pyramids.cpp 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv
{

template<typename T, int shift> struct FixPtCast
{
    typedef int type1;
    typedef T rtype;
    rtype operator ()(type1 arg) const { return (T)((arg + (1 << (shift-1))) >> shift); }
};

template<typename T, int shift> struct FltCast
{
    typedef T type1;
    typedef T rtype;
    rtype operator ()(type1 arg) const { return arg*(T)(1./(1 << shift)); }
};

template<typename T1, typename T2> struct NoVec
{
    int operator()(T1**, T2*, int, int) const { return 0; }
};

#if CV_SSE2

struct PyrDownVec_32s8u
{
    int operator()(int** src, uchar* dst, int, int width) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        int x = 0;
        const int *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4];
        __m128i delta = _mm_set1_epi16(128);

        for( ; x <= width - 16; x += 16 )
        {
            __m128i r0, r1, r2, r3, r4, t0, t1;
            r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x)),
                                 _mm_load_si128((const __m128i*)(row0 + x + 4)));
            r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x)),
                                 _mm_load_si128((const __m128i*)(row1 + x + 4)));
            r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x)),
                                 _mm_load_si128((const __m128i*)(row2 + x + 4)));
            r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x)),
                                 _mm_load_si128((const __m128i*)(row3 + x + 4)));
            r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x)),
                                 _mm_load_si128((const __m128i*)(row4 + x + 4)));
            r0 = _mm_add_epi16(r0, r4);
            r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2);
            r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2));
            t0 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2));
            r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x + 8)),
                                 _mm_load_si128((const __m128i*)(row0 + x + 12)));
            r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x + 8)),
                                 _mm_load_si128((const __m128i*)(row1 + x + 12)));
            r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x + 8)),
                                 _mm_load_si128((const __m128i*)(row2 + x + 12)));
            r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x + 8)),
                                 _mm_load_si128((const __m128i*)(row3 + x + 12)));
            r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x + 8)),
                                 _mm_load_si128((const __m128i*)(row4 + x + 12)));
            r0 = _mm_add_epi16(r0, r4);
            r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2);
            r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2));
            t1 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2));
            t0 = _mm_srli_epi16(_mm_add_epi16(t0, delta), 8);
            t1 = _mm_srli_epi16(_mm_add_epi16(t1, delta), 8);
            _mm_storeu_si128((__m128i*)(dst + x), _mm_packus_epi16(t0, t1));
        }

        for( ; x <= width - 4; x += 4 )
        {
            __m128i r0, r1, r2, r3, r4, z = _mm_setzero_si128();
            r0 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row0 + x)), z);
            r1 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row1 + x)), z);
            r2 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row2 + x)), z);
            r3 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row3 + x)), z);
            r4 = _mm_packs_epi32(_mm_load_si128((const __m128i*)(row4 + x)), z);
            r0 = _mm_add_epi16(r0, r4);
            r1 = _mm_add_epi16(_mm_add_epi16(r1, r3), r2);
            r0 = _mm_add_epi16(r0, _mm_add_epi16(r2, r2));
            r0 = _mm_add_epi16(r0, _mm_slli_epi16(r1, 2));
            r0 = _mm_srli_epi16(_mm_add_epi16(r0, delta), 8);
            *(int*)(dst + x) = _mm_cvtsi128_si32(_mm_packus_epi16(r0, r0));
        }

        return x;
    }
};

struct PyrDownVec_32f
{
    int operator()(float** src, float* dst, int, int width) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE) )
            return 0;
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        int x = 0;
        const float *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4];
        __m128 _4 = _mm_set1_ps(4.f), _scale = _mm_set1_ps(1.f/256);
        for( ; x <= width - 8; x += 8 )
        {
            __m128 r0, r1, r2, r3, r4, t0, t1;
            r0 = _mm_load_ps(row0 + x);
            r1 = _mm_load_ps(row1 + x);
            r2 = _mm_load_ps(row2 + x);
            r3 = _mm_load_ps(row3 + x);
            r4 = _mm_load_ps(row4 + x);
            r0 = _mm_add_ps(r0, r4);
            r1 = _mm_add_ps(_mm_add_ps(r1, r3), r2);
            r0 = _mm_add_ps(r0, _mm_add_ps(r2, r2));
            t0 = _mm_add_ps(r0, _mm_mul_ps(r1, _4));

