slanst.c 4.38 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slanst.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Table of constant values */

static integer c__1 = 1;

doublereal slanst_(char *norm, integer *n, real *d__, real *e)
{
    /* System generated locals */
    integer i__1;
    real ret_val, r__1, r__2, r__3, r__4, r__5;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    real sum, scale;
    extern logical lsame_(char *, char *);
    real anorm;
    extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, 
	    real *);


38
/*  -- LAPACK auxiliary routine (version 3.2) -- */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLANST  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  real symmetric tridiagonal matrix A. */

/*  Description */
/*  =========== */

/*  SLANST returns the value */

/*     SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in SLANST as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, SLANST is */
/*          set to zero. */

/*  D       (input) REAL array, dimension (N) */
/*          The diagonal elements of A. */

/*  E       (input) REAL array, dimension (N-1) */
/*          The (n-1) sub-diagonal or super-diagonal elements of A. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
	anorm = 0.f;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = (r__1 = d__[*n], dabs(r__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    r__2 = anorm, r__3 = (r__1 = d__[i__], dabs(r__1));
	    anorm = dmax(r__2,r__3);
/* Computing MAX */
	    r__2 = anorm, r__3 = (r__1 = e[i__], dabs(r__1));
	    anorm = dmax(r__2,r__3);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1' || lsame_(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = dabs(d__[1]);
	} else {
/* Computing MAX */
	    r__3 = dabs(d__[1]) + dabs(e[1]), r__4 = (r__1 = e[*n - 1], dabs(
		    r__1)) + (r__2 = d__[*n], dabs(r__2));
	    anorm = dmax(r__3,r__4);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		r__4 = anorm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 = 
			e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3));
		anorm = dmax(r__4,r__5);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.f;
	sum = 1.f;
	if (*n > 1) {
	    i__1 = *n - 1;
	    slassq_(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	slassq_(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of SLANST */

} /* slanst_ */