gpumat.cpp 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/core/gpumat.hpp"

46 47 48
#include <iostream>

#ifdef HAVE_CUDA
49 50
    #include <cuda.h>
    #include <cuda_runtime_api.h>
51
    #include <npp.h>
52 53 54 55 56 57 58 59 60 61 62

    #define CUDART_MINIMUM_REQUIRED_VERSION 4010
    #define NPP_MINIMUM_REQUIRED_VERSION 4100

    #if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION)
        #error "Insufficient Cuda Runtime library version, please update it."
    #endif

    #if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION)
        #error "Insufficient NPP version, please update it."
    #endif
63 64
#endif

65 66 67 68
using namespace std;
using namespace cv;
using namespace cv::gpu;

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
//////////////////////////////// Initialization & Info ////////////////////////

namespace
{
    // Compares value to set using the given comparator. Returns true if
    // there is at least one element x in the set satisfying to: x cmp value
    // predicate.
    template <typename Comparer>
    bool compareToSet(const std::string& set_as_str, int value, Comparer cmp)
    {
        if (set_as_str.find_first_not_of(" ") == string::npos)
            return false;

        std::stringstream stream(set_as_str);
        int cur_value;

        while (!stream.eof())
        {
            stream >> cur_value;
            if (cmp(cur_value, value))
                return true;
        }

        return false;
    }
}

bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
{
#ifdef HAVE_CUDA
    return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
#else
    (void)feature_set;
    return false;
#endif
}

bool cv::gpu::TargetArchs::has(int major, int minor)
{
    return hasPtx(major, minor) || hasBin(major, minor);
}

bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
{
#ifdef HAVE_CUDA
    return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
#else
    (void)major;
    (void)minor;
    return false;
#endif
}

bool cv::gpu::TargetArchs::hasBin(int major, int minor)
{
#if defined (HAVE_CUDA)
    return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
#else
    (void)major;
    (void)minor;
    return false;
#endif
}

bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
{
#ifdef HAVE_CUDA
    return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
                     std::less_equal<int>());
#else
    (void)major;
    (void)minor;
    return false;
#endif
}

bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
{
    return hasEqualOrGreaterPtx(major, minor) ||
           hasEqualOrGreaterBin(major, minor);
}

bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
{
#ifdef HAVE_CUDA
    return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
                     std::greater_equal<int>());
#else
    (void)major;
    (void)minor;
    return false;
#endif
}

bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
{
#ifdef HAVE_CUDA
    return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
                     std::greater_equal<int>());
#else
    (void)major;
    (void)minor;
    return false;
#endif
}

#ifndef HAVE_CUDA

#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")

int cv::gpu::getCudaEnabledDeviceCount() { return 0; }

void cv::gpu::setDevice(int) { throw_nogpu; }
int cv::gpu::getDevice() { throw_nogpu; return 0; }

void cv::gpu::resetDevice() { throw_nogpu; }

size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu; return 0; }
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu; return 0; }

bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu; return false; }

bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu; return false; }

void cv::gpu::DeviceInfo::query() { throw_nogpu; }
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu; }

void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu; }
void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu; }

#undef throw_nogpu

#else // HAVE_CUDA

namespace
{
#if defined(__GNUC__)
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
    #define nppSafeCall(expr)  ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__)
    #define nppSafeCall(expr)  ___nppSafeCall(expr, __FILE__, __LINE__)
#endif

    inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
    {
        if (cudaSuccess != err)
            cv::gpu::error(cudaGetErrorString(err), file, line, func);
    }

    inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
    {
        if (err < 0)
        {
            std::ostringstream msg;
            msg << "NPP API Call Error: " << err;
            cv::gpu::error(msg.str().c_str(), file, line, func);
        }
    }
}

int cv::gpu::getCudaEnabledDeviceCount()
{
    int count;
    cudaError_t error = cudaGetDeviceCount( &count );

    if (error == cudaErrorInsufficientDriver)
        return -1;

    if (error == cudaErrorNoDevice)
        return 0;

    cudaSafeCall(error);
    return count;
}

void cv::gpu::setDevice(int device)
{
    cudaSafeCall( cudaSetDevice( device ) );
}