            r0 = _mm_load_ps(row0 + x + 4);
            r1 = _mm_load_ps(row1 + x + 4);
            r2 = _mm_load_ps(row2 + x + 4);
            r3 = _mm_load_ps(row3 + x + 4);
            r4 = _mm_load_ps(row4 + x + 4);
            r0 = _mm_add_ps(r0, r4);
            r1 = _mm_add_ps(_mm_add_ps(r1, r3), r2);
            r0 = _mm_add_ps(r0, _mm_add_ps(r2, r2));
            t1 = _mm_add_ps(r0, _mm_mul_ps(r1, _4));

            t0 = _mm_mul_ps(t0, _scale);
            t1 = _mm_mul_ps(t1, _scale);

            _mm_storeu_ps(dst + x, t0);
            _mm_storeu_ps(dst + x + 4, t1);
        }

        return x;
    }
};

#else

typedef NoVec<int, uchar> PyrDownVec_32s8u;
typedef NoVec<float, float> PyrDownVec_32f;

#endif

template<class CastOp, class VecOp> void
188
pyrDown_( const Mat& _src, Mat& _dst, int borderType )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
    const int PD_SZ = 5;
    typedef typename CastOp::type1 WT;
    typedef typename CastOp::rtype T;

    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    int bufstep = (int)alignSize(dsize.width*cn, 16);
    AutoBuffer<WT> _buf(bufstep*PD_SZ + 16);
    WT* buf = alignPtr((WT*)_buf, 16);
    int tabL[CV_CN_MAX*(PD_SZ+2)], tabR[CV_CN_MAX*(PD_SZ+2)];
    AutoBuffer<int> _tabM(dsize.width*cn);
    int* tabM = _tabM;
    WT* rows[PD_SZ];
    CastOp castOp;
    VecOp vecOp;

    CV_Assert( std::abs(dsize.width*2 - ssize.width) <= 2 &&
               std::abs(dsize.height*2 - ssize.height) <= 2 );
    int k, x, sy0 = -PD_SZ/2, sy = sy0, width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width);

    for( x = 0; x <= PD_SZ+1; x++ )
    {
212 213
        int sx0 = borderInterpolate(x - PD_SZ/2, ssize.width, borderType)*cn;
        int sx1 = borderInterpolate(x + width0*2 - PD_SZ/2, ssize.width, borderType)*cn;
214 215 216 217 218 219
        for( k = 0; k < cn; k++ )
        {
            tabL[x*cn + k] = sx0 + k;
            tabR[x*cn + k] = sx1 + k;
        }
    }
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    ssize.width *= cn;
    dsize.width *= cn;
    width0 *= cn;

    for( x = 0; x < dsize.width; x++ )
        tabM[x] = (x/cn)*2*cn + x % cn;

    for( int y = 0; y < dsize.height; y++ )
    {
        T* dst = (T*)(_dst.data + _dst.step*y);
        WT *row0, *row1, *row2, *row3, *row4;

        // fill the ring buffer (horizontal convolution and decimation)
        for( ; sy <= y*2 + 2; sy++ )
        {
            WT* row = buf + ((sy - sy0) % PD_SZ)*bufstep;
237
            int _sy = borderInterpolate(sy, ssize.height, borderType);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
            const T* src = (const T*)(_src.data + _src.step*_sy);
            int limit = cn;
            const int* tab = tabL;

            for( x = 0;;)
            {
                for( ; x < limit; x++ )
                {
                    row[x] = src[tab[x+cn*2]]*6 + (src[tab[x+cn]] + src[tab[x+cn*3]])*4 +
                        src[tab[x]] + src[tab[x+cn*4]];
                }

                if( x == dsize.width )
                    break;

