slascl.c 8.42 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slascl.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Subroutine */ int slascl_(char *type__, integer *kl, integer *ku, real *
	cfrom, real *cto, integer *m, integer *n, real *a, integer *lda, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;

    /* Local variables */
    integer i__, j, k1, k2, k3, k4;
    real mul, cto1;
    logical done;
    real ctoc;
    extern logical lsame_(char *, char *);
    integer itype;
    real cfrom1;
    extern doublereal slamch_(char *);
    real cfromc;
    extern /* Subroutine */ int xerbla_(char *, integer *);
34 35 36
    real bignum;
    extern logical sisnan_(real *);
    real smlnum;
37 38


39
/*  -- LAPACK auxiliary routine (version 3.2) -- */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASCL multiplies the M by N real matrix A by the real scalar */
/*  CTO/CFROM.  This is done without over/underflow as long as the final */
/*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/*  A may be full, upper triangular, lower triangular, upper Hessenberg, */
/*  or banded. */

/*  Arguments */
/*  ========= */

/*  TYPE    (input) CHARACTER*1 */
/*          TYPE indices the storage type of the input matrix. */
/*          = 'G':  A is a full matrix. */
/*          = 'L':  A is a lower triangular matrix. */
/*          = 'U':  A is an upper triangular matrix. */
/*          = 'H':  A is an upper Hessenberg matrix. */
/*          = 'B':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the lower */
/*                  half stored. */
/*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the upper */
/*                  half stored. */
/*          = 'Z':  A is a band matrix with lower bandwidth KL and upper */
/*                  bandwidth KU. */

/*  KL      (input) INTEGER */
/*          The lower bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  KU      (input) INTEGER */
/*          The upper bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  CFROM   (input) REAL */
/*  CTO     (input) REAL */
/*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/*          without over/underflow if the final result CTO*A(I,J)/CFROM */
/*          can be represented without over/underflow.  CFROM must be */
/*          nonzero. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the */
/*          storage type. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  INFO    (output) INTEGER */
/*          0  - successful exit */
/*          <0 - if INFO = -i, the i-th argument had an illegal value. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;

    if (lsame_(type__, "G")) {
	itype = 0;
    } else if (lsame_(type__, "L")) {
	itype = 1;
    } else if (lsame_(type__, "U")) {
	itype = 2;
    } else if (lsame_(type__, "H")) {
	itype = 3;
    } else if (lsame_(type__, "B")) {
	itype = 4;
    } else if (lsame_(type__, "Q")) {
	itype = 5;
    } else if (lsame_(type__, "Z")) {
	itype = 6;
    } else {
	itype = -1;
    }

    if (itype == -1) {
	*info = -1;
151
    } else if (*cfrom == 0.f || sisnan_(cfrom)) {
152
	*info = -4;
153 154
    } else if (sisnan_(cto)) {
	*info = -5;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    } else if (*m < 0) {
	*info = -6;
    } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
	*info = -7;
    } else if (itype <= 3 && *lda < max(1,*m)) {
	*info = -9;
    } else if (itype >= 4) {
/* Computing MAX */
	i__1 = *m - 1;
	if (*kl < 0 || *kl > max(i__1,0)) {
	    *info = -2;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = *n - 1;
	    if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && 
		    *kl != *ku) {
		*info = -3;
	    } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
		    ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
		*info = -9;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLASCL", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    }

/*     Get machine parameters */

    smlnum = slamch_("S");
    bignum = 1.f / smlnum;

    cfromc = *cfrom;
    ctoc = *cto;

L10:
    cfrom1 = cfromc * smlnum;
201 202 203
    if (cfrom1 == cfromc) {
/*        CFROMC is an inf.  Multiply by a correctly signed zero for */
/*        finite CTOC, or a NaN if CTOC is infinite. */
204 205
	mul = ctoc / cfromc;
	done = TRUE_;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	cto1 = ctoc;
    } else {
	cto1 = ctoc / bignum;
	if (cto1 == ctoc) {
/*           CTOC is either 0 or an inf.  In both cases, CTOC itself */
/*           serves as the correct multiplication factor. */
	    mul = ctoc;
	    done = TRUE_;
	    cfromc = 1.f;
	} else if (dabs(cfrom1) > dabs(ctoc) && ctoc != 0.f) {
	    mul = smlnum;
	    done = FALSE_;
	    cfromc = cfrom1;
	} else if (dabs(cto1) > dabs(cfromc)) {
	    mul = bignum;
	    done = FALSE_;
	    ctoc = cto1;
	} else {
	    mul = ctoc / cfromc;
	    done = TRUE_;
	}
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    }

    if (itype == 0) {

/*        Full matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L20: */
	    }
/* L30: */
	}

    } else if (itype == 1) {

/*        Lower triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = j; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L40: */
	    }
/* L50: */
	}

    } else if (itype == 2) {

/*        Upper triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = min(j,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L60: */
	    }
/* L70: */
	}

    } else if (itype == 3) {

/*        Upper Hessenberg matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = j + 1;
	    i__2 = min(i__3,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L80: */
	    }
/* L90: */
	}

    } else if (itype == 4) {

/*        Lower half of a symmetric band matrix */

	k3 = *kl + 1;
	k4 = *n + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = k3, i__4 = k4 - j;
	    i__2 = min(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L100: */
	    }
/* L110: */
	}

    } else if (itype == 5) {

/*        Upper half of a symmetric band matrix */

	k1 = *ku + 2;
	k3 = *ku + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = k1 - j;
	    i__3 = k3;
	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L120: */
	    }
/* L130: */
	}

    } else if (itype == 6) {

/*        Band matrix */

	k1 = *kl + *ku + 2;
	k2 = *kl + 1;
	k3 = (*kl << 1) + *ku + 1;
	k4 = *kl + *ku + 1 + *m;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__3 = k1 - j;
/* Computing MIN */
	    i__4 = k3, i__5 = k4 - j;
	    i__2 = min(i__4,i__5);
	    for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
		a[i__ + j * a_dim1] *= mul;
/* L140: */
	    }
/* L150: */
	}

    }

    if (! done) {
	goto L10;
    }

    return 0;

/*     End of SLASCL */

} /* slascl_ */