int cv::gpu::getDevice()
{
    int device;
    cudaSafeCall( cudaGetDevice( &device ) );
    return device;
}

void cv::gpu::resetDevice()
{
    cudaSafeCall( cudaDeviceReset() );
}

size_t cv::gpu::DeviceInfo::freeMemory() const
{
    size_t free_memory, total_memory;
    queryMemory(free_memory, total_memory);
    return free_memory;
}

size_t cv::gpu::DeviceInfo::totalMemory() const
{
    size_t free_memory, total_memory;
    queryMemory(free_memory, total_memory);
    return total_memory;
}

bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const
{
    int version = majorVersion() * 10 + minorVersion();
    return version >= feature_set;
}

bool cv::gpu::DeviceInfo::isCompatible() const
{
    // Check PTX compatibility
    if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion()))
        return true;

    // Check BIN compatibility
    for (int i = minorVersion(); i >= 0; --i)
        if (TargetArchs::hasBin(majorVersion(), i))
            return true;

    return false;
}

void cv::gpu::DeviceInfo::query()
{
    cudaDeviceProp prop;
    cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_));
    name_ = prop.name;
    multi_processor_count_ = prop.multiProcessorCount;
    majorVersion_ = prop.major;
    minorVersion_ = prop.minor;
}

void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
{
    int prev_device_id = getDevice();
    if (prev_device_id != device_id_)
        setDevice(device_id_);

    cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory));

    if (prev_device_id != device_id_)
        setDevice(prev_device_id);
}

namespace
{
    template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
    {
        *attribute = T();
323 324
        //CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
        CUresult error = cuDeviceGetAttribute( attribute, device_attribute, device );
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        if( CUDA_SUCCESS == error )
            return;

        printf("Driver API error = %04d\n", error);
        cv::gpu::error("driver API error", __FILE__, __LINE__);
    }

    int convertSMVer2Cores(int major, int minor)
    {
        // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
        typedef struct {
            int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
            int Cores;
        } SMtoCores;

340
        SMtoCores gpuArchCoresPerSM[] =  { { 0x10,  8 }, { 0x11,  8 }, { 0x12,  8 }, { 0x13,  8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, { -1, -1 }  };
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

        int index = 0;
        while (gpuArchCoresPerSM[index].SM != -1)
        {
            if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
                return gpuArchCoresPerSM[index].Cores;
            index++;
        }
        printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
        return -1;
    }
}

void cv::gpu::printCudaDeviceInfo(int device)
{
    int count = getCudaEnabledDeviceCount();
    bool valid = (device >= 0) && (device < count);

    int beg = valid ? device   : 0;
    int end = valid ? device+1 : count;

    printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
    printf("Device count: %d\n", count);

    int driverVersion = 0, runtimeVersion = 0;
    cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
    cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );

    const char *computeMode[] = {
        "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
        "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
        "Prohibited (no host thread can use ::cudaSetDevice() with this device)",
        "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
        "Unknown",
        NULL
    };

    for(int dev = beg; dev < end; ++dev)
    {
        cudaDeviceProp prop;
        cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );

        printf("\nDevice %d: \"%s\"\n", dev, prop.name);
        printf("  CUDA Driver Version / Runtime Version          %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
        printf("  CUDA Capability Major/Minor version number:    %d.%d\n", prop.major, prop.minor);
        printf("  Total amount of global memory:                 %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
        printf("  (%2d) Multiprocessors x (%2d) CUDA Cores/MP:     %d CUDA Cores\n",
            prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor),
            convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
        printf("  GPU Clock Speed:                               %.2f GHz\n", prop.clockRate * 1e-6f);

