histogram.cpp 124 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
10 11
//            Intel License Agreement
//        For Open Source Computer Vision Library
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
41

42
#include "precomp.hpp"
Alexander Alekhin's avatar
Alexander Alekhin committed
43
#include "opencl_kernels_imgproc.hpp"
44

45 46 47 48 49 50
#ifdef HAVE_OPENVX
#define IVX_USE_OPENCV
#define IVX_HIDE_INFO_WARNINGS
#include "ivx.hpp"
#endif

51 52 53 54 55 56 57 58
namespace cv
{

////////////////// Helper functions //////////////////////

static const size_t OUT_OF_RANGE = (size_t)1 << (sizeof(size_t)*8 - 2);

static void
59 60
calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist,
                         int dims, const float** ranges, const double* uniranges,
61
                         bool uniform, bool issparse, std::vector<size_t>& _tab )
62 63
{
    const int low = 0, high = 256;
64
    int i, j;
65 66
    _tab.resize((high-low)*dims);
    size_t* tab = &_tab[0];
67

68 69 70 71 72 73 74 75
    if( uniform )
    {
        for( i = 0; i < dims; i++ )
        {
            double a = uniranges[i*2];
            double b = uniranges[i*2+1];
            int sz = !issparse ? hist.size[i] : shist.size(i);
            size_t step = !issparse ? hist.step[i] : 1;
76

77 78 79 80 81 82 83 84
            for( j = low; j < high; j++ )
            {
                int idx = cvFloor(j*a + b);
                size_t written_idx;
                if( (unsigned)idx < (unsigned)sz )
                    written_idx = idx*step;
                else
                    written_idx = OUT_OF_RANGE;
85

86 87 88 89 90 91 92 93 94 95 96 97
                tab[i*(high - low) + j - low] = written_idx;
            }
        }
    }
    else
    {
        for( i = 0; i < dims; i++ )
        {
            int limit = std::min(cvCeil(ranges[i][0]), high);
            int idx = -1, sz = !issparse ? hist.size[i] : shist.size(i);
            size_t written_idx = OUT_OF_RANGE;
            size_t step = !issparse ? hist.step[i] : 1;
98

99 100 101 102
            for(j = low;;)
            {
                for( ; j < limit; j++ )
                    tab[i*(high - low) + j - low] = written_idx;
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                if( (unsigned)(++idx) < (unsigned)sz )
                {
                    limit = std::min(cvCeil(ranges[i][idx+1]), high);
                    written_idx = idx*step;
                }
                else
                {
                    for( ; j < high; j++ )
                        tab[i*(high - low) + j - low] = OUT_OF_RANGE;
                    break;
                }
            }
        }
    }
}


static void histPrepareImages( const Mat* images, int nimages, const int* channels,
122 123
                               const Mat& mask, int dims, const int* histSize,
                               const float** ranges, bool uniform,
124 125
                               std::vector<uchar*>& ptrs, std::vector<int>& deltas,
                               Size& imsize, std::vector<double>& uniranges )
126 127
{
    int i, j, c;
128
    CV_Assert( channels != 0 || nimages == dims );
129

130 131 132
    imsize = images[0].size();
    int depth = images[0].depth(), esz1 = (int)images[0].elemSize1();
    bool isContinuous = true;
133

134 135
    ptrs.resize(dims + 1);
    deltas.resize((dims + 1)*2);
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    for( i = 0; i < dims; i++ )
    {
        if(!channels)
        {
            j = i;
            c = 0;
            CV_Assert( images[j].channels() == 1 );
        }
        else
        {
            c = channels[i];
            CV_Assert( c >= 0 );
            for( j = 0; j < nimages; c -= images[j].channels(), j++ )
                if( c < images[j].channels() )
                    break;
            CV_Assert( j < nimages );
        }
154

155 156 157 158 159 160 161
        CV_Assert( images[j].size() == imsize && images[j].depth() == depth );
        if( !images[j].isContinuous() )
            isContinuous = false;
        ptrs[i] = images[j].data + c*esz1;
        deltas[i*2] = images[j].channels();
        deltas[i*2+1] = (int)(images[j].step/esz1 - imsize.width*deltas[i*2]);
    }
162

163
    if( !mask.empty() )
164 165 166 167 168 169 170
    {
        CV_Assert( mask.size() == imsize && mask.channels() == 1 );
        isContinuous = isContinuous && mask.isContinuous();
        ptrs[dims] = mask.data;
        deltas[dims*2] = 1;
        deltas[dims*2 + 1] = (int)(mask.step/mask.elemSize1());
    }
171

Daniil-Osokin's avatar
Daniil-Osokin committed
172
#ifndef HAVE_TBB
173 174 175 176 177
    if( isContinuous )
    {
        imsize.width *= imsize.height;
        imsize.height = 1;
    }
Daniil-Osokin's avatar
Daniil-Osokin committed
178
#endif
179

180 181 182
    if( !ranges )
    {
        CV_Assert( depth == CV_8U );
183

184 185 186
        uniranges.resize( dims*2 );
        for( i = 0; i < dims; i++ )
        {
187
            uniranges[i*2] = histSize[i]/256.;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
            uniranges[i*2+1] = 0;
        }
    }
    else if( uniform )
    {
        uniranges.resize( dims*2 );
        for( i = 0; i < dims; i++ )
        {
            CV_Assert( ranges[i] && ranges[i][0] < ranges[i][1] );
            double low = ranges[i][0], high = ranges[i][1];
            double t = histSize[i]/(high - low);
            uniranges[i*2] = t;
            uniranges[i*2+1] = -t*low;
        }
    }
    else
    {
        for( i = 0; i < dims; i++ )
        {
207 208 209
            size_t n = histSize[i];
            for(size_t k = 0; k < n; k++ )
                CV_Assert( ranges[i][k] < ranges[i][k+1] );
210 211 212
        }
    }
}
213 214 215


////////////////////////////////// C A L C U L A T E    H I S T O G R A M ////////////////////////////////////
Daniil-Osokin's avatar
Daniil-Osokin committed
216 217 218 219 220 221 222
#ifdef HAVE_TBB
enum {one = 1, two, three}; // array elements number

template<typename T>
class calcHist1D_Invoker
{
public:
223
    calcHist1D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Daniil-Osokin's avatar
Daniil-Osokin committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                        Mat& hist, const double* _uniranges, int sz, int dims,
                        Size& imageSize )
        : mask_(_ptrs[dims]),
          mstep_(_deltas[dims*2 + 1]),
          imageWidth_(imageSize.width),
          histogramSize_(hist.size()), histogramType_(hist.type()),
          globalHistogram_((tbb::atomic<int>*)hist.data)
    {
        p_[0] = ((T**)&_ptrs[0])[0];
        step_[0] = (&_deltas[0])[1];
        d_[0] = (&_deltas[0])[0];
        a_[0] = (&_uniranges[0])[0];
        b_[0] = (&_uniranges[0])[1];
        size_[0] = sz;
    }

    void operator()( const BlockedRange& range ) const
    {
        T* p0 = p_[0] + range.begin() * (step_[0] + imageWidth_*d_[0]);
        uchar* mask = mask_ + range.begin()*mstep_;

        for( int row = range.begin(); row < range.end(); row++, p0 += step_[0] )
        {
            if( !mask_ )
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0] )
                {
                    int idx = cvFloor(*p0*a_[0] + b_[0]);
                    if( (unsigned)idx < (unsigned)size_[0] )
                    {
                        globalHistogram_[idx].fetch_and_add(1);
                    }
                }
            }
            else
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0] )
                {
                    if( mask[x] )
                    {
                        int idx = cvFloor(*p0*a_[0] + b_[0]);
                        if( (unsigned)idx < (unsigned)size_[0] )
                        {
                            globalHistogram_[idx].fetch_and_add(1);
                        }
                    }
                }
                mask += mstep_;
            }
        }
    }

private:
277 278
    calcHist1D_Invoker operator=(const calcHist1D_Invoker&);

Daniil-Osokin's avatar
Daniil-Osokin committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    T* p_[one];
    uchar* mask_;
    int step_[one];
    int d_[one];
    int mstep_;
    double a_[one];
    double b_[one];
    int size_[one];
    int imageWidth_;
    Size histogramSize_;
    int histogramType_;
    tbb::atomic<int>* globalHistogram_;
};

template<typename T>
class calcHist2D_Invoker
{
public:
297
    calcHist2D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Daniil-Osokin's avatar
Daniil-Osokin committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                        Mat& hist, const double* _uniranges, const int* size,
                        int dims, Size& imageSize, size_t* hstep )
        : mask_(_ptrs[dims]),
          mstep_(_deltas[dims*2 + 1]),
          imageWidth_(imageSize.width),
          histogramSize_(hist.size()), histogramType_(hist.type()),
          globalHistogram_(hist.data)
    {
        p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1];
        step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3];
        d_[0] = (&_deltas[0])[0];    d_[1] = (&_deltas[0])[2];
        a_[0] = (&_uniranges[0])[0]; a_[1] = (&_uniranges[0])[2];
        b_[0] = (&_uniranges[0])[1]; b_[1] = (&_uniranges[0])[3];
        size_[0] = size[0];          size_[1] = size[1];
        hstep_[0] = hstep[0];
    }

    void operator()(const BlockedRange& range) const
    {
        T* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
        T* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
        uchar* mask = mask_ + range.begin()*mstep_;

        for( int row = range.begin(); row < range.end(); row++, p0 += step_[0], p1 += step_[1] )
        {
            if( !mask_ )
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
                {
                    int idx0 = cvFloor(*p0*a_[0] + b_[0]);
                    int idx1 = cvFloor(*p1*a_[1] + b_[1]);
                    if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] )
                        ( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0) )[idx1].fetch_and_add(1);
                }
            }
            else
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
                {
                    if( mask[x] )
                    {
                        int idx0 = cvFloor(*p0*a_[0] + b_[0]);
                        int idx1 = cvFloor(*p1*a_[1] + b_[1]);
                        if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] )
                            ((tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0))[idx1].fetch_and_add(1);
                    }
                }
                mask += mstep_;
            }
        }
    }

private:
351 352
    calcHist2D_Invoker operator=(const calcHist2D_Invoker&);

Daniil-Osokin's avatar
Daniil-Osokin committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    T* p_[two];
    uchar* mask_;
    int step_[two];
    int d_[two];
    int mstep_;
    double a_[two];
    double b_[two];
    int size_[two];
    const int imageWidth_;
    size_t hstep_[one];
    Size histogramSize_;
    int histogramType_;
    uchar* globalHistogram_;
};


template<typename T>
class calcHist3D_Invoker
{
public:
373
    calcHist3D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Daniil-Osokin's avatar
Daniil-Osokin committed
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                        Size imsize, Mat& hist, const double* uniranges, int _dims,
                        size_t* hstep, int* size )
        : mask_(_ptrs[_dims]),
          mstep_(_deltas[_dims*2 + 1]),
          imageWidth_(imsize.width),
          globalHistogram_(hist.data)
    {
        p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1]; p_[2] = ((T**)&_ptrs[0])[2];
        step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; step_[2] = (&_deltas[0])[5];
        d_[0] = (&_deltas[0])[0];    d_[1] = (&_deltas[0])[2];    d_[2] = (&_deltas[0])[4];
        a_[0] = uniranges[0];        a_[1] = uniranges[2];        a_[2] = uniranges[4];
        b_[0] = uniranges[1];        b_[1] = uniranges[3];        b_[2] = uniranges[5];
        size_[0] = size[0];          size_[1] = size[1];          size_[2] = size[2];
        hstep_[0] = hstep[0];        hstep_[1] = hstep[1];
    }

    void operator()( const BlockedRange& range ) const
    {
        T* p0 = p_[0] + range.begin()*(imageWidth_*d_[0] + step_[0]);
        T* p1 = p_[1] + range.begin()*(imageWidth_*d_[1] + step_[1]);
        T* p2 = p_[2] + range.begin()*(imageWidth_*d_[2] + step_[2]);
        uchar* mask = mask_ + range.begin()*mstep_;

        for( int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] )
        {
            if( !mask_ )
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
                {
                    int idx0 = cvFloor(*p0*a_[0] + b_[0]);
                    int idx1 = cvFloor(*p1*a_[1] + b_[1]);
                    int idx2 = cvFloor(*p2*a_[2] + b_[2]);
                    if( (unsigned)idx0 < (unsigned)size_[0] &&
                            (unsigned)idx1 < (unsigned)size_[1] &&
                            (unsigned)idx2 < (unsigned)size_[2] )
                    {
                        ( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1);
                    }
                }
            }
            else
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
                {
                    if( mask[x] )
                    {
                        int idx0 = cvFloor(*p0*a_[0] + b_[0]);
                        int idx1 = cvFloor(*p1*a_[1] + b_[1]);
                        int idx2 = cvFloor(*p2*a_[2] + b_[2]);
                        if( (unsigned)idx0 < (unsigned)size_[0] &&
                                (unsigned)idx1 < (unsigned)size_[1] &&
                                (unsigned)idx2 < (unsigned)size_[2] )
                        {
                            ( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1);
                        }
                    }
                }
                mask += mstep_;
            }
        }
    }

    static bool isFit( const Mat& histogram, const Size imageSize )
    {
        return ( imageSize.width * imageSize.height >= 320*240
                 && histogram.total() >= 8*8*8 );
    }

private:
443 444
    calcHist3D_Invoker operator=(const calcHist3D_Invoker&);