                if( cn == 1 )
                {
                    for( ; x < width0; x++ )
                        row[x] = src[x*2]*6 + (src[x*2 - 1] + src[x*2 + 1])*4 +
                            src[x*2 - 2] + src[x*2 + 2];
                }
                else if( cn == 3 )
                {
                    for( ; x < width0; x += 3 )
                    {
                        const T* s = src + x*2;
                        WT t0 = s[0]*6 + (s[-3] + s[3])*4 + s[-6] + s[6];
                        WT t1 = s[1]*6 + (s[-2] + s[4])*4 + s[-5] + s[7];
                        WT t2 = s[2]*6 + (s[-1] + s[5])*4 + s[-4] + s[8];
                        row[x] = t0; row[x+1] = t1; row[x+2] = t2;
                    }
                }
                else if( cn == 4 )
                {
                    for( ; x < width0; x += 4 )
                    {
                        const T* s = src + x*2;
                        WT t0 = s[0]*6 + (s[-4] + s[4])*4 + s[-8] + s[8];
                        WT t1 = s[1]*6 + (s[-3] + s[5])*4 + s[-7] + s[9];
                        row[x] = t0; row[x+1] = t1;
                        t0 = s[2]*6 + (s[-2] + s[6])*4 + s[-6] + s[10];
                        t1 = s[3]*6 + (s[-1] + s[7])*4 + s[-5] + s[11];
                        row[x+2] = t0; row[x+3] = t1;
                    }
                }
                else
                {
                    for( ; x < width0; x++ )
                    {
                        int sx = tabM[x];
                        row[x] = src[sx]*6 + (src[sx - cn] + src[sx + cn])*4 +
                            src[sx - cn*2] + src[sx + cn*2];
                    }
                }

                limit = dsize.width;
                tab = tabR - x;
            }
        }

        // do vertical convolution and decimation and write the result to the destination image
        for( k = 0; k < PD_SZ; k++ )
            rows[k] = buf + ((y*2 - PD_SZ/2 + k - sy0) % PD_SZ)*bufstep;
        row0 = rows[0]; row1 = rows[1]; row2 = rows[2]; row3 = rows[3]; row4 = rows[4];

        x = vecOp(rows, dst, (int)_dst.step, dsize.width);
        for( ; x < dsize.width; x++ )
            dst[x] = castOp(row2[x]*6 + (row1[x] + row3[x])*4 + row0[x] + row4[x]);
    }
}


template<class CastOp, class VecOp> void
311
pyrUp_( const Mat& _src, Mat& _dst, int)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
{
    const int PU_SZ = 3;
    typedef typename CastOp::type1 WT;
    typedef typename CastOp::rtype T;

    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    int bufstep = (int)alignSize((dsize.width+1)*cn, 16);
    AutoBuffer<WT> _buf(bufstep*PU_SZ + 16);
    WT* buf = alignPtr((WT*)_buf, 16);
    AutoBuffer<int> _dtab(ssize.width*cn);
    int* dtab = _dtab;
    WT* rows[PU_SZ];
    CastOp castOp;
    VecOp vecOp;

    CV_Assert( std::abs(dsize.width - ssize.width*2) == dsize.width % 2 &&
               std::abs(dsize.height - ssize.height*2) == dsize.height % 2);
Andy Maloney's avatar
Andy Maloney committed
330
    int k, x, sy0 = -PU_SZ/2, sy = sy0;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

    ssize.width *= cn;
    dsize.width *= cn;

    for( x = 0; x < ssize.width; x++ )
        dtab[x] = (x/cn)*2*cn + x % cn;

    for( int y = 0; y < ssize.height; y++ )
    {
        T* dst0 = (T*)(_dst.data + _dst.step*y*2);
        T* dst1 = (T*)(_dst.data + _dst.step*(y*2+1));
        WT *row0, *row1, *row2;

        if( y*2+1 >= dsize.height )
            dst1 = dst0;

        // fill the ring buffer (horizontal convolution and decimation)
        for( ; sy <= y + 1; sy++ )
        {
            WT* row = buf + ((sy - sy0) % PU_SZ)*bufstep;
351
            int _sy = borderInterpolate(sy*2, dsize.height, BORDER_REFLECT_101)/2;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            const T* src = (const T*)(_src.data + _src.step*_sy);

            if( ssize.width == cn )
            {
                for( x = 0; x < cn; x++ )
                    row[x] = row[x + cn] = src[x]*8;
                continue;
            }