        // This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
        int memoryClock, memBusWidth, L2CacheSize;
        getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
        getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
        getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev );

        printf("  Memory Clock rate:                             %.2f Mhz\n", memoryClock * 1e-3f);
        printf("  Memory Bus Width:                              %d-bit\n", memBusWidth);
        if (L2CacheSize)
            printf("  L2 Cache Size:                                 %d bytes\n", L2CacheSize);

        printf("  Max Texture Dimension Size (x,y,z)             1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
            prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
            prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
        printf("  Max Layered Texture Size (dim) x layers        1D=(%d) x %d, 2D=(%d,%d) x %d\n",
            prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
            prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);

        printf("  Total amount of constant memory:               %u bytes\n", (int)prop.totalConstMem);
        printf("  Total amount of shared memory per block:       %u bytes\n", (int)prop.sharedMemPerBlock);
        printf("  Total number of registers available per block: %d\n", prop.regsPerBlock);
        printf("  Warp size:                                     %d\n", prop.warpSize);
        printf("  Maximum number of threads per block:           %d\n", prop.maxThreadsPerBlock);
        printf("  Maximum sizes of each dimension of a block:    %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
        printf("  Maximum sizes of each dimension of a grid:     %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1],  prop.maxGridSize[2]);
        printf("  Maximum memory pitch:                          %u bytes\n", (int)prop.memPitch);
        printf("  Texture alignment:                             %u bytes\n", (int)prop.textureAlignment);

        printf("  Concurrent copy and execution:                 %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
        printf("  Run time limit on kernels:                     %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
        printf("  Integrated GPU sharing Host Memory:            %s\n", prop.integrated ? "Yes" : "No");
        printf("  Support host page-locked memory mapping:       %s\n", prop.canMapHostMemory ? "Yes" : "No");

        printf("  Concurrent kernel execution:                   %s\n", prop.concurrentKernels ? "Yes" : "No");
        printf("  Alignment requirement for Surfaces:            %s\n", prop.surfaceAlignment ? "Yes" : "No");
        printf("  Device has ECC support enabled:                %s\n", prop.ECCEnabled ? "Yes" : "No");
        printf("  Device is using TCC driver mode:               %s\n", prop.tccDriver ? "Yes" : "No");
        printf("  Device supports Unified Addressing (UVA):      %s\n", prop.unifiedAddressing ? "Yes" : "No");
        printf("  Device PCI Bus ID / PCI location ID:           %d / %d\n", prop.pciBusID, prop.pciDeviceID );
        printf("  Compute Mode:\n");
        printf("      %s \n", computeMode[prop.computeMode]);
    }

    printf("\n");
    printf("deviceQuery, CUDA Driver = CUDART");
    printf(", CUDA Driver Version  = %d.%d", driverVersion / 1000, driverVersion % 100);
    printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100);
    printf(", NumDevs = %d\n\n", count);
    fflush(stdout);
}

void cv::gpu::printShortCudaDeviceInfo(int device)
{
    int count = getCudaEnabledDeviceCount();
    bool valid = (device >= 0) && (device < count);

    int beg = valid ? device   : 0;
    int end = valid ? device+1 : count;

    int driverVersion = 0, runtimeVersion = 0;
    cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
    cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );

    for(int dev = beg; dev < end; ++dev)
    {
        cudaDeviceProp prop;
        cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );

        const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
        printf("Device %d:  \"%s\"  %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
        printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
        printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
    }
    fflush(stdout);
}

#endif // HAVE_CUDA

//////////////////////////////// GpuMat ///////////////////////////////

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
472
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
473 474 475 476 477 478
    : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
{
    if (refcount)
        CV_XADD(refcount, 1);
}

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
479 480
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
    flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
481 482 483 484 485 486 487 488 489 490 491 492
    step(step_), data((uchar*)data_), refcount(0),
    datastart((uchar*)data_), dataend((uchar*)data_)
{
    size_t minstep = cols * elemSize();

    if (step == Mat::AUTO_STEP)
    {
        step = minstep;
        flags |= Mat::CONTINUOUS_FLAG;
    }
    else
    {
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
493
        if (rows == 1)
494 495 496 497 498 499 500 501 502
            step = minstep;

        CV_DbgAssert(step >= minstep);

        flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
    }
    dataend += step * (rows - 1) + minstep;
}