Daniil-Osokin's avatar
Daniil-Osokin committed
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    T* p_[three];
    uchar* mask_;
    int step_[three];
    int d_[three];
    const int mstep_;
    double a_[three];
    double b_[three];
    int size_[three];
    int imageWidth_;
    size_t hstep_[two];
    uchar* globalHistogram_;
};

class CalcHist1D_8uInvoker
{
public:
461 462
    CalcHist1D_8uInvoker( const std::vector<uchar*>& ptrs, const std::vector<int>& deltas,
                          Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab,
Daniil-Osokin's avatar
Daniil-Osokin committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                          tbb::mutex* lock )
        : mask_(ptrs[dims]),
          mstep_(deltas[dims*2 + 1]),
          imageWidth_(imsize.width),
          imageSize_(imsize),
          histSize_(hist.size()), histType_(hist.type()),
          tab_((size_t*)&tab[0]),
          histogramWriteLock_(lock),
          globalHistogram_(hist.data)
    {
        p_[0] = (&ptrs[0])[0];
        step_[0] = (&deltas[0])[1];
        d_[0] = (&deltas[0])[0];
    }

    void operator()( const BlockedRange& range ) const
    {
        int localHistogram[256] = { 0, };
        uchar* mask = mask_;
        uchar* p0 = p_[0];
        int x;
        tbb::mutex::scoped_lock lock;

        if( !mask_ )
        {
            int n = (imageWidth_ - 4) / 4 + 1;
            int tail = imageWidth_ - n*4;

            int xN = 4*n;
            p0 += (xN*d_[0] + tail*d_[0] + step_[0]) * range.begin();
        }
        else
        {
            p0 += (imageWidth_*d_[0] + step_[0]) * range.begin();
            mask += mstep_*range.begin();
        }

        for( int i = range.begin(); i < range.end(); i++, p0 += step_[0] )
        {
            if( !mask_ )
            {
                if( d_[0] == 1 )
                {
                    for( x = 0; x <= imageWidth_ - 4; x += 4 )
                    {
                        int t0 = p0[x], t1 = p0[x+1];
                        localHistogram[t0]++; localHistogram[t1]++;
                        t0 = p0[x+2]; t1 = p0[x+3];
                        localHistogram[t0]++; localHistogram[t1]++;
                    }
                    p0 += x;
                }
                else
                {
                    for( x = 0; x <= imageWidth_ - 4; x += 4 )
                    {
                        int t0 = p0[0], t1 = p0[d_[0]];
                        localHistogram[t0]++; localHistogram[t1]++;
                        p0 += d_[0]*2;
                        t0 = p0[0]; t1 = p0[d_[0]];
                        localHistogram[t0]++; localHistogram[t1]++;
                        p0 += d_[0]*2;
                    }
                }

                for( ; x < imageWidth_; x++, p0 += d_[0] )
                {
                    localHistogram[*p0]++;
                }
            }
            else
            {
                for( x = 0; x < imageWidth_; x++, p0 += d_[0] )
                {
                    if( mask[x] )
                    {
                        localHistogram[*p0]++;
                    }
                }
                mask += mstep_;
            }
        }

        lock.acquire(*histogramWriteLock_);
        for(int i = 0; i < 256; i++ )
        {
            size_t hidx = tab_[i];
            if( hidx < OUT_OF_RANGE )
            {
                *(int*)((globalHistogram_ + hidx)) += localHistogram[i];
            }
        }
        lock.release();
    }

    static bool isFit( const Mat& histogram, const Size imageSize )
    {
        return ( histogram.total() >= 8
                && imageSize.width * imageSize.height >= 160*120 );
    }

private:
    uchar* p_[one];
    uchar* mask_;
    int mstep_;
    int step_[one];
    int d_[one];
    int imageWidth_;
    Size imageSize_;
    Size histSize_;
    int histType_;
    size_t* tab_;
    tbb::mutex* histogramWriteLock_;
    uchar* globalHistogram_;
};

class CalcHist2D_8uInvoker
{
public:
582 583
    CalcHist2D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
                          Size imsize, Mat& hist, int dims, const std::vector<size_t>& _tab,
Daniil-Osokin's avatar
Daniil-Osokin committed
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
                          tbb::mutex* lock )
        : mask_(_ptrs[dims]),
          mstep_(_deltas[dims*2 + 1]),
          imageWidth_(imsize.width),
          histSize_(hist.size()), histType_(hist.type()),
          tab_((size_t*)&_tab[0]),
          histogramWriteLock_(lock),
          globalHistogram_(hist.data)
    {
        p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1];
        step_[0] = (&_deltas[0])[1];    step_[1] = (&_deltas[0])[3];
        d_[0] = (&_deltas[0])[0];       d_[1] = (&_deltas[0])[2];
    }

    void operator()( const BlockedRange& range ) const
    {
        uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
        uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
        uchar* mask = mask_ + range.begin()*mstep_;

        Mat localHist = Mat::zeros(histSize_, histType_);
        uchar* localHistData = localHist.data;
        tbb::mutex::scoped_lock lock;

        for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1])
        {
            if( !mask_ )
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
                {
                    size_t idx = tab_[*p0] + tab_[*p1 + 256];
                    if( idx < OUT_OF_RANGE )
                    {
                        ++*(int*)(localHistData + idx);
                    }
                }
            }
            else
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] )
                {
                    size_t idx;
                    if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256]) < OUT_OF_RANGE )
                    {
                        ++*(int*)(localHistData + idx);
                    }
                }
                mask += mstep_;
            }
        }

        lock.acquire(*histogramWriteLock_);
        for(int i = 0; i < histSize_.width*histSize_.height; i++)
        {
            ((int*)globalHistogram_)[i] += ((int*)localHistData)[i];
        }
        lock.release();
    }

    static bool isFit( const Mat& histogram, const Size imageSize )
    {
        return ( (histogram.total() > 4*4 &&  histogram.total() <= 116*116
                  && imageSize.width * imageSize.height >= 320*240)
                 || (histogram.total() > 116*116 && imageSize.width * imageSize.height >= 1280*720) );
    }

private:
    uchar* p_[two];
    uchar* mask_;
    int step_[two];
    int d_[two];
    int mstep_;
    int imageWidth_;
    Size histSize_;
    int histType_;
    size_t* tab_;
    tbb::mutex* histogramWriteLock_;
    uchar* globalHistogram_;
};

class CalcHist3D_8uInvoker
{
public:
667 668
    CalcHist3D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
                          Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab )
Daniil-Osokin's avatar
Daniil-Osokin committed
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        : mask_(_ptrs[dims]),
          mstep_(_deltas[dims*2 + 1]),
          histogramSize_(hist.size.p), histogramType_(hist.type()),
          imageWidth_(imsize.width),
          tab_((size_t*)&tab[0]),
          globalHistogram_(hist.data)
    {
        p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1]; p_[2] = (uchar*)(&_ptrs[0])[2];
        step_[0] = (&_deltas[0])[1];    step_[1] = (&_deltas[0])[3];    step_[2] = (&_deltas[0])[5];
        d_[0] = (&_deltas[0])[0];       d_[1] = (&_deltas[0])[2];       d_[2] = (&_deltas[0])[4];
    }

    void operator()( const BlockedRange& range ) const
    {
        uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]);
        uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]);
        uchar* p2 = p_[2] + range.begin()*(step_[2] + imageWidth_*d_[2]);
        uchar* mask = mask_ + range.begin()*mstep_;

        for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] )
        {
            if( !mask_ )
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
                {
                    size_t idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512];
                    if( idx < OUT_OF_RANGE )
                    {
                        ( *(tbb::atomic<int>*)(globalHistogram_ + idx) ).fetch_and_add(1);
                    }
                }
            }
            else
            {
                for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] )
                {
                    size_t idx;
                    if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512]) < OUT_OF_RANGE )
                    {
                        (*(tbb::atomic<int>*)(globalHistogram_ + idx)).fetch_and_add(1);
                    }
                }
                mask += mstep_;
            }
        }
    }

    static bool isFit( const Mat& histogram, const Size imageSize )
    {
        return ( histogram.total() >= 128*128*128
                 && imageSize.width * imageSize.width >= 320*240 );
    }

private:
    uchar* p_[three];
    uchar* mask_;
    int mstep_;
    int step_[three];
    int d_[three];
    int* histogramSize_;
    int histogramType_;
    int imageWidth_;
    size_t* tab_;
    uchar* globalHistogram_;
};

static void
736 737
callCalcHist2D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
                   Size imsize, Mat& hist, int dims,  std::vector<size_t>& _tab )
Daniil-Osokin's avatar
Daniil-Osokin committed
738 739 740 741 742 743 744 745 746
{
    int grainSize = imsize.height / tbb::task_scheduler_init::default_num_threads();
    tbb::mutex histogramWriteLock;

    CalcHist2D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock);
    parallel_for(BlockedRange(0, imsize.height, grainSize), body);
}

static void
747 748
callCalcHist3D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
                   Size imsize, Mat& hist, int dims,  std::vector<size_t>& _tab )
Daniil-Osokin's avatar
Daniil-Osokin committed
749 750 751 752 753
{
    CalcHist3D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab);
    parallel_for(BlockedRange(0, imsize.height), body);
}
#endif
754

755
template<typename T> static void
756
calcHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
757
           Size imsize, Mat& hist, int dims, const float** _ranges,
758 759 760 761
           const double* _uniranges, bool uniform )
{
    T** ptrs = (T**)&_ptrs[0];
    const int* deltas = &_deltas[0];
762
    uchar* H = hist.ptr();
763
    int i, x;
764 765 766 767
    const uchar* mask = _ptrs[dims];
    int mstep = _deltas[dims*2 + 1];
    int size[CV_MAX_DIM];
    size_t hstep[CV_MAX_DIM];
768

769 770 771 772 773
    for( i = 0; i < dims; i++ )
    {
        size[i] = hist.size[i];
        hstep[i] = hist.step[i];
    }
774

775 776 777
    if( uniform )
    {
        const double* uniranges = &_uniranges[0];
778

779 780
        if( dims == 1 )
        {
Daniil-Osokin's avatar
Daniil-Osokin committed
781 782 783
#ifdef HAVE_TBB
            calcHist1D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size[0], dims, imsize);
            parallel_for(BlockedRange(0, imsize.height), body);
784
#else
785 786 787
            double a = uniranges[0], b = uniranges[1];
            int sz = size[0], d0 = deltas[0], step0 = deltas[1];
            const T* p0 = (const T*)ptrs[0];
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            for( ; imsize.height--; p0 += step0, mask += mstep )
            {
                if( !mask )
                    for( x = 0; x < imsize.width; x++, p0 += d0 )
                    {
                        int idx = cvFloor(*p0*a + b);
                        if( (unsigned)idx < (unsigned)sz )
                            ((int*)H)[idx]++;
                    }
                else
                    for( x = 0; x < imsize.width; x++, p0 += d0 )
                        if( mask[x] )
                        {
                            int idx = cvFloor(*p0*a + b);
                            if( (unsigned)idx < (unsigned)sz )
                                ((int*)H)[idx]++;
                        }
            }
807
#endif //HAVE_TBB
808
            return;
809 810 811
        }
        else if( dims == 2 )
        {
Daniil-Osokin's avatar
Daniil-Osokin committed
812 813 814
#ifdef HAVE_TBB
            calcHist2D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size, dims, imsize, hstep);
            parallel_for(BlockedRange(0, imsize.height), body);
815
#else
816 817 818 819 820 821 822
            double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3];
            int sz0 = size[0], sz1 = size[1];
            int d0 = deltas[0], step0 = deltas[1],
                d1 = deltas[2], step1 = deltas[3];
            size_t hstep0 = hstep[0];
            const T* p0 = (const T*)ptrs[0];
            const T* p1 = (const T*)ptrs[1];
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
            for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep )
            {
                if( !mask )
                    for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
                    {
                        int idx0 = cvFloor(*p0*a0 + b0);
                        int idx1 = cvFloor(*p1*a1 + b1);
                        if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 )
                            ((int*)(H + hstep0*idx0))[idx1]++;
                    }
                else
                    for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
                        if( mask[x] )
                        {
                            int idx0 = cvFloor(*p0*a0 + b0);
                            int idx1 = cvFloor(*p1*a1 + b1);
                            if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 )
                                ((int*)(H + hstep0*idx0))[idx1]++;
                        }
            }
844
#endif //HAVE_TBB
845
            return;
846 847 848
        }
        else if( dims == 3 )
        {
Daniil-Osokin's avatar
Daniil-Osokin committed
849 850 851 852 853 854 855 856
#ifdef HAVE_TBB
            if( calcHist3D_Invoker<T>::isFit(hist, imsize) )
            {
                calcHist3D_Invoker<T> body(_ptrs, _deltas, imsize, hist, uniranges, dims, hstep, size);
                parallel_for(BlockedRange(0, imsize.height), body);
                return;
            }
#endif
857 858 859 860 861 862 863 864 865 866
            double a0 = uniranges[0], b0 = uniranges[1],
                   a1 = uniranges[2], b1 = uniranges[3],
                   a2 = uniranges[4], b2 = uniranges[5];
            int sz0 = size[0], sz1 = size[1], sz2 = size[2];
            int d0 = deltas[0], step0 = deltas[1],
                d1 = deltas[2], step1 = deltas[3],
                d2 = deltas[4], step2 = deltas[5];
            size_t hstep0 = hstep[0], hstep1 = hstep[1];
            const T* p0 = (const T*)ptrs[0];
            const T* p1 = (const T*)ptrs[1];
867 868
            const T* p2 = (const T*)ptrs[2];

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
            for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep )
            {
                if( !mask )
                    for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
                    {
                        int idx0 = cvFloor(*p0*a0 + b0);
                        int idx1 = cvFloor(*p1*a1 + b1);
                        int idx2 = cvFloor(*p2*a2 + b2);
                        if( (unsigned)idx0 < (unsigned)sz0 &&
                            (unsigned)idx1 < (unsigned)sz1 &&
                            (unsigned)idx2 < (unsigned)sz2 )
                            ((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++;
                    }
                else
                    for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
                        if( mask[x] )
                        {
                            int idx0 = cvFloor(*p0*a0 + b0);
                            int idx1 = cvFloor(*p1*a1 + b1);
                            int idx2 = cvFloor(*p2*a2 + b2);
                            if( (unsigned)idx0 < (unsigned)sz0 &&
                               (unsigned)idx1 < (unsigned)sz1 &&
                               (unsigned)idx2 < (unsigned)sz2 )
                                ((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++;
                        }
            }
        }
        else
        {
            for( ; imsize.height--; mask += mstep )
            {
                if( !mask )
                    for( x = 0; x < imsize.width; x++ )
                    {
                        uchar* Hptr = H;
                        for( i = 0; i < dims; i++ )
                        {
                            int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]);
                            if( (unsigned)idx >= (unsigned)size[i] )
                                break;
                            ptrs[i] += deltas[i*2];
                            Hptr += idx*hstep[i];
                        }
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
                        if( i == dims )
                            ++*((int*)Hptr);
                        else
                            for( ; i < dims; i++ )
                                ptrs[i] += deltas[i*2];
                    }
                else
                    for( x = 0; x < imsize.width; x++ )
                    {
                        uchar* Hptr = H;
                        i = 0;
                        if( mask[x] )
                            for( ; i < dims; i++ )
                            {
                                int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]);
                                if( (unsigned)idx >= (unsigned)size[i] )
                                    break;
                                ptrs[i] += deltas[i*2];
                                Hptr += idx*hstep[i];
                            }
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
                        if( i == dims )
                            ++*((int*)Hptr);
                        else
                            for( ; i < dims; i++ )
                                ptrs[i] += deltas[i*2];
                    }
                for( i = 0; i < dims; i++ )
                    ptrs[i] += deltas[i*2 + 1];
            }
        }
    }
    else
    {
        // non-uniform histogram
        const float* ranges[CV_MAX_DIM];
        for( i = 0; i < dims; i++ )
            ranges[i] = &_ranges[i][0];
951

952 953 954 955 956 957
        for( ; imsize.height--; mask += mstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
                uchar* Hptr = H;
                i = 0;
958

959 960 961 962 963 964
                if( !mask || mask[x] )
                    for( ; i < dims; i++ )
                    {
                        float v = (float)*ptrs[i];
                        const float* R = ranges[i];
                        int idx = -1, sz = size[i];
965

966 967
                        while( v >= R[idx+1] && ++idx < sz )
                            ; // nop
968

969 970 971 972 973 974
                        if( (unsigned)idx >= (unsigned)sz )
                            break;

                        ptrs[i] += deltas[i*2];
                        Hptr += idx*hstep[i];
                    }
975

976 977 978 979 980 981
                if( i == dims )
                    ++*((int*)Hptr);
                else
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
            }
982

983 984 985
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
986
    }
987
}
988 989


