
void PCA::read(const FileNode& fn)
162
{
Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
163 164
    CV_Assert( !fn.empty() );
    CV_Assert( (String)fn["name"] == "PCA" );
165

Suleyman TURKMEN's avatar
Suleyman TURKMEN committed
166 167 168
    cv::read(fn["vectors"], eigenvectors);
    cv::read(fn["values"], eigenvalues);
    cv::read(fn["mean"], mean);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
}

template <typename T>
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance)
{
    CV_DbgAssert( eigenvalues.type() == DataType<T>::type );

    Mat g(eigenvalues.size(), DataType<T>::type);

    for(int ig = 0; ig < g.rows; ig++)
    {
        g.at<T>(ig, 0) = 0;
        for(int im = 0; im <= ig; im++)
        {
            g.at<T>(ig,0) += eigenvalues.at<T>(im,0);
        }
    }

    int L;

    for(L = 0; L < eigenvalues.rows; L++)
    {
        double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0);
        if(energy > retainedVariance)
            break;
    }

    L = std::max(2, L);

    return L;
}

PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance)
{
    Mat data = _data.getMat(), _mean = __mean.getMat();
    int covar_flags = CV_COVAR_SCALE;
Dmitry-Me's avatar
Dmitry-Me committed
205
    int len, in_count;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    Size mean_sz;

    CV_Assert( data.channels() == 1 );
    if( flags & CV_PCA_DATA_AS_COL )
    {
        len = data.rows;
        in_count = data.cols;
        covar_flags |= CV_COVAR_COLS;
        mean_sz = Size(1, len);
    }
    else
    {
        len = data.cols;
        in_count = data.rows;
        covar_flags |= CV_COVAR_ROWS;
        mean_sz = Size(len, 1);
    }

    CV_Assert( retainedVariance > 0 && retainedVariance <= 1 );

    int count = std::min(len, in_count);

    // "scrambled" way to compute PCA (when cols(A)>rows(A)):
    // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
    if( len <= in_count )
        covar_flags |= CV_COVAR_NORMAL;

    int ctype = std::max(CV_32F, data.depth());
    mean.create( mean_sz, ctype );

    Mat covar( count, count, ctype );

    if( !_mean.empty() )
    {
        CV_Assert( _mean.size() == mean_sz );
        _mean.convertTo(mean, ctype);
    }

    calcCovarMatrix( data, covar, mean, covar_flags, ctype );
    eigen( covar, eigenvalues, eigenvectors );

    if( !(covar_flags & CV_COVAR_NORMAL) )
    {
        // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
        // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
        Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
        if( data.type() != ctype || tmp_mean.data == mean.data )
        {
            data.convertTo( tmp_data, ctype );
            subtract( tmp_data, tmp_mean, tmp_data );
        }
        else
        {
            subtract( data, tmp_mean, tmp_mean );
            tmp_data = tmp_mean;
        }

        Mat evects1(count, len, ctype);
        gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
            (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
        eigenvectors = evects1;

        // normalize all eigenvectors
Dmitry-Me's avatar
Dmitry-Me committed
269
        int i;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        for( i = 0; i < eigenvectors.rows; i++ )
        {
            Mat vec = eigenvectors.row(i);
            normalize(vec, vec);
        }
    }

    // compute the cumulative energy content for each eigenvector
    int L;
    if (ctype == CV_32F)
        L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance);
    else
        L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance);

    // use clone() to physically copy the data and thus deallocate the original matrices
    eigenvalues = eigenvalues.rowRange(0,L).clone();
    eigenvectors = eigenvectors.rowRange(0,L).clone();

    return *this;
}

void PCA::project(InputArray _data, OutputArray result) const
{
    Mat data = _data.getMat();
    CV_Assert( !mean.empty() && !eigenvectors.empty() &&
        ((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows)));
    Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
    int ctype = mean.type();
    if( data.type() != ctype || tmp_mean.data == mean.data )
    {
        data.convertTo( tmp_data, ctype );
        subtract( tmp_data, tmp_mean, tmp_data );
    }
    else
    {
        subtract( data, tmp_mean, tmp_mean );
        tmp_data = tmp_mean;
    }
    if( mean.rows == 1 )
        gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T );
    else
        gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 );
}

Mat PCA::project(InputArray data) const
{
    Mat result;
    project(data, result);
    return result;
}

void PCA::backProject(InputArray _data, OutputArray result) const
{
    Mat data = _data.getMat();
    CV_Assert( !mean.empty() && !eigenvectors.empty() &&
        ((mean.rows == 1 && eigenvectors.rows == data.cols) ||
         (mean.cols == 1 && eigenvectors.rows == data.rows)));

    Mat tmp_data, tmp_mean;
    data.convertTo(tmp_data, mean.type());
    if( mean.rows == 1 )
    {
        tmp_mean = repeat(mean, data.rows, 1);
        gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 );
    }
    else
    {
        tmp_mean = repeat(mean, 1, data.cols);
        gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T );
    }
}

Mat PCA::backProject(InputArray data) const
{
    Mat result;
    backProject(data, result);
    return result;
}

}

void cv::PCACompute(InputArray data, InputOutputArray mean,
                    OutputArray eigenvectors, int maxComponents)
{
354 355
    CV_INSTRUMENT_REGION()

356 357 358 359 360 361 362 363 364
    PCA pca;
    pca(data, mean, 0, maxComponents);
    pca.mean.copyTo(mean);
    pca.eigenvectors.copyTo(eigenvectors);
}

void cv::PCACompute(InputArray data, InputOutputArray mean,
                    OutputArray eigenvectors, double retainedVariance)
{
365 366
    CV_INSTRUMENT_REGION()

367 368 369 370 371 372 373 374 375
    PCA pca;
    pca(data, mean, 0, retainedVariance);
    pca.mean.copyTo(mean);
    pca.eigenvectors.copyTo(eigenvectors);
}

void cv::PCAProject(InputArray data, InputArray mean,
                    InputArray eigenvectors, OutputArray result)
{
376 377
    CV_INSTRUMENT_REGION()

378 379 380 381 382 383 384 385 386
    PCA pca;
    pca.mean = mean.getMat();
    pca.eigenvectors = eigenvectors.getMat();
    pca.project(data, result);
}

void cv::PCABackProject(InputArray data, InputArray mean,
                    InputArray eigenvectors, OutputArray result)
{
387 388
    CV_INSTRUMENT_REGION()

389 390 391 392 393
    PCA pca;
    pca.mean = mean.getMat();
    pca.eigenvectors = eigenvectors.getMat();
    pca.backProject(data, result);
}