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
503
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
504 505 506 507 508 509 510 511 512 513 514 515 516
    flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
    step(step_), data((uchar*)data_), refcount(0),
    datastart((uchar*)data_), dataend((uchar*)data_)
{
    size_t minstep = cols * elemSize();

    if (step == Mat::AUTO_STEP)
    {
        step = minstep;
        flags |= Mat::CONTINUOUS_FLAG;
    }
    else
    {
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
517
        if (rows == 1)
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
            step = minstep;

        CV_DbgAssert(step >= minstep);

        flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
    }
    dataend += step * (rows - 1) + minstep;
}

cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange, Range colRange)
{
    flags = m.flags;
    step = m.step; refcount = m.refcount;
    data = m.data; datastart = m.datastart; dataend = m.dataend;

    if (rowRange == Range::all())
        rows = m.rows;
    else
    {
        CV_Assert(0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows);

        rows = rowRange.size();
        data += step*rowRange.start;
    }

    if (colRange == Range::all())
        cols = m.cols;
    else
    {
        CV_Assert(0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols);

        cols = colRange.size();
        data += colRange.start*elemSize();
        flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
    }

    if (rows == 1)
        flags |= Mat::CONTINUOUS_FLAG;

    if (refcount)
        CV_XADD(refcount, 1);

    if (rows <= 0 || cols <= 0)
        rows = cols = 0;
}

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
564
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    flags(m.flags), rows(roi.height), cols(roi.width),
    step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
    datastart(m.datastart), dataend(m.dataend)
{
    flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
    data += roi.x * elemSize();

    CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);

    if (refcount)
        CV_XADD(refcount, 1);

    if (rows <= 0 || cols <= 0)
        rows = cols = 0;
}

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
581 582 583 584
cv::gpu::GpuMat::GpuMat(const Mat& m) :
    flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
    upload(m);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
{
    if (this != &m)
    {
        GpuMat temp(m);
        swap(temp);
    }

    return *this;
}

void cv::gpu::GpuMat::swap(GpuMat& b)
{
    std::swap(flags, b.flags);
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
601
    std::swap(rows, b.rows);
602
    std::swap(cols, b.cols);
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
603
    std::swap(step, b.step);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    std::swap(data, b.data);
    std::swap(datastart, b.datastart);
    std::swap(dataend, b.dataend);
    std::swap(refcount, b.refcount);
}

void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
{
    size_t esz = elemSize();
    ptrdiff_t delta1 = data - datastart;
    ptrdiff_t delta2 = dataend - datastart;

    CV_DbgAssert(step > 0);

    if (delta1 == 0)
        ofs.x = ofs.y = 0;
    else
    {
        ofs.y = static_cast<int>(delta1 / step);
        ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);

        CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
    }

    size_t minstep = (ofs.x + cols) * esz;

    wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
    wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
}

GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
{
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
636
    Size wholeSize;
637 638 639 640 641
    Point ofs;
    locateROI(wholeSize, ofs);

    size_t esz = elemSize();

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
642
    int row1 = std::max(ofs.y - dtop, 0);
643 644 645 646 647 648
    int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);

    int col1 = std::max(ofs.x - dleft, 0);
    int col2 = std::min(ofs.x + cols + dright, wholeSize.width);

    data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
649
    rows = row2 - row1;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    cols = col2 - col1;

    if (esz * cols == step || rows == 1)
        flags |= Mat::CONTINUOUS_FLAG;
    else
        flags &= ~Mat::CONTINUOUS_FLAG;

    return *this;
}

GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
    GpuMat hdr = *this;

    int cn = channels();
    if (new_cn == 0)
        new_cn = cn;

    int total_width = cols * cn;

    if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
        new_rows = rows * total_width / new_cn;

    if (new_rows != 0 && new_rows != rows)
    {
        int total_size = total_width * rows;

        if (!isContinuous())
            CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");

        if ((unsigned)new_rows > (unsigned)total_size)
            CV_Error(CV_StsOutOfRange, "Bad new number of rows");

        total_width = total_size / new_rows;

        if (total_width * new_rows != total_size)
            CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");

        hdr.rows = new_rows;
        hdr.step = total_width * elemSize1();
    }

    int new_width = total_width / new_cn;