990
static void
991
calcHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
992
             Size imsize, Mat& hist, int dims, const float** _ranges,
993 994 995 996
             const double* _uniranges, bool uniform )
{
    uchar** ptrs = &_ptrs[0];
    const int* deltas = &_deltas[0];
997
    uchar* H = hist.ptr();
998
    int x;
999 1000
    const uchar* mask = _ptrs[dims];
    int mstep = _deltas[dims*2 + 1];
1001
    std::vector<size_t> _tab;
1002

1003
    calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab );
1004
    const size_t* tab = &_tab[0];
1005

1006 1007
    if( dims == 1 )
    {
Daniil-Osokin's avatar
Daniil-Osokin committed
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#ifdef HAVE_TBB
        if( CalcHist1D_8uInvoker::isFit(hist, imsize) )
        {
            int treadsNumber = tbb::task_scheduler_init::default_num_threads();
            int grainSize = imsize.height/treadsNumber;
            tbb::mutex histogramWriteLock;

            CalcHist1D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock);
            parallel_for(BlockedRange(0, imsize.height, grainSize), body);
            return;
        }
#endif
1020
        int d0 = deltas[0], step0 = deltas[1];
Daniil-Osokin's avatar
Daniil-Osokin committed
1021
        int matH[256] = { 0, };
1022
        const uchar* p0 = (const uchar*)ptrs[0];
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        for( ; imsize.height--; p0 += step0, mask += mstep )
        {
            if( !mask )
            {
                if( d0 == 1 )
                {
                    for( x = 0; x <= imsize.width - 4; x += 4 )
                    {
                        int t0 = p0[x], t1 = p0[x+1];
                        matH[t0]++; matH[t1]++;
                        t0 = p0[x+2]; t1 = p0[x+3];
                        matH[t0]++; matH[t1]++;
                    }
                    p0 += x;
                }
1039
                else
1040 1041 1042 1043 1044 1045 1046 1047 1048
                    for( x = 0; x <= imsize.width - 4; x += 4 )
                    {
                        int t0 = p0[0], t1 = p0[d0];
                        matH[t0]++; matH[t1]++;
                        p0 += d0*2;
                        t0 = p0[0]; t1 = p0[d0];
                        matH[t0]++; matH[t1]++;
                        p0 += d0*2;
                    }
1049

1050 1051 1052 1053 1054 1055 1056 1057
                for( ; x < imsize.width; x++, p0 += d0 )
                    matH[*p0]++;
            }
            else
                for( x = 0; x < imsize.width; x++, p0 += d0 )
                    if( mask[x] )
                        matH[*p0]++;
        }
1058 1059

        for(int i = 0; i < 256; i++ )
1060 1061 1062 1063 1064 1065 1066 1067
        {
            size_t hidx = tab[i];
            if( hidx < OUT_OF_RANGE )
                *(int*)(H + hidx) += matH[i];
        }
    }
    else if( dims == 2 )
    {
Daniil-Osokin's avatar
Daniil-Osokin committed
1068 1069 1070 1071 1072 1073 1074
#ifdef HAVE_TBB
        if( CalcHist2D_8uInvoker::isFit(hist, imsize) )
        {
            callCalcHist2D_8u(_ptrs, _deltas, imsize, hist, dims, _tab);
            return;
        }
#endif
1075 1076 1077 1078
        int d0 = deltas[0], step0 = deltas[1],
            d1 = deltas[2], step1 = deltas[3];
        const uchar* p0 = (const uchar*)ptrs[0];
        const uchar* p1 = (const uchar*)ptrs[1];
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep )
        {
            if( !mask )
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
                {
                    size_t idx = tab[*p0] + tab[*p1 + 256];
                    if( idx < OUT_OF_RANGE )
                        ++*(int*)(H + idx);
                }
            else
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
                {
                    size_t idx;
                    if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256]) < OUT_OF_RANGE )
                        ++*(int*)(H + idx);
                }
        }
    }
    else if( dims == 3 )
    {
Daniil-Osokin's avatar
Daniil-Osokin committed
1100 1101 1102 1103 1104 1105 1106
#ifdef HAVE_TBB
        if( CalcHist3D_8uInvoker::isFit(hist, imsize) )
        {
            callCalcHist3D_8u(_ptrs, _deltas, imsize, hist, dims, _tab);
            return;
        }
#endif
1107 1108 1109
        int d0 = deltas[0], step0 = deltas[1],
            d1 = deltas[2], step1 = deltas[3],
            d2 = deltas[4], step2 = deltas[5];
1110

1111 1112 1113
        const uchar* p0 = (const uchar*)ptrs[0];
        const uchar* p1 = (const uchar*)ptrs[1];
        const uchar* p2 = (const uchar*)ptrs[2];
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep )
        {
            if( !mask )
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
                {
                    size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512];
                    if( idx < OUT_OF_RANGE )
                        ++*(int*)(H + idx);
                }
            else
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
                {
                    size_t idx;
                    if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]) < OUT_OF_RANGE )
                        ++*(int*)(H + idx);
                }
        }
    }
    else
    {
        for( ; imsize.height--; mask += mstep )
        {
            if( !mask )
                for( x = 0; x < imsize.width; x++ )
                {
                    uchar* Hptr = H;
1141 1142
                    int i = 0;
                    for( ; i < dims; i++ )
1143 1144 1145 1146 1147 1148 1149
                    {
                        size_t idx = tab[*ptrs[i] + i*256];
                        if( idx >= OUT_OF_RANGE )
                            break;
                        Hptr += idx;
                        ptrs[i] += deltas[i*2];
                    }
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                    if( i == dims )
                        ++*((int*)Hptr);
                    else
                        for( ; i < dims; i++ )
                            ptrs[i] += deltas[i*2];
                }
            else
                for( x = 0; x < imsize.width; x++ )
                {
                    uchar* Hptr = H;
                    int i = 0;
                    if( mask[x] )
                        for( ; i < dims; i++ )
                        {
                            size_t idx = tab[*ptrs[i] + i*256];
                            if( idx >= OUT_OF_RANGE )
                                break;
                            Hptr += idx;
                            ptrs[i] += deltas[i*2];
                        }
1171

1172 1173 1174 1175 1176 1177
                    if( i == dims )
                        ++*((int*)Hptr);
                    else
                        for( ; i < dims; i++ )
                            ptrs[i] += deltas[i*2];
                }
1178
            for(int i = 0; i < dims; i++ )
1179 1180 1181 1182 1183
                ptrs[i] += deltas[i*2 + 1];
        }
    }
}

1184
#ifdef HAVE_IPP
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1185 1186 1187 1188
class IPPCalcHistInvoker :
    public ParallelLoopBody
{
public:
1189
    IPPCalcHistInvoker(const Mat & _src, Mat & _hist, AutoBuffer<Ipp32f> & _levels, Ipp32s _histSize, Ipp32f _low, Ipp32f _high, bool * _ok) :
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1190 1191 1192 1193 1194 1195 1196
        ParallelLoopBody(), src(&_src), hist(&_hist), levels(&_levels), histSize(_histSize), low(_low), high(_high), ok(_ok)
    {
        *ok = true;
    }

    virtual void operator() (const Range & range) const
    {
1197
        Ipp32s levelNum = histSize + 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1198
        Mat phist(hist->size(), hist->type(), Scalar::all(0));
1199 1200 1201 1202 1203 1204 1205
#if IPP_VERSION_X100 >= 900
        IppiSize roi = {src->cols, range.end - range.start};
        int bufferSize = 0;
        int specSize = 0;
        IppiHistogramSpec *pSpec = NULL;
        Ipp8u *pBuffer = NULL;

1206
        if(ippiHistogramGetBufferSize(ipp8u, roi, &levelNum, 1, 1, &specSize, &bufferSize) < 0)
1207 1208 1209 1210
        {
            *ok = false;
            return;
        }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1211

1212 1213 1214 1215 1216 1217
        pBuffer = (Ipp8u*)ippMalloc(bufferSize);
        if(!pBuffer && bufferSize)
        {
            *ok = false;
            return;
        }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1218

1219 1220 1221 1222 1223 1224 1225 1226
        pSpec = (IppiHistogramSpec*)ippMalloc(specSize);
        if(!pSpec && specSize)
        {
            if(pBuffer) ippFree(pBuffer);
            *ok = false;
            return;
        }

1227
        if(ippiHistogramUniformInit(ipp8u, (Ipp32f*)&low, (Ipp32f*)&high, (Ipp32s*)&levelNum, 1, pSpec) < 0)
1228 1229 1230 1231 1232 1233 1234
        {
            if(pSpec)   ippFree(pSpec);
            if(pBuffer) ippFree(pBuffer);
            *ok = false;
            return;
        }

1235
        IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiHistogram_8u_C1R, src->ptr(range.start), (int)src->step, ippiSize(src->cols, range.end - range.start),
1236 1237 1238 1239 1240 1241 1242
            phist.ptr<Ipp32u>(), pSpec, pBuffer);

        if(pSpec)   ippFree(pSpec);
        if(pBuffer) ippFree(pBuffer);
#else
        CV_SUPPRESS_DEPRECATED_START
        IppStatus status = ippiHistogramEven_8u_C1R(src->ptr(range.start), (int)src->step, ippiSize(src->cols, range.end - range.start),
1243
            phist.ptr<Ipp32s>(), (Ipp32s*)(Ipp32f*)*levels, levelNum, (Ipp32s)low, (Ipp32s)high);
1244 1245 1246
        CV_SUPPRESS_DEPRECATED_END
#endif
        if(status < 0)
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        {
            *ok = false;
            return;
        }

        for (int i = 0; i < histSize; ++i)
            CV_XADD((int *)(hist->data + i * hist->step), *(int *)(phist.data + i * phist.step));
    }

private:
    const Mat * src;
    Mat * hist;
1259 1260 1261
    AutoBuffer<Ipp32f> * levels;
    Ipp32s histSize;
    Ipp32f low, high;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1262 1263 1264 1265 1266 1267 1268
    bool * ok;

    const IPPCalcHistInvoker & operator = (const IPPCalcHistInvoker & );
};

#endif

1269
}
1270

1271 1272 1273 1274
#if defined(HAVE_IPP)
namespace cv
{
static bool ipp_calchist(const Mat* images, int nimages, const int* channels,
1275
                   InputArray _mask, OutputArray _hist, int dims, const int* histSize,
1276
                   const float** ranges, bool uniform, bool accumulate )
1277
{
1278 1279
    CV_INSTRUMENT_REGION_IPP()

1280
    Mat mask = _mask.getMat();
1281

1282
    CV_Assert(dims > 0 && histSize);
1283

1284 1285
    _hist.create(dims, histSize, CV_32F);
    Mat hist = _hist.getMat(), ihist = hist;
1286
    ihist.flags = (ihist.flags & ~CV_MAT_TYPE_MASK)|CV_32S;
1287

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1288
    {
1289 1290 1291 1292 1293
        if (nimages == 1 && images[0].type() == CV_8UC1 && dims == 1 && channels &&
                channels[0] == 0 && mask.empty() && images[0].dims <= 2 &&
                !accumulate && uniform)
        {
            ihist.setTo(Scalar::all(0));
1294
            AutoBuffer<Ipp32f> levels(histSize[0]);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1295

1296 1297 1298
            bool ok = true;
            const Mat & src = images[0];
            int nstripes = std::min<int>(8, static_cast<int>(src.total() / (1 << 16)));
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1299
#ifdef HAVE_CONCURRENCY
1300
            nstripes = 1;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1301
#endif
1302
            IPPCalcHistInvoker invoker(src, ihist, levels, histSize[0], ranges[0][0], ranges[0][1], &ok);
1303 1304
            Range range(0, src.rows);
            parallel_for_(range, invoker, nstripes);
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1305

1306 1307 1308
            if (ok)
            {
                ihist.convertTo(hist, CV_32F);
1309
                return true;
1310
            }
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1311 1312
        }
    }
1313 1314 1315
    return false;
}
}
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1316 1317
#endif

1318 1319 1320 1321
void cv::calcHist( const Mat* images, int nimages, const int* channels,
                   InputArray _mask, OutputArray _hist, int dims, const int* histSize,
                   const float** ranges, bool uniform, bool accumulate )
{
1322
    CV_INSTRUMENT_REGION()
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    CV_IPP_RUN(nimages == 1 && images[0].type() == CV_8UC1 && dims == 1 && channels &&
                channels[0] == 0 && _mask.getMat().empty() && images[0].dims <= 2 &&
                !accumulate && uniform,
                ipp_calchist(images, nimages, channels,
                   _mask, _hist, dims, histSize,
                   ranges, uniform, accumulate));

    Mat mask = _mask.getMat();

    CV_Assert(dims > 0 && histSize);

    const uchar* const histdata = _hist.getMat().ptr();
    _hist.create(dims, histSize, CV_32F);
    Mat hist = _hist.getMat(), ihist = hist;
    ihist.flags = (ihist.flags & ~CV_MAT_TYPE_MASK)|CV_32S;

1340
    if( !accumulate || histdata != hist.data )
1341 1342 1343
        hist = Scalar(0.);
    else
        hist.convertTo(ihist, CV_32S);
1344

1345 1346 1347
    std::vector<uchar*> ptrs;
    std::vector<int> deltas;
    std::vector<double> uniranges;
1348
    Size imsize;
1349

1350
    CV_Assert( mask.empty() || mask.type() == CV_8UC1 );
1351
    histPrepareImages( images, nimages, channels, mask, dims, hist.size, ranges,
1352 1353
                       uniform, ptrs, deltas, imsize, uniranges );
    const double* _uniranges = uniform ? &uniranges[0] : 0;
1354

1355
    int depth = images[0].depth();
1356

1357
    if( depth == CV_8U )
1358
        calcHist_8u(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform );
1359 1360
    else if( depth == CV_16U )
        calcHist_<ushort>(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform );
1361
    else if( depth == CV_32F )
1362
        calcHist_<float>(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform );
1363 1364
    else
        CV_Error(CV_StsUnsupportedFormat, "");
1365

1366 1367 1368
    ihist.convertTo(hist, CV_32F);
}

1369

1370 1371 1372
namespace cv
{

1373
template<typename T> static void
1374
calcSparseHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
1375
                 Size imsize, SparseMat& hist, int dims, const float** _ranges,
1376 1377 1378 1379
                 const double* _uniranges, bool uniform )
{
    T** ptrs = (T**)&_ptrs[0];
    const int* deltas = &_deltas[0];
1380
    int i, x;
1381 1382 1383 1384
    const uchar* mask = _ptrs[dims];
    int mstep = _deltas[dims*2 + 1];
    const int* size = hist.hdr->size;
    int idx[CV_MAX_DIM];
1385

1386 1387 1388
    if( uniform )
    {
        const double* uniranges = &_uniranges[0];
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        for( ; imsize.height--; mask += mstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
                i = 0;
                if( !mask || mask[x] )
                    for( ; i < dims; i++ )
                    {
                        idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]);
                        if( (unsigned)idx[i] >= (unsigned)size[i] )
                            break;
                        ptrs[i] += deltas[i*2];
                    }
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                if( i == dims )
                    ++*(int*)hist.ptr(idx, true);
                else
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
            }
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
    }
    else
    {
        // non-uniform histogram
        const float* ranges[CV_MAX_DIM];
        for( i = 0; i < dims; i++ )
            ranges[i] = &_ranges[i][0];
1420