            for( x = 0; x < cn; x++ )
            {
                int dx = dtab[x];
                WT t0 = src[x]*6 + src[x + cn]*2;
                WT t1 = (src[x] + src[x + cn])*4;
                row[dx] = t0; row[dx + cn] = t1;
                dx = dtab[ssize.width - cn + x];
                int sx = ssize.width - cn + x;
                t0 = src[sx - cn] + src[sx]*7;
                t1 = src[sx]*8;
                row[dx] = t0; row[dx + cn] = t1;
            }

            for( x = cn; x < ssize.width - cn; x++ )
            {
                int dx = dtab[x];
                WT t0 = src[x-cn] + src[x]*6 + src[x+cn];
                WT t1 = (src[x] + src[x+cn])*4;
                row[dx] = t0;
                row[dx+cn] = t1;
            }
        }

        // do vertical convolution and decimation and write the result to the destination image
        for( k = 0; k < PU_SZ; k++ )
            rows[k] = buf + ((y - PU_SZ/2 + k - sy0) % PU_SZ)*bufstep;
        row0 = rows[0]; row1 = rows[1]; row2 = rows[2];

        x = vecOp(rows, dst0, (int)_dst.step, dsize.width);
        for( ; x < dsize.width; x++ )
        {
            T t1 = castOp((row1[x] + row2[x])*4);
            T t0 = castOp(row0[x] + row1[x]*6 + row2[x]);
            dst1[x] = t1; dst0[x] = t0;
        }
    }
}

399
typedef void (*PyrFunc)(const Mat&, Mat&, int);
400

401
}
402

403
void cv::pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType )
404
{
405 406 407 408
    Mat src = _src.getMat();
    Size dsz = _dsz == Size() ? Size((src.cols + 1)/2, (src.rows + 1)/2) : _dsz;
    _dst.create( dsz, src.type() );
    Mat dst = _dst.getMat();
Andrey Kamaev's avatar
Andrey Kamaev committed
409 410

#ifdef HAVE_TEGRA_OPTIMIZATION
411
    if(borderType == BORDER_DEFAULT && tegra::pyrDown(src, dst))
Andrey Kamaev's avatar
Andrey Kamaev committed
412 413 414
        return;
#endif

415
    int depth = src.depth();
416 417 418
    PyrFunc func = 0;
    if( depth == CV_8U )
        func = pyrDown_<FixPtCast<uchar, 8>, PyrDownVec_32s8u>;
419 420
    else if( depth == CV_16S )
        func = pyrDown_<FixPtCast<short, 8>, NoVec<int, short> >;
421 422 423 424 425 426 427 428 429
    else if( depth == CV_16U )
        func = pyrDown_<FixPtCast<ushort, 8>, NoVec<int, ushort> >;
    else if( depth == CV_32F )
        func = pyrDown_<FltCast<float, 8>, PyrDownVec_32f>;
    else if( depth == CV_64F )
        func = pyrDown_<FltCast<double, 8>, NoVec<double, double> >;
    else
        CV_Error( CV_StsUnsupportedFormat, "" );

430
    func( src, dst, borderType );
431 432
}

433
void cv::pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType )
434
{
435 436 437 438
    Mat src = _src.getMat();
    Size dsz = _dsz == Size() ? Size(src.cols*2, src.rows*2) : _dsz;
    _dst.create( dsz, src.type() );
    Mat dst = _dst.getMat();
Andrey Kamaev's avatar
Andrey Kamaev committed
439 440

#ifdef HAVE_TEGRA_OPTIMIZATION
441
    if(borderType == BORDER_DEFAULT && tegra::pyrUp(src, dst))
Andrey Kamaev's avatar
Andrey Kamaev committed
442 443 444
        return;
#endif

445
    int depth = src.depth();
446 447 448
    PyrFunc func = 0;
    if( depth == CV_8U )
        func = pyrUp_<FixPtCast<uchar, 6>, NoVec<int, uchar> >;
449 450
    else if( depth == CV_16S )
        func = pyrUp_<FixPtCast<short, 6>, NoVec<int, short> >;
451 452 453 454 455 456 457 458 459
    else if( depth == CV_16U )
        func = pyrUp_<FixPtCast<ushort, 6>, NoVec<int, ushort> >;
    else if( depth == CV_32F )
        func = pyrUp_<FltCast<float, 6>, NoVec<float, float> >;
    else if( depth == CV_64F )
        func = pyrUp_<FltCast<double, 6>, NoVec<double, double> >;
    else
        CV_Error( CV_StsUnsupportedFormat, "" );