    if (new_width * new_cn != total_width)
        CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");

    hdr.cols = new_width;
    hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);

    return hdr;
}

cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{
    m.download(*this);
}

708 709
namespace
{
710
    class GpuFuncTable
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    {
    public:
        virtual ~GpuFuncTable() {}

        virtual void copy(const Mat& src, GpuMat& dst) const = 0;
        virtual void copy(const GpuMat& src, Mat& dst) const = 0;
        virtual void copy(const GpuMat& src, GpuMat& dst) const = 0;

        virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0;

        virtual void convert(const GpuMat& src, GpuMat& dst) const = 0;
        virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0;

        virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0;

        virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0;
        virtual void free(void* devPtr) const = 0;
    };
}

#ifndef HAVE_CUDA

733 734 735 736 737
namespace
{
    class EmptyFuncTable : public GpuFuncTable
    {
    public:
738 739 740
        void copy(const Mat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
        void copy(const GpuMat&, Mat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
        void copy(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
741

742
        void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
743

744 745
        void convert(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
        void convert(const GpuMat&, GpuMat&, double, double) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
746

747
        void setTo(GpuMat&, Scalar, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
748

749
        void mallocPitch(void**, size_t*, size_t, size_t) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
750 751 752 753 754 755
        void free(void*) const {}
    };

    const GpuFuncTable* gpuFuncTable()
    {
        static EmptyFuncTable empty;
756
        return &empty;
757 758 759
    }
}

760 761
#else // HAVE_CUDA

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
762
namespace cv { namespace gpu { namespace device
763
{
764
    void copyToWithMask_gpu(DevMem2Db src, DevMem2Db dst, size_t elemSize1, int cn, DevMem2Db mask, bool colorMask, cudaStream_t stream);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

    template <typename T>
    void set_to_gpu(DevMem2Db mat, const T* scalar, int channels, cudaStream_t stream);

    template <typename T>
    void set_to_gpu(DevMem2Db mat, const T* scalar, DevMem2Db mask, int channels, cudaStream_t stream);

    void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream);
}}}

namespace
{
    template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
    {
        Scalar_<T> sf = s;
780
        cv::gpu::device::set_to_gpu(src, sf.val, src.channels(), stream);
781 782 783 784 785
    }

    template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
    {
        Scalar_<T> sf = s;
786
        cv::gpu::device::set_to_gpu(src, sf.val, mask, src.channels(), stream);
787 788 789 790 791
    }
}

namespace cv { namespace gpu
{
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
792 793
    CV_EXPORTS void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
    {
794 795 796 797
        CV_Assert(src.size() == dst.size() && src.type() == dst.type());
        CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));

        cv::gpu::device::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
798 799 800 801
    }

    CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst)
    {
802
        cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0);
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
803
    }
804 805 806

    CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
    {
807
        cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
808 809 810 811 812 813
    }

    CV_EXPORTS void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
    {
        typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
814
        static const caller_t callers[] =
815 816 817 818 819 820 821 822 823 824 825 826
        {
            kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
            kernelSetCaller<float>, kernelSetCaller<double>
        };

        callers[src.depth()](src, s, stream);
    }

    CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
    {
        typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
827
        static const caller_t callers[] =
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        {
            kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
            kernelSetCaller<float>, kernelSetCaller<double>
        };

        callers[src.depth()](src, s, mask, stream);
    }

    CV_EXPORTS void setTo(GpuMat& src, Scalar s)
    {
        setTo(src, s, 0);
    }

    CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
    {
        setTo(src, s, mask, 0);
    }
}}

namespace
848
{
849 850
    template<int n> struct NPPTypeTraits;
    template<> struct NPPTypeTraits<CV_8U>  { typedef Npp8u npp_type; };
851
    template<> struct NPPTypeTraits<CV_8S>  { typedef Npp8s npp_type; };
852 853 854 855
    template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
    template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
    template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
    template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
856 857 858 859
    template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; };

    //////////////////////////////////////////////////////////////////////////
    // Convert
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

    template<int SDEPTH, int DDEPTH> struct NppConvertFunc
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
        typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
    };
    template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
    {
        typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;