1421 1422 1423 1424 1425
        for( ; imsize.height--; mask += mstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
                i = 0;
1426

1427 1428 1429 1430 1431 1432
                if( !mask || mask[x] )
                    for( ; i < dims; i++ )
                    {
                        float v = (float)*ptrs[i];
                        const float* R = ranges[i];
                        int j = -1, sz = size[i];
1433

1434 1435
                        while( v >= R[j+1] && ++j < sz )
                            ; // nop
1436

1437 1438
                        if( (unsigned)j >= (unsigned)sz )
                            break;
1439
                        ptrs[i] += deltas[i*2];
1440 1441
                        idx[i] = j;
                    }
1442

1443 1444 1445 1446 1447 1448
                if( i == dims )
                    ++*(int*)hist.ptr(idx, true);
                else
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
            }
1449

1450 1451 1452
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
1453 1454 1455
    }
}

1456 1457

static void
1458
calcSparseHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
1459
                   Size imsize, SparseMat& hist, int dims, const float** _ranges,
1460 1461 1462 1463
                   const double* _uniranges, bool uniform )
{
    uchar** ptrs = (uchar**)&_ptrs[0];
    const int* deltas = &_deltas[0];
1464
    int x;
1465 1466 1467
    const uchar* mask = _ptrs[dims];
    int mstep = _deltas[dims*2 + 1];
    int idx[CV_MAX_DIM];
1468
    std::vector<size_t> _tab;
1469

1470
    calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab );
1471
    const size_t* tab = &_tab[0];
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    for( ; imsize.height--; mask += mstep )
    {
        for( x = 0; x < imsize.width; x++ )
        {
            int i = 0;
            if( !mask || mask[x] )
                for( ; i < dims; i++ )
                {
                    size_t hidx = tab[*ptrs[i] + i*256];
                    if( hidx >= OUT_OF_RANGE )
                        break;
                    ptrs[i] += deltas[i*2];
                    idx[i] = (int)hidx;
                }
1487

1488 1489 1490 1491 1492 1493
            if( i == dims )
                ++*(int*)hist.ptr(idx,true);
            else
                for( ; i < dims; i++ )
                    ptrs[i] += deltas[i*2];
        }
1494
        for(int i = 0; i < dims; i++ )
1495 1496
            ptrs[i] += deltas[i*2 + 1];
    }
1497 1498
}

1499 1500 1501 1502 1503 1504

static void calcHist( const Mat* images, int nimages, const int* channels,
                      const Mat& mask, SparseMat& hist, int dims, const int* histSize,
                      const float** ranges, bool uniform, bool accumulate, bool keepInt )
{
    size_t i, N;
1505

1506 1507 1508
    if( !accumulate )
        hist.create(dims, histSize, CV_32F);
    else
1509 1510
    {
        SparseMatIterator it = hist.begin();
1511 1512
        for( i = 0, N = hist.nzcount(); i < N; i++, ++it )
        {
1513 1514
            Cv32suf* val = (Cv32suf*)it.ptr;
            val->i = cvRound(val->f);
1515
        }
1516
    }
1517

1518 1519 1520
    std::vector<uchar*> ptrs;
    std::vector<int> deltas;
    std::vector<double> uniranges;
1521
    Size imsize;
1522

1523
    CV_Assert( mask.empty() || mask.type() == CV_8UC1 );
1524
    histPrepareImages( images, nimages, channels, mask, dims, hist.hdr->size, ranges,
1525 1526
                       uniform, ptrs, deltas, imsize, uniranges );
    const double* _uniranges = uniform ? &uniranges[0] : 0;
1527

1528 1529
    int depth = images[0].depth();
    if( depth == CV_8U )
1530
        calcSparseHist_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform );
1531 1532
    else if( depth == CV_16U )
        calcSparseHist_<ushort>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform );
1533
    else if( depth == CV_32F )
1534
        calcSparseHist_<float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform );
1535 1536
    else
        CV_Error(CV_StsUnsupportedFormat, "");
1537

1538
    if( !keepInt )
1539 1540
    {
        SparseMatIterator it = hist.begin();
1541 1542
        for( i = 0, N = hist.nzcount(); i < N; i++, ++it )
        {
1543 1544
            Cv32suf* val = (Cv32suf*)it.ptr;
            val->f = (float)val->i;
1545
        }
1546
    }
1547
}
1548

1549 1550
#ifdef HAVE_OPENCL

1551 1552 1553 1554 1555
enum
{
    BINS = 256
};

1556
static bool ocl_calcHist1(InputArray _src, OutputArray _hist, int ddepth = CV_32S)
1557
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1558 1559 1560
    const ocl::Device & dev = ocl::Device::getDefault();
    int compunits = dev.maxComputeUnits();
    size_t wgs = dev.maxWorkGroupSize();
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1561 1562
    Size size = _src.size();
    bool use16 = size.width % 16 == 0 && _src.offset() % 16 == 0 && _src.step() % 16 == 0;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1563
    int kercn = dev.isAMD() && use16 ? 16 : std::min(4, ocl::predictOptimalVectorWidth(_src));
1564 1565

    ocl::Kernel k1("calculate_histogram", ocl::imgproc::histogram_oclsrc,
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1566 1567 1568 1569
                   format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d -D kercn=%d -D T=%s%s",
                          BINS, compunits, wgs, kercn,
                          kercn == 4 ? "int" : ocl::typeToStr(CV_8UC(kercn)),
                          _src.isContinuous() ? " -D HAVE_SRC_CONT" : ""));
1570 1571 1572
    if (k1.empty())
        return false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1573
    _hist.create(BINS, 1, ddepth);
1574
    UMat src = _src.getUMat(), ghist(1, BINS * compunits, CV_32SC1),
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1575
            hist = _hist.getUMat();
1576

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1577 1578
    k1.args(ocl::KernelArg::ReadOnly(src),
            ocl::KernelArg::PtrWriteOnly(ghist), (int)src.total());
1579 1580 1581 1582 1583

    size_t globalsize = compunits * wgs;
    if (!k1.run(1, &globalsize, &wgs, false))
        return false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1584
    char cvt[40];
1585
    ocl::Kernel k2("merge_histogram", ocl::imgproc::histogram_oclsrc,
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1586 1587 1588
                   format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d -D convertToHT=%s -D HT=%s",
                          BINS, compunits, (int)wgs, ocl::convertTypeStr(CV_32S, ddepth, 1, cvt),
                          ocl::typeToStr(ddepth)));
1589 1590 1591
    if (k2.empty())
        return false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1592
    k2.args(ocl::KernelArg::PtrReadOnly(ghist),
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1593
            ocl::KernelArg::WriteOnlyNoSize(hist));
1594

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1595
    return k2.run(1, &wgs, &wgs, false);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

static bool ocl_calcHist(InputArrayOfArrays images, OutputArray hist)
{
    std::vector<UMat> v;
    images.getUMatVector(v);

    return ocl_calcHist1(v[0], hist, CV_32F);
}

1606 1607
#endif

1608
}
1609

1610
void cv::calcHist( const Mat* images, int nimages, const int* channels,
1611
               InputArray _mask, SparseMat& hist, int dims, const int* histSize,
1612 1613
               const float** ranges, bool uniform, bool accumulate )
{
1614 1615
    CV_INSTRUMENT_REGION()

1616
    Mat mask = _mask.getMat();
1617 1618 1619 1620
    calcHist( images, nimages, channels, mask, hist, dims, histSize,
              ranges, uniform, accumulate, false );
}

1621

1622
void cv::calcHist( InputArrayOfArrays images, const std::vector<int>& channels,
1623
                   InputArray mask, OutputArray hist,
1624 1625
                   const std::vector<int>& histSize,
                   const std::vector<float>& ranges,
1626 1627
                   bool accumulate )
{
1628 1629
    CV_INSTRUMENT_REGION()

1630 1631 1632
    CV_OCL_RUN(images.total() == 1 && channels.size() == 1 && images.channels(0) == 1 &&
               channels[0] == 0 && images.isUMatVector() && mask.empty() && !accumulate &&
               histSize.size() == 1 && histSize[0] == BINS && ranges.size() == 2 &&
Ilya Lavrenov's avatar
Ilya Lavrenov committed
1633
               ranges[0] == 0 && ranges[1] == BINS,
1634 1635
               ocl_calcHist(images, hist))

1636 1637
    int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size();
    int nimages = (int)images.total();
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647
    CV_Assert(nimages > 0 && dims > 0);
    CV_Assert(rsz == dims*2 || (rsz == 0 && images.depth(0) == CV_8U));
    CV_Assert(csz == 0 || csz == dims);
    float* _ranges[CV_MAX_DIM];
    if( rsz > 0 )
    {
        for( i = 0; i < rsz/2; i++ )
            _ranges[i] = (float*)&ranges[i*2];
    }
1648

1649 1650 1651
    AutoBuffer<Mat> buf(nimages);
    for( i = 0; i < nimages; i++ )
        buf[i] = images.getMat(i);
1652

1653 1654 1655 1656 1657 1658
    calcHist(&buf[0], nimages, csz ? &channels[0] : 0,
            mask, hist, dims, &histSize[0], rsz ? (const float**)_ranges : 0,
            true, accumulate);
}


1659 1660
/////////////////////////////////////// B A C K   P R O J E C T ////////////////////////////////////

1661 1662
namespace cv
{
1663 1664

template<typename T, typename BT> static void
1665
calcBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
1666
               Size imsize, const Mat& hist, int dims, const float** _ranges,
1667 1668 1669 1670
               const double* _uniranges, float scale, bool uniform )
{
    T** ptrs = (T**)&_ptrs[0];
    const int* deltas = &_deltas[0];
1671
    const uchar* H = hist.ptr();
1672
    int i, x;
1673 1674 1675 1676
    BT* bproj = (BT*)_ptrs[dims];
    int bpstep = _deltas[dims*2 + 1];
    int size[CV_MAX_DIM];
    size_t hstep[CV_MAX_DIM];
1677

1678 1679 1680 1681 1682
    for( i = 0; i < dims; i++ )
    {
        size[i] = hist.size[i];
        hstep[i] = hist.step[i];
    }
1683

1684 1685 1686
    if( uniform )
    {
        const double* uniranges = &_uniranges[0];
1687

1688 1689 1690 1691 1692
        if( dims == 1 )
        {
            double a = uniranges[0], b = uniranges[1];
            int sz = size[0], d0 = deltas[0], step0 = deltas[1];
            const T* p0 = (const T*)ptrs[0];
1693

1694 1695 1696 1697 1698
            for( ; imsize.height--; p0 += step0, bproj += bpstep )
            {
                for( x = 0; x < imsize.width; x++, p0 += d0 )
                {
                    int idx = cvFloor(*p0*a + b);
1699
                    bproj[x] = (unsigned)idx < (unsigned)sz ? saturate_cast<BT>(((const float*)H)[idx]*scale) : 0;
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
                }
            }
        }
        else if( dims == 2 )
        {
            double a0 = uniranges[0], b0 = uniranges[1],
                   a1 = uniranges[2], b1 = uniranges[3];
            int sz0 = size[0], sz1 = size[1];
            int d0 = deltas[0], step0 = deltas[1],
                d1 = deltas[2], step1 = deltas[3];
            size_t hstep0 = hstep[0];
            const T* p0 = (const T*)ptrs[0];
            const T* p1 = (const T*)ptrs[1];
1713

1714 1715 1716 1717 1718 1719 1720 1721
            for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep )
            {
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
                {
                    int idx0 = cvFloor(*p0*a0 + b0);
                    int idx1 = cvFloor(*p1*a1 + b1);
                    bproj[x] = (unsigned)idx0 < (unsigned)sz0 &&
                               (unsigned)idx1 < (unsigned)sz1 ?
1722
                        saturate_cast<BT>(((const float*)(H + hstep0*idx0))[idx1]*scale) : 0;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
                }
            }
        }
        else if( dims == 3 )
        {
            double a0 = uniranges[0], b0 = uniranges[1],
                   a1 = uniranges[2], b1 = uniranges[3],
                   a2 = uniranges[4], b2 = uniranges[5];
            int sz0 = size[0], sz1 = size[1], sz2 = size[2];
            int d0 = deltas[0], step0 = deltas[1],
                d1 = deltas[2], step1 = deltas[3],
                d2 = deltas[4], step2 = deltas[5];
            size_t hstep0 = hstep[0], hstep1 = hstep[1];
            const T* p0 = (const T*)ptrs[0];
            const T* p1 = (const T*)ptrs[1];
1738 1739
            const T* p2 = (const T*)ptrs[2];

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
            for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep )
            {
                for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
                {
                    int idx0 = cvFloor(*p0*a0 + b0);
                    int idx1 = cvFloor(*p1*a1 + b1);
                    int idx2 = cvFloor(*p2*a2 + b2);
                    bproj[x] = (unsigned)idx0 < (unsigned)sz0 &&
                               (unsigned)idx1 < (unsigned)sz1 &&
                               (unsigned)idx2 < (unsigned)sz2 ?
1750
                        saturate_cast<BT>(((const float*)(H + hstep0*idx0 + hstep1*idx1))[idx2]*scale) : 0;
1751 1752 1753 1754 1755 1756 1757 1758 1759
                }
            }
        }
        else
        {
            for( ; imsize.height--; bproj += bpstep )
            {
                for( x = 0; x < imsize.width; x++ )
                {
1760
                    const uchar* Hptr = H;
1761 1762 1763
                    for( i = 0; i < dims; i++ )
                    {
                        int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]);
1764
                        if( (unsigned)idx >= (unsigned)size[i] || (_ranges && *ptrs[i] >= _ranges[i][1]))
1765 1766 1767 1768
                            break;
                        ptrs[i] += deltas[i*2];
                        Hptr += idx*hstep[i];
                    }
1769

1770
                    if( i == dims )
1771
                        bproj[x] = saturate_cast<BT>(*(const float*)Hptr*scale);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
                    else
                    {
                        bproj[x] = 0;
                        for( ; i < dims; i++ )
                            ptrs[i] += deltas[i*2];
                    }
                }
                for( i = 0; i < dims; i++ )
                    ptrs[i] += deltas[i*2 + 1];
            }
        }
    }
    else
    {
        // non-uniform histogram
        const float* ranges[CV_MAX_DIM];
        for( i = 0; i < dims; i++ )
            ranges[i] = &_ranges[i][0];
1790

1791 1792 1793 1794
        for( ; imsize.height--; bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
1795
                const uchar* Hptr = H;
1796 1797 1798 1799 1800
                for( i = 0; i < dims; i++ )
                {
                    float v = (float)*ptrs[i];
                    const float* R = ranges[i];
                    int idx = -1, sz = size[i];
1801

1802 1803
                    while( v >= R[idx+1] && ++idx < sz )
                        ; // nop
1804

1805 1806 1807 1808 1809 1810
                    if( (unsigned)idx >= (unsigned)sz )
                        break;

                    ptrs[i] += deltas[i*2];
                    Hptr += idx*hstep[i];
                }
1811

1812
                if( i == dims )
1813
                    bproj[x] = saturate_cast<BT>(*(const float*)Hptr*scale);
1814 1815 1816 1817 1818 1819 1820
                else
                {
                    bproj[x] = 0;
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
                }
            }
1821