460
    func( src, dst, borderType );
461 462
}

463
void cv::buildPyramid( InputArray _src, OutputArrayOfArrays _dst, int maxlevel, int borderType )
464
{
465 466 467
    Mat src = _src.getMat();
    _dst.create( maxlevel + 1, 1, 0 );
    _dst.getMatRef(0) = src;
468
    for( int i = 1; i <= maxlevel; i++ )
469
        pyrDown( _dst.getMatRef(i-1), _dst.getMatRef(i), Size(), borderType );
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

CV_IMPL void cvPyrDown( const void* srcarr, void* dstarr, int _filter )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type());
    cv::pyrDown( src, dst, dst.size() );
}

CV_IMPL void cvPyrUp( const void* srcarr, void* dstarr, int _filter )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);

    CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type());
    cv::pyrUp( src, dst, dst.size() );
}


CV_IMPL void
cvReleasePyramid( CvMat*** _pyramid, int extra_layers )
{
    if( !_pyramid )
        CV_Error( CV_StsNullPtr, "" );
494

495 496 497
    if( *_pyramid )
        for( int i = 0; i <= extra_layers; i++ )
            cvReleaseMat( &(*_pyramid)[i] );
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    cvFree( _pyramid );
}


CV_IMPL CvMat**
cvCreatePyramid( const CvArr* srcarr, int extra_layers, double rate,
                 const CvSize* layer_sizes, CvArr* bufarr,
                 int calc, int filter )
{
    const float eps = 0.1f;
    uchar* ptr = 0;

    CvMat stub, *src = cvGetMat( srcarr, &stub );

    if( extra_layers < 0 )
        CV_Error( CV_StsOutOfRange, "The number of extra layers must be non negative" );

    int i, layer_step, elem_size = CV_ELEM_SIZE(src->type);
    CvSize layer_size, size = cvGetMatSize(src);

    if( bufarr )
    {
        CvMat bstub, *buf;
        int bufsize = 0;

        buf = cvGetMat( bufarr, &bstub );
        bufsize = buf->rows*buf->cols*CV_ELEM_SIZE(buf->type);
        layer_size = size;
        for( i = 1; i <= extra_layers; i++ )
        {
            if( !layer_sizes )
            {
                layer_size.width = cvRound(layer_size.width*rate+eps);
                layer_size.height = cvRound(layer_size.height*rate+eps);
            }
            else
                layer_size = layer_sizes[i-1];
            layer_step = layer_size.width*elem_size;
            bufsize -= layer_step*layer_size.height;
        }

        if( bufsize < 0 )
            CV_Error( CV_StsOutOfRange, "The buffer is too small to fit the pyramid" );
        ptr = buf->data.ptr;
    }

    CvMat** pyramid = (CvMat**)cvAlloc( (extra_layers+1)*sizeof(pyramid[0]) );
    memset( pyramid, 0, (extra_layers+1)*sizeof(pyramid[0]) );

    pyramid[0] = cvCreateMatHeader( size.height, size.width, src->type );
    cvSetData( pyramid[0], src->data.ptr, src->step );
    layer_size = size;

    for( i = 1; i <= extra_layers; i++ )
    {
        if( !layer_sizes )
        {
            layer_size.width = cvRound(layer_size.width*rate + eps);
            layer_size.height = cvRound(layer_size.height*rate + eps);
        }
        else
            layer_size = layer_sizes[i];

        if( bufarr )
        {
            pyramid[i] = cvCreateMatHeader( layer_size.height, layer_size.width, src->type );
            layer_step = layer_size.width*elem_size;
            cvSetData( pyramid[i], ptr, layer_step );
            ptr += layer_step*layer_size.height;
        }
        else
            pyramid[i] = cvCreateMat( layer_size.height, layer_size.width, src->type );

        if( calc )
            cvPyrDown( pyramid[i-1], pyramid[i], filter );
            //cvResize( pyramid[i-1], pyramid[i], CV_INTER_LINEAR );
    }

    return pyramid;
}

/* End of file. */