        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
    };

    template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
        typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;

880
        static void call(const GpuMat& src, GpuMat& dst)
881 882 883 884
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;
885

886 887 888 889 890 891 892 893 894
            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
    {
        typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;

895
        static void call(const GpuMat& src, GpuMat& dst)
896 897 898 899
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;
900

901 902 903 904
            nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
905
    };
906 907 908

    //////////////////////////////////////////////////////////////////////////
    // Set
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
909

910 911 912 913 914 915 916 917 918 919 920 921
    template<int SDEPTH, int SCN> struct NppSetFunc
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
    };
    template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
    };
922 923 924 925 926 927 928 929
    template<int SCN> struct NppSetFunc<CV_8S, SCN>
    {
        typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
    };
    template<> struct NppSetFunc<CV_8S, 1>
    {
        typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
    };
930 931 932 933 934

    template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

935
        static void call(GpuMat& src, Scalar s)
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Scalar_<src_t> nppS = s;

            nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

952
        static void call(GpuMat& src, Scalar s)
953 954 955 956 957 958 959 960 961 962 963
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Scalar_<src_t> nppS = s;

            nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
964
    };
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

    template<int SDEPTH, int SCN> struct NppSetMaskFunc
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
    };
    template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
    };

    template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

983
        static void call(GpuMat& src, Scalar s, const GpuMat& mask)
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Scalar_<src_t> nppS = s;

            nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

1000
        static void call(GpuMat& src, Scalar s, const GpuMat& mask)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Scalar_<src_t> nppS = s;

            nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1012
    };
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    //////////////////////////////////////////////////////////////////////////
    // CopyMasked

    template<int SDEPTH> struct NppCopyMaskedFunc
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
    };

    template<int SDEPTH, typename NppCopyMaskedFunc<SDEPTH>::func_ptr func> struct NppCopyMasked
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

1028
        static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        {
            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    };

    //////////////////////////////////////////////////////////////////////////
    // CudaFuncTable

1043 1044 1045
    class CudaFuncTable : public GpuFuncTable
    {
    public:
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1046 1047
        void copy(const Mat& src, GpuMat& dst) const
        {
1048 1049 1050
            cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) );
        }
        void copy(const GpuMat& src, Mat& dst) const
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1051
        {
1052 1053 1054
            cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) );
        }
        void copy(const GpuMat& src, GpuMat& dst) const
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1055
        {
1056 1057 1058
            cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) );
        }

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1059 1060
        void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
        {
1061
            CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
1062 1063 1064
            CV_Assert(src.size() == dst.size() && src.type() == dst.type());
            CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));

1065 1066 1067 1068 1069
            if (src.depth() == CV_64F)
            {
                if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
                    CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
            }
1070

1071 1072
            typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
            static const func_t funcs[7][4] =
1073
            {
1074 1075 1076 1077 1078 1079 1080
                /*  8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call},
                /*  8S */ {cv::gpu::copyWithMask                         , cv::gpu::copyWithMask, cv::gpu::copyWithMask                         , cv::gpu::copyWithMask                         },
                /* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call},
                /* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call},
                /* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call},
                /* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call},
                /* 64F */ {cv::gpu::copyWithMask                         , cv::gpu::copyWithMask, cv::gpu::copyWithMask                         , cv::gpu::copyWithMask                         }
1081 1082
            };

1083
            const func_t func =  mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask;
1084 1085