1822 1823 1824
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
1825
    }
1826 1827 1828 1829
}


static void
1830
calcBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
1831
                 Size imsize, const Mat& hist, int dims, const float** _ranges,
1832 1833 1834 1835
                 const double* _uniranges, float scale, bool uniform )
{
    uchar** ptrs = &_ptrs[0];
    const int* deltas = &_deltas[0];
1836
    const uchar* H = hist.ptr();
1837
    int i, x;
1838 1839
    uchar* bproj = _ptrs[dims];
    int bpstep = _deltas[dims*2 + 1];
1840
    std::vector<size_t> _tab;
1841

1842
    calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab );
1843
    const size_t* tab = &_tab[0];
1844

1845 1846 1847 1848 1849
    if( dims == 1 )
    {
        int d0 = deltas[0], step0 = deltas[1];
        uchar matH[256] = {0};
        const uchar* p0 = (const uchar*)ptrs[0];
1850

1851 1852 1853 1854 1855 1856
        for( i = 0; i < 256; i++ )
        {
            size_t hidx = tab[i];
            if( hidx < OUT_OF_RANGE )
                matH[i] = saturate_cast<uchar>(*(float*)(H + hidx)*scale);
        }
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        for( ; imsize.height--; p0 += step0, bproj += bpstep )
        {
            if( d0 == 1 )
            {
                for( x = 0; x <= imsize.width - 4; x += 4 )
                {
                    uchar t0 = matH[p0[x]], t1 = matH[p0[x+1]];
                    bproj[x] = t0; bproj[x+1] = t1;
                    t0 = matH[p0[x+2]]; t1 = matH[p0[x+3]];
                    bproj[x+2] = t0; bproj[x+3] = t1;
                }
                p0 += x;
            }
1871
            else
1872 1873 1874 1875 1876 1877 1878 1879 1880
                for( x = 0; x <= imsize.width - 4; x += 4 )
                {
                    uchar t0 = matH[p0[0]], t1 = matH[p0[d0]];
                    bproj[x] = t0; bproj[x+1] = t1;
                    p0 += d0*2;
                    t0 = matH[p0[0]]; t1 = matH[p0[d0]];
                    bproj[x+2] = t0; bproj[x+3] = t1;
                    p0 += d0*2;
                }
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            for( ; x < imsize.width; x++, p0 += d0 )
                bproj[x] = matH[*p0];
        }
    }
    else if( dims == 2 )
    {
        int d0 = deltas[0], step0 = deltas[1],
            d1 = deltas[2], step1 = deltas[3];
        const uchar* p0 = (const uchar*)ptrs[0];
        const uchar* p1 = (const uchar*)ptrs[1];
1892

1893 1894 1895 1896 1897
        for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 )
            {
                size_t idx = tab[*p0] + tab[*p1 + 256];
1898
                bproj[x] = idx < OUT_OF_RANGE ? saturate_cast<uchar>(*(const float*)(H + idx)*scale) : 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
            }
        }
    }
    else if( dims == 3 )
    {
        int d0 = deltas[0], step0 = deltas[1],
        d1 = deltas[2], step1 = deltas[3],
        d2 = deltas[4], step2 = deltas[5];
        const uchar* p0 = (const uchar*)ptrs[0];
        const uchar* p1 = (const uchar*)ptrs[1];
        const uchar* p2 = (const uchar*)ptrs[2];
1910

1911 1912 1913 1914 1915
        for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 )
            {
                size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512];
1916
                bproj[x] = idx < OUT_OF_RANGE ? saturate_cast<uchar>(*(const float*)(H + idx)*scale) : 0;
1917 1918 1919 1920 1921 1922 1923 1924 1925
            }
        }
    }
    else
    {
        for( ; imsize.height--; bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
1926
                const uchar* Hptr = H;
1927 1928 1929 1930 1931 1932 1933 1934
                for( i = 0; i < dims; i++ )
                {
                    size_t idx = tab[*ptrs[i] + i*256];
                    if( idx >= OUT_OF_RANGE )
                        break;
                    ptrs[i] += deltas[i*2];
                    Hptr += idx;
                }
1935

1936
                if( i == dims )
1937
                    bproj[x] = saturate_cast<uchar>(*(const float*)Hptr*scale);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
                else
                {
                    bproj[x] = 0;
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
                }
            }
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
    }
1949
}
1950 1951

}
1952

1953
void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
1954
                          InputArray _hist, OutputArray _backProject,
1955
                          const float** ranges, double scale, bool uniform )
1956
{
1957 1958
    CV_INSTRUMENT_REGION()

1959
    Mat hist = _hist.getMat();
1960 1961 1962
    std::vector<uchar*> ptrs;
    std::vector<int> deltas;
    std::vector<double> uniranges;
1963
    Size imsize;
1964
    int dims = hist.dims == 2 && hist.size[1] == 1 ? 1 : hist.dims;
1965

1966
    CV_Assert( dims > 0 && !hist.empty() );
1967 1968
    _backProject.create( images[0].size(), images[0].depth() );
    Mat backProject = _backProject.getMat();
1969
    histPrepareImages( images, nimages, channels, backProject, dims, hist.size, ranges,
1970 1971
                       uniform, ptrs, deltas, imsize, uniranges );
    const double* _uniranges = uniform ? &uniranges[0] : 0;
1972

1973 1974
    int depth = images[0].depth();
    if( depth == CV_8U )
1975
        calcBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform);
1976 1977
    else if( depth == CV_16U )
        calcBackProj_<ushort, ushort>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform );
1978
    else if( depth == CV_32F )
1979
        calcBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform );
1980 1981
    else
        CV_Error(CV_StsUnsupportedFormat, "");
1982 1983
}

1984 1985 1986 1987

namespace cv
{

1988
template<typename T, typename BT> static void
1989
calcSparseBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
1990
                     Size imsize, const SparseMat& hist, int dims, const float** _ranges,
1991 1992 1993 1994
                     const double* _uniranges, float scale, bool uniform )
{
    T** ptrs = (T**)&_ptrs[0];
    const int* deltas = &_deltas[0];
1995
    int i, x;
1996 1997 1998 1999 2000
    BT* bproj = (BT*)_ptrs[dims];
    int bpstep = _deltas[dims*2 + 1];
    const int* size = hist.hdr->size;
    int idx[CV_MAX_DIM];
    const SparseMat_<float>& hist_ = (const SparseMat_<float>&)hist;
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    if( uniform )
    {
        const double* uniranges = &_uniranges[0];
        for( ; imsize.height--; bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
                for( i = 0; i < dims; i++ )
                {
                    idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]);
                    if( (unsigned)idx[i] >= (unsigned)size[i] )
                        break;
                    ptrs[i] += deltas[i*2];
                }
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
                if( i == dims )
                    bproj[x] = saturate_cast<BT>(hist_(idx)*scale);
                else
                {
                    bproj[x] = 0;
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
                }
            }
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
    }
    else
    {
        // non-uniform histogram
        const float* ranges[CV_MAX_DIM];
        for( i = 0; i < dims; i++ )
            ranges[i] = &_ranges[i][0];
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045
        for( ; imsize.height--; bproj += bpstep )
        {
            for( x = 0; x < imsize.width; x++ )
            {
                for( i = 0; i < dims; i++ )
                {
                    float v = (float)*ptrs[i];
                    const float* R = ranges[i];
                    int j = -1, sz = size[i];
2046

2047 2048
                    while( v >= R[j+1] && ++j < sz )
                        ; // nop
2049

2050 2051 2052 2053 2054
                    if( (unsigned)j >= (unsigned)sz )
                        break;
                    idx[i] = j;
                    ptrs[i] += deltas[i*2];
                }
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064
                if( i == dims )
                    bproj[x] = saturate_cast<BT>(hist_(idx)*scale);
                else
                {
                    bproj[x] = 0;
                    for( ; i < dims; i++ )
                        ptrs[i] += deltas[i*2];
                }
            }
2065

2066 2067 2068
            for( i = 0; i < dims; i++ )
                ptrs[i] += deltas[i*2 + 1];
        }
2069
    }
2070 2071 2072 2073
}


static void
2074
calcSparseBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
2075
                       Size imsize, const SparseMat& hist, int dims, const float** _ranges,
2076 2077 2078 2079
                       const double* _uniranges, float scale, bool uniform )
{
    uchar** ptrs = &_ptrs[0];
    const int* deltas = &_deltas[0];
2080
    int i, x;
2081 2082
    uchar* bproj = _ptrs[dims];
    int bpstep = _deltas[dims*2 + 1];
2083
    std::vector<size_t> _tab;
2084
    int idx[CV_MAX_DIM];
2085

2086
    calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab );
2087
    const size_t* tab = &_tab[0];
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    for( ; imsize.height--; bproj += bpstep )
    {
        for( x = 0; x < imsize.width; x++ )
        {
            for( i = 0; i < dims; i++ )
            {
                size_t hidx = tab[*ptrs[i] + i*256];
                if( hidx >= OUT_OF_RANGE )
                    break;
                idx[i] = (int)hidx;
                ptrs[i] += deltas[i*2];
            }
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
            if( i == dims )
                bproj[x] = saturate_cast<uchar>(hist.value<float>(idx)*scale);
            else
            {
                bproj[x] = 0;
                for( ; i < dims; i++ )
                    ptrs[i] += deltas[i*2];
            }
        }
        for( i = 0; i < dims; i++ )
            ptrs[i] += deltas[i*2 + 1];
    }
2114
}
2115

2116 2117 2118
}

void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
2119
                          const SparseMat& hist, OutputArray _backProject,
2120
                          const float** ranges, double scale, bool uniform )
2121
{
2122 2123
    CV_INSTRUMENT_REGION()

2124 2125 2126
    std::vector<uchar*> ptrs;
    std::vector<int> deltas;
    std::vector<double> uniranges;
2127
    Size imsize;
2128
    int dims = hist.dims();
2129

2130
    CV_Assert( dims > 0 );
2131 2132
    _backProject.create( images[0].size(), images[0].depth() );
    Mat backProject = _backProject.getMat();
2133
    histPrepareImages( images, nimages, channels, backProject,
2134
                       dims, hist.hdr->size, ranges,
2135 2136
                       uniform, ptrs, deltas, imsize, uniranges );
    const double* _uniranges = uniform ? &uniranges[0] : 0;
2137

2138 2139
    int depth = images[0].depth();
    if( depth == CV_8U )
2140 2141
        calcSparseBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges,
                              _uniranges, (float)scale, uniform);
2142 2143 2144
    else if( depth == CV_16U )
        calcSparseBackProj_<ushort, ushort>(ptrs, deltas, imsize, hist, dims, ranges,
                                          _uniranges, (float)scale, uniform );
2145
    else if( depth == CV_32F )
2146 2147
        calcSparseBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges,
                                          _uniranges, (float)scale, uniform );
2148 2149
    else
        CV_Error(CV_StsUnsupportedFormat, "");
2150 2151
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2152
#ifdef HAVE_OPENCL
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
namespace cv {

static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx)
{
    int totalChannels = 0;
    for (size_t i = 0, size = um.size(); i < size; ++i)
    {
        int ccn = um[i].channels();
        totalChannels += ccn;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2164 2165 2166 2167 2168 2169 2170
        if (totalChannels == cn)
        {
            idx = (int)(i + 1);
            cnidx = 0;
            return;
        }
        else if (totalChannels > cn)
2171
        {
2172
            idx = (int)i;
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2173
            cnidx = i == 0 ? cn : (cn - totalChannels + ccn);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
            return;
        }
    }

    idx = cnidx = -1;
}

static bool ocl_calcBackProject( InputArrayOfArrays _images, std::vector<int> channels,
                                 InputArray _hist, OutputArray _dst,
                                 const std::vector<float>& ranges,
                                 float scale, size_t histdims )
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2186 2187 2188
    std::vector<UMat> images;
    _images.getUMatVector(images);

2189 2190 2191 2192 2193 2194
    size_t nimages = images.size(), totalcn = images[0].channels();

    CV_Assert(nimages > 0);
    Size size = images[0].size();
    int depth = images[0].depth();

2195 2196 2197 2198
    //kernels are valid for this type only
    if (depth != CV_8U)
        return false;

2199 2200 2201
    for (size_t i = 1; i < nimages; ++i)
    {
        const UMat & m = images[i];
2202
        totalcn += m.channels();
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        CV_Assert(size == m.size() && depth == m.depth());
    }

    std::sort(channels.begin(), channels.end());
    for (size_t i = 0; i < histdims; ++i)
        CV_Assert(channels[i] < (int)totalcn);

    if (histdims == 1)
    {
        int idx, cnidx;
        getUMatIndex(images, channels[0], idx, cnidx);
        CV_Assert(idx >= 0);
        UMat im = images[idx];

2217
        String opts = format("-D histdims=1 -D scn=%d", im.channels());
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
        ocl::Kernel lutk("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
        if (lutk.empty())
            return false;

        size_t lsize = 256;
        UMat lut(1, (int)lsize, CV_32SC1), hist = _hist.getUMat(), uranges(ranges, true);

        lutk.args(ocl::KernelArg::ReadOnlyNoSize(hist), hist.rows,
                  ocl::KernelArg::PtrWriteOnly(lut), scale, ocl::KernelArg::PtrReadOnly(uranges));
        if (!lutk.run(1, &lsize, NULL, false))
            return false;

        ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts);
        if (mapk.empty())
            return false;

        _dst.create(size, depth);
        UMat dst = _dst.getUMat();

        im.offset += cnidx;
        mapk.args(ocl::KernelArg::ReadOnlyNoSize(im), ocl::KernelArg::PtrReadOnly(lut),
                  ocl::KernelArg::WriteOnly(dst));

2241
        size_t globalsize[2] = { (size_t)size.width, (size_t)size.height };
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        return mapk.run(2, globalsize, NULL, false);
    }
    else if (histdims == 2)
    {
        int idx0, idx1, cnidx0, cnidx1;
        getUMatIndex(images, channels[0], idx0, cnidx0);
        getUMatIndex(images, channels[1], idx1, cnidx1);
        CV_Assert(idx0 >= 0 && idx1 >= 0);
        UMat im0 = images[idx0], im1 = images[idx1];

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
        // Lut for the first dimension
        String opts = format("-D histdims=2 -D scn1=%d -D scn2=%d", im0.channels(), im1.channels());
        ocl::Kernel lutk1("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
        if (lutk1.empty())
            return false;

        size_t lsize = 256;
        UMat lut(1, (int)lsize<<1, CV_32SC1), uranges(ranges, true), hist = _hist.getUMat();

        lutk1.args(hist.rows, ocl::KernelArg::PtrWriteOnly(lut), (int)0, ocl::KernelArg::PtrReadOnly(uranges), (int)0);
        if (!lutk1.run(1, &lsize, NULL, false))
            return false;

        // lut for the second dimension
        ocl::Kernel lutk2("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
        if (lutk2.empty())
            return false;

        lut.offset += lsize * sizeof(int);
        lutk2.args(hist.cols, ocl::KernelArg::PtrWriteOnly(lut), (int)256, ocl::KernelArg::PtrReadOnly(uranges), (int)2);
        if (!lutk2.run(1, &lsize, NULL, false))
            return false;

        // perform lut
        ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts);
        if (mapk.empty())
2278 2279 2280
            return false;

        _dst.create(size, depth);
2281
        UMat dst = _dst.getUMat();
2282 2283 2284

        im0.offset += cnidx0;
        im1.offset += cnidx1;
2285 2286
        mapk.args(ocl::KernelArg::ReadOnlyNoSize(im0), ocl::KernelArg::ReadOnlyNoSize(im1),
               ocl::KernelArg::ReadOnlyNoSize(hist), ocl::KernelArg::PtrReadOnly(lut), scale, ocl::KernelArg::WriteOnly(dst));
2287

2288
        size_t globalsize[2] = { (size_t)size.width, (size_t)size.height };
2289
        return mapk.run(2, globalsize, NULL, false);
2290 2291 2292 2293 2294 2295
    }
    return false;
}

}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2296 2297
#endif

2298
void cv::calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
2299
                          InputArray hist, OutputArray dst,
2300
                          const std::vector<float>& ranges,
2301 2302
                          double scale )
{
2303 2304
    CV_INSTRUMENT_REGION()

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2305
#ifdef HAVE_OPENCL
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2306
    Size histSize = hist.size();
2307 2308
    bool _1D = histSize.height == 1 || histSize.width == 1;
    size_t histdims = _1D ? 1 : hist.dims();
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2309
#endif
2310

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2311 2312 2313
    CV_OCL_RUN(dst.isUMat() && hist.type() == CV_32FC1 &&
               histdims <= 2 && ranges.size() == histdims * 2 && histdims == channels.size(),
               ocl_calcBackProject(images, channels, hist, dst, ranges, (float)scale, histdims))
2314

Alexander Shishkov's avatar
Alexander Shishkov committed
2315 2316
    Mat H0 = hist.getMat(), H;
    int hcn = H0.channels();
2317

Alexander Shishkov's avatar
Alexander Shishkov committed
2318 2319 2320 2321 2322 2323
    if( hcn > 1 )
    {
        CV_Assert( H0.isContinuous() );
        int hsz[CV_CN_MAX+1];
        memcpy(hsz, &H0.size[0], H0.dims*sizeof(hsz[0]));
        hsz[H0.dims] = hcn;
2324
        H = Mat(H0.dims+1, hsz, H0.depth(), H0.ptr());
Alexander Shishkov's avatar
Alexander Shishkov committed
2325 2326 2327
    }
    else
        H = H0;
2328

2329 2330
    bool _1d = H.rows == 1 || H.cols == 1;
    int i, dims = H.dims, rsz = (int)ranges.size(), csz = (int)channels.size();
2331
    int nimages = (int)images.total();
2332

2333
    CV_Assert(nimages > 0);
2334 2335
    CV_Assert(rsz == dims*2 || (rsz == 2 && _1d) || (rsz == 0 && images.depth(0) == CV_8U));
    CV_Assert(csz == 0 || csz == dims || (csz == 1 && _1d));
2336

2337 2338 2339 2340 2341 2342
    float* _ranges[CV_MAX_DIM];
    if( rsz > 0 )
    {
        for( i = 0; i < rsz/2; i++ )
            _ranges[i] = (float*)&ranges[i*2];
    }
2343

2344 2345 2346
    AutoBuffer<Mat> buf(nimages);
    for( i = 0; i < nimages; i++ )
        buf[i] = images.getMat(i);
2347

2348 2349 2350 2351
    calcBackProject(&buf[0], nimages, csz ? &channels[0] : 0,
        hist, dst, rsz ? (const float**)_ranges : 0, scale, true);
}

2352 2353

////////////////// C O M P A R E   H I S T O G R A M S ////////////////////////
2354

2355
double cv::compareHist( InputArray _H1, InputArray _H2, int method )
2356
{
2357 2358
    CV_INSTRUMENT_REGION()

2359
    Mat H1 = _H1.getMat(), H2 = _H2.getMat();
2360 2361 2362
    const Mat* arrays[] = {&H1, &H2, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
2363
    double result = 0;
2364
    int j, len = (int)it.size;
2365

2366
    CV_Assert( H1.type() == H2.type() && H1.depth() == CV_32F );
2367

2368
    double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0;
2369

2370
    CV_Assert( it.planes[0].isContinuous() && it.planes[1].isContinuous() );
2371

Ilya Lavrenov's avatar
Ilya Lavrenov committed
2372 2373 2374 2375
#if CV_SSE2
    bool haveSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif

2376
    for( size_t i = 0; i < it.nplanes; i++, ++it )
2377
    {
2378 2379
        const float* h1 = it.planes[0].ptr<float>();
        const float* h2 = it.planes[1].ptr<float>();
2380
        len = it.planes[0].rows*it.planes[0].cols*H1.channels();
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2381
        j = 0;
2382

2383
        if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT))
2384
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2385
            for( ; j < len; j++ )
2386
            {
2387
                double a = h1[j] - h2[j];
2388
                double b = (method == CV_COMP_CHISQR) ? h1[j] : h1[j] + h2[j];
2389
                if( fabs(b) > DBL_EPSILON )
2390 2391 2392 2393 2394
                    result += a*a/b;
            }
        }
        else if( method == CV_COMP_CORREL )
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
            #if CV_SSE2
            if (haveSIMD)
            {
                __m128d v_s1 = _mm_setzero_pd(), v_s2 = v_s1;
                __m128d v_s11 = v_s1, v_s22 = v_s1, v_s12 = v_s1;

                for ( ; j <= len - 4; j += 4)
                {
                    __m128 v_a = _mm_loadu_ps(h1 + j);
                    __m128 v_b = _mm_loadu_ps(h2 + j);

                    // 0-1
                    __m128d v_ad = _mm_cvtps_pd(v_a);
                    __m128d v_bd = _mm_cvtps_pd(v_b);
                    v_s12 = _mm_add_pd(v_s12, _mm_mul_pd(v_ad, v_bd));
                    v_s11 = _mm_add_pd(v_s11, _mm_mul_pd(v_ad, v_ad));
                    v_s22 = _mm_add_pd(v_s22, _mm_mul_pd(v_bd, v_bd));
                    v_s1 = _mm_add_pd(v_s1, v_ad);
                    v_s2 = _mm_add_pd(v_s2, v_bd);

                    // 2-3
                    v_ad = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_a), 8)));
                    v_bd = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_b), 8)));
                    v_s12 = _mm_add_pd(v_s12, _mm_mul_pd(v_ad, v_bd));
                    v_s11 = _mm_add_pd(v_s11, _mm_mul_pd(v_ad, v_ad));
                    v_s22 = _mm_add_pd(v_s22, _mm_mul_pd(v_bd, v_bd));
                    v_s1 = _mm_add_pd(v_s1, v_ad);
                    v_s2 = _mm_add_pd(v_s2, v_bd);
                }

                double CV_DECL_ALIGNED(16) ar[10];
                _mm_store_pd(ar, v_s12);
                _mm_store_pd(ar + 2, v_s11);
                _mm_store_pd(ar + 4, v_s22);
                _mm_store_pd(ar + 6, v_s1);
                _mm_store_pd(ar + 8, v_s2);

                s12 += ar[0] + ar[1];
                s11 += ar[2] + ar[3];
                s22 += ar[4] + ar[5];
                s1 += ar[6] + ar[7];
                s2 += ar[8] + ar[9];
            }
            #endif
            for( ; j < len; j++ )
2440
            {
2441 2442
                double a = h1[j];
                double b = h2[j];
2443

2444 2445 2446 2447 2448 2449 2450 2451 2452
                s12 += a*b;
                s1 += a;
                s11 += a*a;
                s2 += b;
                s22 += b*b;
            }
        }
        else if( method == CV_COMP_INTERSECT )
        {
2453 2454 2455 2456 2457 2458 2459
            #if CV_NEON
            float32x4_t v_result = vdupq_n_f32(0.0f);
            for( ; j <= len - 4; j += 4 )
                v_result = vaddq_f32(v_result, vminq_f32(vld1q_f32(h1 + j), vld1q_f32(h2 + j)));
            float CV_DECL_ALIGNED(16) ar[4];
            vst1q_f32(ar, v_result);
            result += ar[0] + ar[1] + ar[2] + ar[3];
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
            #elif CV_SSE2
            if (haveSIMD)
            {
                __m128d v_result = _mm_setzero_pd();
                for ( ; j <= len - 4; j += 4)
                {
                    __m128 v_src = _mm_min_ps(_mm_loadu_ps(h1 + j),
                                              _mm_loadu_ps(h2 + j));
                    v_result = _mm_add_pd(v_result, _mm_cvtps_pd(v_src));
                    v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8));
                    v_result = _mm_add_pd(v_result, _mm_cvtps_pd(v_src));
                }

                double CV_DECL_ALIGNED(16) ar[2];
                _mm_store_pd(ar, v_result);
                result += ar[0] + ar[1];
            }
2477 2478
            #endif
            for( ; j < len; j++ )
2479
                result += std::min(h1[j], h2[j]);
2480 2481 2482
        }
        else if( method == CV_COMP_BHATTACHARYYA )
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
            #if CV_SSE2
            if (haveSIMD)
            {
                __m128d v_s1 = _mm_setzero_pd(), v_s2 = v_s1, v_result = v_s1;
                for ( ; j <= len - 4; j += 4)
                {
                    __m128 v_a = _mm_loadu_ps(h1 + j);
                    __m128 v_b = _mm_loadu_ps(h2 + j);

                    __m128d v_ad = _mm_cvtps_pd(v_a);
                    __m128d v_bd = _mm_cvtps_pd(v_b);
                    v_s1 = _mm_add_pd(v_s1, v_ad);
                    v_s2 = _mm_add_pd(v_s2, v_bd);
                    v_result = _mm_add_pd(v_result, _mm_sqrt_pd(_mm_mul_pd(v_ad, v_bd)));

                    v_ad = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_a), 8)));
                    v_bd = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_b), 8)));
                    v_s1 = _mm_add_pd(v_s1, v_ad);
                    v_s2 = _mm_add_pd(v_s2, v_bd);
                    v_result = _mm_add_pd(v_result, _mm_sqrt_pd(_mm_mul_pd(v_ad, v_bd)));
                }

                double CV_DECL_ALIGNED(16) ar[6];
                _mm_store_pd(ar, v_s1);
                _mm_store_pd(ar + 2, v_s2);
                _mm_store_pd(ar + 4, v_result);
                s1 += ar[0] + ar[1];
                s2 += ar[2] + ar[3];
                result += ar[4] + ar[5];
            }
            #endif
            for( ; j < len; j++ )
2515
            {
2516 2517
                double a = h1[j];
                double b = h2[j];
2518 2519 2520 2521 2522
                result += std::sqrt(a*b);
                s1 += a;
                s2 += b;
            }
        }
2523 2524
        else if( method == CV_COMP_KL_DIV )
        {
Ilya Lavrenov's avatar
Ilya Lavrenov committed
2525
            for( ; j < len; j++ )
2526
            {
2527 2528
                double p = h1[j];
                double q = h2[j];
2529
                if( fabs(p) <= DBL_EPSILON ) {
2530
                    continue;
2531 2532 2533 2534
                }
                if(  fabs(q) <= DBL_EPSILON ) {
                    q = 1e-10;
                }
pradeep's avatar
pradeep committed
2535
                result += p * std::log( p / q );
2536 2537
            }
        }
2538 2539 2540
        else
            CV_Error( CV_StsBadArg, "Unknown comparison method" );
    }
2541

2542 2543 2544
    if( method == CV_COMP_CHISQR_ALT )
        result *= 2;
    else if( method == CV_COMP_CORREL )
2545
    {
2546
        size_t total = H1.total();
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
        double scale = 1./total;
        double num = s12 - s1*s2*scale;
        double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
        result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.;
    }
    else if( method == CV_COMP_BHATTACHARYYA )
    {
        s1 *= s2;
        s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.;
        result = std::sqrt(std::max(1. - result*s1, 0.));
    }
2558

2559 2560 2561
    return result;
}

2562

2563
double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
2564
{
2565 2566
    CV_INSTRUMENT_REGION()

2567 2568
    double result = 0;
    int i, dims = H1.dims();
2569

2570 2571 2572
    CV_Assert( dims > 0 && dims == H2.dims() && H1.type() == H2.type() && H1.type() == CV_32F );
    for( i = 0; i < dims; i++ )
        CV_Assert( H1.size(i) == H2.size(i) );
2573

2574
    const SparseMat *PH1 = &H1, *PH2 = &H2;
2575
    if( PH1->nzcount() > PH2->nzcount() && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT && method != CV_COMP_KL_DIV )
2576
        std::swap(PH1, PH2);
2577

2578 2579
    SparseMatConstIterator it = PH1->begin();
    int N1 = (int)PH1->nzcount(), N2 = (int)PH2->nzcount();
2580

2581
    if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) )
2582 2583 2584 2585 2586 2587
    {
        for( i = 0; i < N1; i++, ++it )
        {
            float v1 = it.value<float>();
            const SparseMat::Node* node = it.node();
            float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
2588
            double a = v1 - v2;
2589
            double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2;
2590 2591
            if( fabs(b) > DBL_EPSILON )
                result += a*a/b;
2592 2593 2594 2595 2596
        }
    }
    else if( method == CV_COMP_CORREL )
    {
        double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0;
2597

2598 2599 2600 2601 2602 2603 2604 2605
        for( i = 0; i < N1; i++, ++it )
        {
            double v1 = it.value<float>();
            const SparseMat::Node* node = it.node();
            s12 += v1*PH2->value<float>(node->idx, (size_t*)&node->hashval);
            s1 += v1;
            s11 += v1*v1;
        }
2606

2607 2608 2609 2610 2611 2612 2613
        it = PH2->begin();
        for( i = 0; i < N2; i++, ++it )
        {
            double v2 = it.value<float>();
            s2 += v2;
            s22 += v2*v2;
        }
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
        size_t total = 1;
        for( i = 0; i < H1.dims(); i++ )
            total *= H1.size(i);
        double scale = 1./total;
        double num = s12 - s1*s2*scale;
        double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
        result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.;
    }
    else if( method == CV_COMP_INTERSECT )
    {
        for( i = 0; i < N1; i++, ++it )
        {
            float v1 = it.value<float>();
            const SparseMat::Node* node = it.node();
            float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
            if( v2 )
                result += std::min(v1, v2);
        }
    }
    else if( method == CV_COMP_BHATTACHARYYA )
    {
        double s1 = 0, s2 = 0;
2637

2638 2639 2640 2641 2642 2643 2644 2645
        for( i = 0; i < N1; i++, ++it )
        {
            double v1 = it.value<float>();
            const SparseMat::Node* node = it.node();
            double v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
            result += std::sqrt(v1*v2);
            s1 += v1;
        }
2646

2647 2648 2649
        it = PH2->begin();
        for( i = 0; i < N2; i++, ++it )
            s2 += it.value<float>();
2650