            func(src, dst, mask, 0);
1086 1087
        }

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1088 1089
        void convert(const GpuMat& src, GpuMat& dst) const
        {
1090 1091
            typedef void (*func_t)(const GpuMat& src, GpuMat& dst);
            static const func_t funcs[7][7][4] =
1092
            {
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1093
                {
1094
                    /*  8U ->  8U */ {0, 0, 0, 0},
1095 1096 1097 1098 1099 1100
                    /*  8U ->  8S */ {cv::gpu::convertTo                                , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /*  8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
                    /*  8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
                    /*  8U -> 32S */ {cv::gpu::convertTo                                , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /*  8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /*  8U -> 64F */ {cv::gpu::convertTo                                , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                }
1101 1102
                },
                {
1103
                    /*  8S ->  8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
1104
                    /*  8S ->  8S */ {0,0,0,0},
1105 1106 1107 1108 1109
                    /*  8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /*  8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /*  8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /*  8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /*  8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
1110 1111
                },
                {
1112 1113
                    /* 16U ->  8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
                    /* 16U ->  8S */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
1114
                    /* 16U -> 16U */ {0,0,0,0},
1115 1116 1117 1118
                    /* 16U -> 16S */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16U -> 64F */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                }
1119 1120
                },
                {
1121 1122 1123
                    /* 16S ->  8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
                    /* 16S ->  8S */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16S -> 16U */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
1124
                    /* 16S -> 16S */ {0,0,0,0},
1125 1126 1127
                    /* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                },
                    /* 16S -> 64F */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo                                }
1128 1129
                },
                {
1130 1131 1132 1133
                    /* 32S ->  8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32S ->  8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
1134
                    /* 32S -> 32S */ {0,0,0,0},
1135 1136
                    /* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
1137 1138
                },
                {
1139 1140 1141 1142 1143
                    /* 32F ->  8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32F ->  8S */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 32F -> 32S */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
1144
                    /* 32F -> 32F */ {0,0,0,0},
1145
                    /* 32F -> 64F */ {cv::gpu::convertTo                                  , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
1146 1147
                },
                {
1148 1149 1150 1151 1152 1153
                    /* 64F ->  8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 64F ->  8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
                    /* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
1154 1155 1156 1157
                    /* 64F -> 64F */ {0,0,0,0}
                }
            };

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
            CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
            CV_Assert(dst.depth() <= CV_64F);
            CV_Assert(src.size() == dst.size() && src.channels() == dst.channels());

            if (src.depth() == CV_64F || dst.depth() == CV_64F)
            {
                if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
                    CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
            }

            const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
1169 1170 1171 1172 1173
            CV_DbgAssert(func != 0);

            func(src, dst);
        }

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1174 1175
        void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
        {
1176 1177 1178 1179 1180 1181 1182 1183 1184
            CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
            CV_Assert(dst.depth() <= CV_64F);

            if (src.depth() == CV_64F || dst.depth() == CV_64F)
            {
                if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
                    CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
            }

1185
            cv::gpu::convertTo(src, dst, alpha, beta);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        }

        void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const
        {
            NppiSize sz;
            sz.width  = m.cols;
            sz.height = m.rows;

            if (mask.empty())
            {
                if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
                {
                    cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
                    return;
                }

                if (m.depth() == CV_8U)
                {
                    int cn = m.channels();

                    if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
                    {
                        int val = saturate_cast<uchar>(s[0]);
                        cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
                        return;
                    }
                }

1214 1215
                typedef void (*func_t)(GpuMat& src, Scalar s);
                static const func_t funcs[7][4] =
1216
                {
1217 1218 1219 1220 1221 1222 1223
                    {NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo                          , cv::gpu::setTo                        , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
                    {NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
                    {NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo                        , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
                    {NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo                        , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
                    {NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo                          , cv::gpu::setTo                        , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
                    {NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo                          , cv::gpu::setTo                        , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
                    {cv::gpu::setTo                          , cv::gpu::setTo                          , cv::gpu::setTo                        , cv::gpu::setTo                          }
1224 1225
                };

1226 1227 1228 1229 1230 1231 1232 1233 1234
                CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);

                if (m.depth() == CV_64F)
                {
                    if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
                        CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
                }

                funcs[m.depth()][m.channels() - 1](m, s);
1235 1236 1237
            }
            else
            {
1238 1239
                typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask);
                static const func_t funcs[7][4] =
1240
                {
1241 1242 1243 1244 1245 1246 1247
                    {NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
                    {cv::gpu::setTo                               , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo                               },
                    {NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
                    {NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
                    {NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
                    {NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
                    {cv::gpu::setTo                               , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo                               }
1248 1249
                };