2651 2652 2653 2654
        s1 *= s2;
        s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.;
        result = std::sqrt(std::max(1. - result*s1, 0.));
    }
2655 2656 2657 2658
    else if( method == CV_COMP_KL_DIV )
    {
        for( i = 0; i < N1; i++, ++it )
        {
pradeep's avatar
pradeep committed
2659
            double v1 = it.value<float>();
2660
            const SparseMat::Node* node = it.node();
pradeep's avatar
pradeep committed
2661
            double v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
2662 2663
            if( !v2 )
                v2 = 1e-10;
pradeep's avatar
pradeep committed
2664
            result += v1 * std::log( v1 / v2 );
2665 2666
        }
    }
2667 2668
    else
        CV_Error( CV_StsBadArg, "Unknown comparison method" );
2669

2670 2671 2672
    if( method == CV_COMP_CHISQR_ALT )
        result *= 2;

2673 2674 2675
    return result;
}

2676

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
const int CV_HIST_DEFAULT_TYPE = CV_32F;

/* Creates new histogram */
CvHistogram *
cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform )
{
    CvHistogram *hist = 0;

    if( (unsigned)dims > CV_MAX_DIM )
        CV_Error( CV_BadOrder, "Number of dimensions is out of range" );

    if( !sizes )
        CV_Error( CV_HeaderIsNull, "Null <sizes> pointer" );

    hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram ));
    hist->type = CV_HIST_MAGIC_VAL + ((int)type & 1);
2693
    if (uniform) hist->type|= CV_HIST_UNIFORM_FLAG;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    hist->thresh2 = 0;
    hist->bins = 0;
    if( type == CV_HIST_ARRAY )
    {
        hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes,
                                        CV_HIST_DEFAULT_TYPE );
        cvCreateData( hist->bins );
    }
    else if( type == CV_HIST_SPARSE )
        hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE );
    else
        CV_Error( CV_StsBadArg, "Invalid histogram type" );

    if( ranges )
        cvSetHistBinRanges( hist, ranges, uniform );

    return hist;
}


/* Creates histogram wrapping header for given array */
CV_IMPL CvHistogram*
cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist,
                          float *data, float **ranges, int uniform )
{
    if( !hist )
        CV_Error( CV_StsNullPtr, "Null histogram header pointer" );

    if( !data )
        CV_Error( CV_StsNullPtr, "Null data pointer" );

    hist->thresh2 = 0;
    hist->type = CV_HIST_MAGIC_VAL;
    hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE, data );

    if( ranges )
    {
        if( !uniform )
            CV_Error( CV_StsBadArg, "Only uniform bin ranges can be used here "
                                    "(to avoid memory allocation)" );
        cvSetHistBinRanges( hist, ranges, uniform );
    }

    return hist;
}


CV_IMPL void
cvReleaseHist( CvHistogram **hist )
{
    if( !hist )
        CV_Error( CV_StsNullPtr, "" );

    if( *hist )
    {
        CvHistogram* temp = *hist;

        if( !CV_IS_HIST(temp))
            CV_Error( CV_StsBadArg, "Invalid histogram header" );
        *hist = 0;

        if( CV_IS_SPARSE_HIST( temp ))
            cvReleaseSparseMat( (CvSparseMat**)&temp->bins );
        else
        {
            cvReleaseData( temp->bins );
            temp->bins = 0;
        }
2762

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
        if( temp->thresh2 )
            cvFree( &temp->thresh2 );
        cvFree( &temp );
    }
}

CV_IMPL void
cvClearHist( CvHistogram *hist )
{
    if( !CV_IS_HIST(hist) )
        CV_Error( CV_StsBadArg, "Invalid histogram header" );
    cvZero( hist->bins );
}


// Clears histogram bins that are below than threshold
CV_IMPL void
cvThreshHist( CvHistogram* hist, double thresh )
{
    if( !CV_IS_HIST(hist) )
        CV_Error( CV_StsBadArg, "Invalid histogram header" );

    if( !CV_IS_SPARSE_MAT(hist->bins) )
    {
        CvMat mat;
        cvGetMat( hist->bins, &mat, 0, 1 );
        cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO );
    }
    else
    {
        CvSparseMat* mat = (CvSparseMat*)hist->bins;
        CvSparseMatIterator iterator;
        CvSparseNode *node;
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
        for( node = cvInitSparseMatIterator( mat, &iterator );
             node != 0; node = cvGetNextSparseNode( &iterator ))
        {
            float* val = (float*)CV_NODE_VAL( mat, node );
            if( *val <= thresh )
                *val = 0;
        }
    }
}


// Normalizes histogram (make sum of the histogram bins == factor)
CV_IMPL void
cvNormalizeHist( CvHistogram* hist, double factor )
{
    double sum = 0;

    if( !CV_IS_HIST(hist) )
        CV_Error( CV_StsBadArg, "Invalid histogram header" );

    if( !CV_IS_SPARSE_HIST(hist) )
    {
        CvMat mat;
        cvGetMat( hist->bins, &mat, 0, 1 );
        sum = cvSum( &mat ).val[0];
        if( fabs(sum) < DBL_EPSILON )
            sum = 1;
        cvScale( &mat, &mat, factor/sum, 0 );
    }
    else
    {
        CvSparseMat* mat = (CvSparseMat*)hist->bins;
        CvSparseMatIterator iterator;
        CvSparseNode *node;
        float scale;
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
        for( node = cvInitSparseMatIterator( mat, &iterator );
             node != 0; node = cvGetNextSparseNode( &iterator ))
        {
            sum += *(float*)CV_NODE_VAL(mat,node);
        }

        if( fabs(sum) < DBL_EPSILON )
            sum = 1;
        scale = (float)(factor/sum);

        for( node = cvInitSparseMatIterator( mat, &iterator );
             node != 0; node = cvGetNextSparseNode( &iterator ))
        {
            *(float*)CV_NODE_VAL(mat,node) *= scale;
        }
    }
}


// Retrieves histogram global min, max and their positions
CV_IMPL void
cvGetMinMaxHistValue( const CvHistogram* hist,
                      float *value_min, float* value_max,
                      int* idx_min, int* idx_max )
{
    double minVal, maxVal;
2859
    int dims, size[CV_MAX_DIM];
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891

    if( !CV_IS_HIST(hist) )
        CV_Error( CV_StsBadArg, "Invalid histogram header" );

    dims = cvGetDims( hist->bins, size );

    if( !CV_IS_SPARSE_HIST(hist) )
    {
        CvMat mat;
        CvPoint minPt, maxPt;

        cvGetMat( hist->bins, &mat, 0, 1 );
        cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt );

        if( dims == 1 )
        {
            if( idx_min )
                *idx_min = minPt.y + minPt.x;
            if( idx_max )
                *idx_max = maxPt.y + maxPt.x;
        }
        else if( dims == 2 )
        {
            if( idx_min )
                idx_min[0] = minPt.y, idx_min[1] = minPt.x;
            if( idx_max )
                idx_max[0] = maxPt.y, idx_max[1] = maxPt.x;
        }
        else if( idx_min || idx_max )
        {
            int imin = minPt.y*mat.cols + minPt.x;
            int imax = maxPt.y*mat.cols + maxPt.x;
2892 2893

            for(int i = dims - 1; i >= 0; i-- )
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            {
                if( idx_min )
                {
                    int t = imin / size[i];
                    idx_min[i] = imin - t*size[i];
                    imin = t;
                }

                if( idx_max )
                {
                    int t = imax / size[i];
                    idx_max[i] = imax - t*size[i];
                    imax = t;
                }
            }
        }
    }
    else
    {
        CvSparseMat* mat = (CvSparseMat*)hist->bins;
        CvSparseMatIterator iterator;
        CvSparseNode *node;
        int minv = INT_MAX;
        int maxv = INT_MIN;
        CvSparseNode* minNode = 0;
        CvSparseNode* maxNode = 0;
        const int *_idx_min = 0, *_idx_max = 0;
        Cv32suf m;

        for( node = cvInitSparseMatIterator( mat, &iterator );
             node != 0; node = cvGetNextSparseNode( &iterator ))
        {
            int value = *(int*)CV_NODE_VAL(mat,node);
            value = CV_TOGGLE_FLT(value);
            if( value < minv )
            {
                minv = value;
                minNode = node;
            }

            if( value > maxv )
            {
                maxv = value;
                maxNode = node;
            }
        }

        if( minNode )
        {
            _idx_min = CV_NODE_IDX(mat,minNode);
            _idx_max = CV_NODE_IDX(mat,maxNode);
            m.i = CV_TOGGLE_FLT(minv); minVal = m.f;
            m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f;
        }
        else
        {
            minVal = maxVal = 0;
        }

2953
        for(int i = 0; i < dims; i++ )
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
        {
            if( idx_min )
                idx_min[i] = _idx_min ? _idx_min[i] : -1;
            if( idx_max )
                idx_max[i] = _idx_max ? _idx_max[i] : -1;
        }
    }

    if( value_min )
        *value_min = (float)minVal;

    if( value_max )
        *value_max = (float)maxVal;
}


// Compares two histograms using one of a few methods
CV_IMPL double
cvCompareHist( const CvHistogram* hist1,
               const CvHistogram* hist2,
               int method )
{
    int i;
    int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1;
2978

2979 2980 2981 2982 2983 2984 2985 2986
    if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) )
        CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );

    if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins))
        CV_Error(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not");

    if( !CV_IS_SPARSE_MAT(hist1->bins) )
    {
2987 2988
        cv::Mat H1 = cv::cvarrToMat(hist1->bins);
        cv::Mat H2 = cv::cvarrToMat(hist2->bins);
2989 2990
        return cv::compareHist(H1, H2, method);
    }
2991

2992 2993
    int dims1 = cvGetDims( hist1->bins, size1 );
    int dims2 = cvGetDims( hist2->bins, size2 );
2994

2995 2996 2997
    if( dims1 != dims2 )
        CV_Error( CV_StsUnmatchedSizes,
                 "The histograms have different numbers of dimensions" );
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
    for( i = 0; i < dims1; i++ )
    {
        if( size1[i] != size2[i] )
            CV_Error( CV_StsUnmatchedSizes, "The histograms have different sizes" );
        total *= size1[i];
    }

    double result = 0;
    CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins);
    CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins);
    CvSparseMatIterator iterator;
    CvSparseNode *node1, *node2;

3012
    if( mat1->heap->active_count > mat2->heap->active_count && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT && method != CV_COMP_KL_DIV )
3013 3014 3015 3016 3017
    {
        CvSparseMat* t;
        CV_SWAP( mat1, mat2, t );
    }

3018
    if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) )
3019 3020 3021 3022 3023 3024
    {
        for( node1 = cvInitSparseMatIterator( mat1, &iterator );
             node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
        {
            double v1 = *(float*)CV_NODE_VAL(mat1,node1);
            uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval );
3025 3026
            double v2 = node2_data ? *(float*)node2_data : 0.f;
            double a = v1 - v2;
3027
            double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2;
3028 3029
            if( fabs(b) > DBL_EPSILON )
                result += a*a/b;
3030 3031 3032 3033 3034 3035 3036 3037
        }
    }
    else if( method == CV_COMP_CORREL )
    {
        double s1 = 0, s11 = 0;
        double s2 = 0, s22 = 0;
        double s12 = 0;
        double num, denom2, scale = 1./total;
3038

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
        for( node1 = cvInitSparseMatIterator( mat1, &iterator );
             node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
        {
            double v1 = *(float*)CV_NODE_VAL(mat1,node1);
            uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
                                        0, 0, &node1->hashval );
            if( node2_data )
            {
                double v2 = *(float*)node2_data;
                s12 += v1*v2;
            }
            s1 += v1;
            s11 += v1*v1;
        }

        for( node2 = cvInitSparseMatIterator( mat2, &iterator );
             node2 != 0; node2 = cvGetNextSparseNode( &iterator ))
        {
            double v2 = *(float*)CV_NODE_VAL(mat2,node2);
            s2 += v2;
            s22 += v2*v2;
        }

        num = s12 - s1*s2*scale;
        denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
        result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1;
    }
    else if( method == CV_COMP_INTERSECT )
    {
        for( node1 = cvInitSparseMatIterator( mat1, &iterator );
             node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
        {
            float v1 = *(float*)CV_NODE_VAL(mat1,node1);
            uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
                                         0, 0, &node1->hashval );
            if( node2_data )
            {
                float v2 = *(float*)node2_data;
                if( v1 <= v2 )
                    result += v1;
                else
                    result += v2;
            }
        }
    }
    else if( method == CV_COMP_BHATTACHARYYA )
    {
        double s1 = 0, s2 = 0;
3087

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
        for( node1 = cvInitSparseMatIterator( mat1, &iterator );
             node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
        {
            double v1 = *(float*)CV_NODE_VAL(mat1,node1);
            uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
                                         0, 0, &node1->hashval );
            s1 += v1;
            if( node2_data )
            {
                double v2 = *(float*)node2_data;
                result += sqrt(v1 * v2);
            }
        }

        for( node1 = cvInitSparseMatIterator( mat2, &iterator );
             node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
        {
            double v2 = *(float*)CV_NODE_VAL(mat2,node1);
            s2 += v2;
        }

        s1 *= s2;
        s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.;
        result = 1. - result*s1;
        result = sqrt(MAX(result,0.));
    }
3114 3115 3116 3117 3118 3119 3120
    else if( method == CV_COMP_KL_DIV )
    {
        cv::SparseMat sH1, sH2;
        ((const CvSparseMat*)hist1->bins)->copyToSparseMat(sH1);
        ((const CvSparseMat*)hist2->bins)->copyToSparseMat(sH2);
        result = cv::compareHist( sH1, sH2, CV_COMP_KL_DIV );
    }
3121 3122
    else
        CV_Error( CV_StsBadArg, "Unknown comparison method" );
3123

3124 3125 3126
    if( method == CV_COMP_CHISQR_ALT )
        result *= 2;

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    return result;
}

// copies one histogram to another
CV_IMPL void
cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
{
    if( !_dst )
        CV_Error( CV_StsNullPtr, "Destination double pointer is NULL" );

3137
    CvHistogram* dst = *_dst;
3138 3139 3140 3141

    if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) )
        CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );

3142 3143 3144 3145
    bool eq = false;
    int size1[CV_MAX_DIM];
    bool is_sparse = CV_IS_SPARSE_MAT(src->bins);
    int dims1 = cvGetDims( src->bins, size1 );
3146

3147
    if( dst && (is_sparse == CV_IS_SPARSE_MAT(dst->bins)))
3148
    {
3149 3150
        int size2[CV_MAX_DIM];
        int dims2 = cvGetDims( dst->bins, size2 );
3151

3152 3153
        if( dims1 == dims2 )
        {
3154
            int i;
3155

3156
            for( i = 0; i < dims1; i++ )
3157
            {
3158 3159
                if( size1[i] != size2[i] )
                    break;
3160
            }
3161 3162

            eq = (i == dims1);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
        }
    }

    if( !eq )
    {
        cvReleaseHist( _dst );
        dst = cvCreateHist( dims1, size1, !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 );
        *_dst = dst;
    }

    if( CV_HIST_HAS_RANGES( src ))
    {
3175 3176
        float* ranges[CV_MAX_DIM];
        float** thresh = 0;
3177