1250 1251 1252 1253 1254 1255 1256 1257 1258
                CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);

                if (m.depth() == CV_64F)
                {
                    if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
                        CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
                }

                funcs[m.depth()][m.channels() - 1](m, s, mask);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
            }
        }

        void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const
        {
            cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) );
        }

        void free(void* devPtr) const
        {
            cudaFree(devPtr);
        }
    };
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1272

1273 1274 1275 1276 1277
    const GpuFuncTable* gpuFuncTable()
    {
        static CudaFuncTable funcTable;
        return &funcTable;
    }
1278 1279
}

1280 1281
#endif // HAVE_CUDA

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
void cv::gpu::GpuMat::upload(const Mat& m)
{
    CV_DbgAssert(!m.empty());

    create(m.size(), m.type());

    gpuFuncTable()->copy(m, *this);
}

void cv::gpu::GpuMat::download(Mat& m) const
{
    CV_DbgAssert(!empty());

    m.create(size(), type());

    gpuFuncTable()->copy(*this, m);
}

void cv::gpu::GpuMat::copyTo(GpuMat& m) const
{
    CV_DbgAssert(!empty());

    m.create(size(), type());

    gpuFuncTable()->copy(*this, m);
}

void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
{
    if (mask.empty())
        copyTo(mat);
    else
    {
        mat.create(size(), type());

        gpuFuncTable()->copyWithMask(*this, mat, mask);
    }
}

void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
{
    bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon();

    if (rtype < 0)
        rtype = type();
    else
        rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());

    int sdepth = depth();
    int ddepth = CV_MAT_DEPTH(rtype);
    if (sdepth == ddepth && noScale)
    {
        copyTo(dst);
        return;
    }

    GpuMat temp;
    const GpuMat* psrc = this;
    if (sdepth != ddepth && psrc == &dst)
    {
        temp = *this;
        psrc = &temp;
    }

    dst.create(size(), rtype);

    if (noScale)
        gpuFuncTable()->convert(*psrc, dst);
    else
        gpuFuncTable()->convert(*psrc, dst, alpha, beta);
}

GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
{
    CV_Assert(mask.empty() || mask.type() == CV_8UC1);
    CV_DbgAssert(!empty());

Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1359
    gpuFuncTable()->setTo(*this, s, mask);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

    return *this;
}

void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
    _type &= TYPE_MASK;

    if (rows == _rows && cols == _cols && type() == _type && data)
        return;

    if (data)
        release();

    CV_DbgAssert(_rows >= 0 && _cols >= 0);

    if (_rows > 0 && _cols > 0)
    {
        flags = Mat::MAGIC_VAL + _type;
        rows = _rows;
        cols = _cols;

        size_t esz = elemSize();

        void* devPtr;
        gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);

        // Single row must be continuous
        if (rows == 1)
            step = esz * cols;

        if (esz * cols == step)
            flags |= Mat::CONTINUOUS_FLAG;

        int64 _nettosize = static_cast<int64>(step) * rows;
        size_t nettosize = static_cast<size_t>(_nettosize);

        datastart = data = static_cast<uchar*>(devPtr);
        dataend = data + nettosize;

        refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
        *refcount = 1;
    }
}

void cv::gpu::GpuMat::release()
{
    if (refcount && CV_XADD(refcount, -1) == 1)
    {
        fastFree(refcount);

        gpuFuncTable()->free(datastart);
    }

    data = datastart = dataend = 0;
    step = rows = cols = 0;
    refcount = 0;
}
1418

1419
////////////////////////////////////////////////////////////////////////
1420
// Error handling
1421

1422
void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func)
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1423
{
1424
    int code = CV_GpuApiCallError;
1425

1426
    if (uncaught_exception())
1427
    {
1428 1429
        const char* errorStr = cvErrorStr(code);
        const char* function = func ? func : "unknown function";
1430

1431 1432
        cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
        cerr.flush();
1433
    }
Vladislav Vinogradov's avatar
Vladislav Vinogradov committed
1434
    else
1435 1436
        cv::error( cv::Exception(code, error_string, func, file, line) );
}