3178 3179
        if( CV_IS_UNIFORM_HIST( src ))
        {
3180
            for( int i = 0; i < dims1; i++ )
3181
                ranges[i] = (float*)src->thresh[i];
3182

3183 3184 3185
            thresh = ranges;
        }
        else
3186
        {
3187
            thresh = src->thresh2;
3188
        }
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
        cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src));
    }

    cvCopy( src->bins, dst->bins );
}


// Sets a value range for every histogram bin
CV_IMPL void
cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
{
    int dims, size[CV_MAX_DIM], total = 0;
    int i, j;

    if( !ranges )
        CV_Error( CV_StsNullPtr, "NULL ranges pointer" );

    if( !CV_IS_HIST(hist) )
        CV_Error( CV_StsBadArg, "Invalid histogram header" );

    dims = cvGetDims( hist->bins, size );
    for( i = 0; i < dims; i++ )
        total += size[i]+1;
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
    if( uniform )
    {
        for( i = 0; i < dims; i++ )
        {
            if( !ranges[i] )
                CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" );
            hist->thresh[i][0] = ranges[i][0];
            hist->thresh[i][1] = ranges[i][1];
        }

        hist->type |= CV_HIST_UNIFORM_FLAG + CV_HIST_RANGES_FLAG;
    }
    else
    {
        float* dim_ranges;

        if( !hist->thresh2 )
        {
            hist->thresh2 = (float**)cvAlloc(
                        dims*sizeof(hist->thresh2[0])+
                        total*sizeof(hist->thresh2[0][0]));
        }
        dim_ranges = (float*)(hist->thresh2 + dims);

        for( i = 0; i < dims; i++ )
        {
            float val0 = -FLT_MAX;

            if( !ranges[i] )
                CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" );
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
            for( j = 0; j <= size[i]; j++ )
            {
                float val = ranges[i][j];
                if( val <= val0 )
                    CV_Error(CV_StsOutOfRange, "Bin ranges should go in ascenting order");
                val0 = dim_ranges[j] = val;
            }

            hist->thresh2[i] = dim_ranges;
            dim_ranges += size[i] + 1;
        }

        hist->type |= CV_HIST_RANGES_FLAG;
        hist->type &= ~CV_HIST_UNIFORM_FLAG;
    }
}


CV_IMPL void
cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask )
{
    if( !CV_IS_HIST(hist))
        CV_Error( CV_StsBadArg, "Bad histogram pointer" );

    if( !img )
        CV_Error( CV_StsNullPtr, "Null double array pointer" );

    int size[CV_MAX_DIM];
    int i, dims = cvGetDims( hist->bins, size);
    bool uniform = CV_IS_UNIFORM_HIST(hist);
3275

3276
    std::vector<cv::Mat> images(dims);
3277 3278
    for( i = 0; i < dims; i++ )
        images[i] = cv::cvarrToMat(img[i]);
3279

3280 3281 3282
    cv::Mat _mask;
    if( mask )
        _mask = cv::cvarrToMat(mask);
3283

3284 3285
    const float* uranges[CV_MAX_DIM] = {0};
    const float** ranges = 0;
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
    if( hist->type & CV_HIST_RANGES_FLAG )
    {
        ranges = (const float**)hist->thresh2;
        if( uniform )
        {
            for( i = 0; i < dims; i++ )
                uranges[i] = &hist->thresh[i][0];
            ranges = uranges;
        }
    }
3297

3298 3299
    if( !CV_IS_SPARSE_HIST(hist) )
    {
3300
        cv::Mat H = cv::cvarrToMat(hist->bins);
3301
        cv::calcHist( &images[0], (int)images.size(), 0, _mask,
3302
                      H, cvGetDims(hist->bins), H.size, ranges, uniform, accumulate != 0 );
3303 3304 3305 3306
    }
    else
    {
        CvSparseMat* sparsemat = (CvSparseMat*)hist->bins;
3307

3308 3309
        if( !accumulate )
            cvZero( hist->bins );
3310 3311
        cv::SparseMat sH;
        sparsemat->copyToSparseMat(sH);
3312 3313
        cv::calcHist( &images[0], (int)images.size(), 0, _mask, sH, sH.dims(),
                      sH.dims() > 0 ? sH.hdr->size : 0, ranges, uniform, accumulate != 0, true );
3314

3315 3316
        if( accumulate )
            cvZero( sparsemat );
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
        cv::SparseMatConstIterator it = sH.begin();
        int nz = (int)sH.nzcount();
        for( i = 0; i < nz; i++, ++it )
            *(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = (float)*(const int*)it.ptr;
    }
}


CV_IMPL void
cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist )
{
    if( !CV_IS_HIST(hist))
        CV_Error( CV_StsBadArg, "Bad histogram pointer" );

    if( !img )
        CV_Error( CV_StsNullPtr, "Null double array pointer" );

    int size[CV_MAX_DIM];
    int i, dims = cvGetDims( hist->bins, size );
3337

3338 3339 3340
    bool uniform = CV_IS_UNIFORM_HIST(hist);
    const float* uranges[CV_MAX_DIM] = {0};
    const float** ranges = 0;
3341

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    if( hist->type & CV_HIST_RANGES_FLAG )
    {
        ranges = (const float**)hist->thresh2;
        if( uniform )
        {
            for( i = 0; i < dims; i++ )
                uranges[i] = &hist->thresh[i][0];
            ranges = uranges;
        }
    }
3352

3353
    std::vector<cv::Mat> images(dims);
3354 3355
    for( i = 0; i < dims; i++ )
        images[i] = cv::cvarrToMat(img[i]);
3356

3357
    cv::Mat _dst = cv::cvarrToMat(dst);
3358

3359
    CV_Assert( _dst.size() == images[0].size() && _dst.depth() == images[0].depth() );
3360

3361 3362
    if( !CV_IS_SPARSE_HIST(hist) )
    {
3363
        cv::Mat H = cv::cvarrToMat(hist->bins);
3364 3365 3366 3367 3368
        cv::calcBackProject( &images[0], (int)images.size(),
                            0, H, _dst, ranges, 1, uniform );
    }
    else
    {
3369 3370
        cv::SparseMat sH;
        ((const CvSparseMat*)hist->bins)->copyToSparseMat(sH);
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
        cv::calcBackProject( &images[0], (int)images.size(),
                             0, sH, _dst, ranges, 1, uniform );
    }
}


////////////////////// B A C K   P R O J E C T   P A T C H /////////////////////////

CV_IMPL void
cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist,
                           int method, double norm_factor )
{
    CvHistogram* model = 0;

    IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM];
    IplROI roi;
    CvMat dststub, *dstmat;
    int i, dims;
    int x, y;
    CvSize size;

    if( !CV_IS_HIST(hist))
        CV_Error( CV_StsBadArg, "Bad histogram pointer" );

    if( !arr )
        CV_Error( CV_StsNullPtr, "Null double array pointer" );

    if( norm_factor <= 0 )
        CV_Error( CV_StsOutOfRange,
                  "Bad normalization factor (set it to 1.0 if unsure)" );

    if( patch_size.width <= 0 || patch_size.height <= 0 )
        CV_Error( CV_StsBadSize, "The patch width and height must be positive" );

    dims = cvGetDims( hist->bins );
    cvNormalizeHist( hist, norm_factor );

    for( i = 0; i < dims; i++ )
    {
        CvMat stub, *mat;
        mat = cvGetMat( arr[i], &stub, 0, 0 );
        img[i] = cvGetImage( mat, &imgstub[i] );
        img[i]->roi = &roi;
    }

    dstmat = cvGetMat( dst, &dststub, 0, 0 );
    if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 )
        CV_Error( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" );

    if( dstmat->cols != img[0]->width - patch_size.width + 1 ||
        dstmat->rows != img[0]->height - patch_size.height + 1 )
        CV_Error( CV_StsUnmatchedSizes,
            "The output map must be (W-w+1 x H-h+1), "
            "where the input images are (W x H) each and the patch is (w x h)" );

    cvCopyHist( hist, &model );

    size = cvGetMatSize(dstmat);
    roi.coi = 0;
    roi.width = patch_size.width;
    roi.height = patch_size.height;

    for( y = 0; y < size.height; y++ )
    {
        for( x = 0; x < size.width; x++ )
        {
            double result;
            roi.xOffset = x;
            roi.yOffset = y;

            cvCalcHist( img, model );
            cvNormalizeHist( model, norm_factor );
            result = cvCompareHist( model, hist, method );
            CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result;
        }
    }

    cvReleaseHist( &model );
}


// Calculates Bayes probabilistic histograms
CV_IMPL void
cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst )
{
    int i;
3457

3458 3459 3460 3461 3462
    if( !src || !dst )
        CV_Error( CV_StsNullPtr, "NULL histogram array pointer" );

    if( count < 2 )
        CV_Error( CV_StsOutOfRange, "Too small number of histograms" );
3463

3464 3465 3466 3467 3468 3469 3470 3471
    for( i = 0; i < count; i++ )
    {
        if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) )
            CV_Error( CV_StsBadArg, "Invalid histogram header" );

        if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) )
            CV_Error( CV_StsBadArg, "The function supports dense histograms only" );
    }
3472

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    cvZero( dst[0]->bins );
    // dst[0] = src[0] + ... + src[count-1]
    for( i = 0; i < count; i++ )
        cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins );

    cvDiv( 0, dst[0]->bins, dst[0]->bins );

    // dst[i] = src[i]*(1/dst[0])
    for( i = count - 1; i >= 0; i-- )
        cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins );
}


CV_IMPL void
cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask,
                   CvHistogram* hist_dens, double scale )
{
    if( scale <= 0 )
        CV_Error( CV_StsOutOfRange, "scale must be positive" );

    if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) )
        CV_Error( CV_StsBadArg, "Invalid histogram pointer[s]" );

    {
        CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins };
        CvMatND stubs[3];
        CvNArrayIterator iterator;

        cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator );

        if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 )
            CV_Error( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" );

        do
        {
            const float* srcdata = (const float*)(iterator.ptr[0]);
            const float* maskdata = (const float*)(iterator.ptr[1]);
            float* dstdata = (float*)(iterator.ptr[2]);
            int i;

            for( i = 0; i < iterator.size.width; i++ )
            {
                float s = srcdata[i];
                float m = maskdata[i];
                if( s > FLT_EPSILON )
                    if( m <= s )
                        dstdata[i] = (float)(m*scale/s);
                    else
                        dstdata[i] = (float)scale;
                else
                    dstdata[i] = (float)0;
            }
        }
        while( cvNextNArraySlice( &iterator ));
    }
}

3530
class EqualizeHistCalcHist_Invoker : public cv::ParallelLoopBody
3531 3532 3533 3534
{
public:
    enum {HIST_SZ = 256};

3535
    EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, cv::Mutex* histogramLock)
3536 3537 3538
        : src_(src), globalHistogram_(histogram), histogramLock_(histogramLock)
    { }

3539
    void operator()( const cv::Range& rowRange ) const
3540 3541 3542 3543 3544 3545
    {
        int localHistogram[HIST_SZ] = {0, };

        const size_t sstep = src_.step;

        int width = src_.cols;
3546
        int height = rowRange.end - rowRange.start;
3547 3548 3549 3550 3551 3552 3553

        if (src_.isContinuous())
        {
            width *= height;
            height = 1;
        }

3554
        for (const uchar* ptr = src_.ptr<uchar>(rowRange.start); height--; ptr += sstep)
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
        {
            int x = 0;
            for (; x <= width - 4; x += 4)
            {
                int t0 = ptr[x], t1 = ptr[x+1];
                localHistogram[t0]++; localHistogram[t1]++;
                t0 = ptr[x+2]; t1 = ptr[x+3];
                localHistogram[t0]++; localHistogram[t1]++;
            }

3565
            for (; x < width; ++x)
3566 3567 3568
                localHistogram[ptr[x]]++;
        }

3569
        cv::AutoLock lock(*histogramLock_);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

        for( int i = 0; i < HIST_SZ; i++ )
            globalHistogram_[i] += localHistogram[i];
    }

    static bool isWorthParallel( const cv::Mat& src )
    {
        return ( src.total() >= 640*480 );
    }

private:
    EqualizeHistCalcHist_Invoker& operator=(const EqualizeHistCalcHist_Invoker&);

    cv::Mat& src_;
    int* globalHistogram_;
3585
    cv::Mutex* histogramLock_;
3586 3587
};

3588
class EqualizeHistLut_Invoker : public cv::ParallelLoopBody
3589 3590 3591 3592 3593 3594 3595 3596
{
public:
    EqualizeHistLut_Invoker( cv::Mat& src, cv::Mat& dst, int* lut )
        : src_(src),
          dst_(dst),
          lut_(lut)
    { }

3597
    void operator()( const cv::Range& rowRange ) const
3598 3599 3600 3601 3602
    {
        const size_t sstep = src_.step;
        const size_t dstep = dst_.step;

        int width = src_.cols;
3603
        int height = rowRange.end - rowRange.start;
3604 3605 3606 3607 3608 3609 3610 3611
        int* lut = lut_;

        if (src_.isContinuous() && dst_.isContinuous())
        {
            width *= height;
            height = 1;
        }

3612 3613
        const uchar* sptr = src_.ptr<uchar>(rowRange.start);
        uchar* dptr = dst_.ptr<uchar>(rowRange.start);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

        for (; height--; sptr += sstep, dptr += dstep)
        {
            int x = 0;
            for (; x <= width - 4; x += 4)
            {
                int v0 = sptr[x];
                int v1 = sptr[x+1];
                int x0 = lut[v0];
                int x1 = lut[v1];
                dptr[x] = (uchar)x0;
                dptr[x+1] = (uchar)x1;

                v0 = sptr[x+2];
                v1 = sptr[x+3];
                x0 = lut[v0];
                x1 = lut[v1];
                dptr[x+2] = (uchar)x0;
                dptr[x+3] = (uchar)x1;
            }

            for (; x < width; ++x)
                dptr[x] = (uchar)lut[sptr[x]];
        }
    }

    static bool isWorthParallel( const cv::Mat& src )
    {
        return ( src.total() >= 640*480 );
    }

private:
    EqualizeHistLut_Invoker& operator=(const EqualizeHistLut_Invoker&);

    cv::Mat& src_;
    cv::Mat& dst_;
    int* lut_;
};
3652 3653 3654

CV_IMPL void cvEqualizeHist( const CvArr* srcarr, CvArr* dstarr )
{
3655 3656 3657
    cv::equalizeHist(cv::cvarrToMat(srcarr), cv::cvarrToMat(dstarr));
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3658 3659
#ifdef HAVE_OPENCL

3660 3661 3662 3663
namespace cv {

static bool ocl_equalizeHist(InputArray _src, OutputArray _dst)
{
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3664 3665 3666 3667 3668 3669
    const ocl::Device & dev = ocl::Device::getDefault();
    int compunits = dev.maxComputeUnits();
    size_t wgs = dev.maxWorkGroupSize();
    Size size = _src.size();
    bool use16 = size.width % 16 == 0 && _src.offset() % 16 == 0 && _src.step() % 16 == 0;
    int kercn = dev.isAMD() && use16 ? 16 : std::min(4, ocl::predictOptimalVectorWidth(_src));
3670

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3671 3672 3673 3674 3675 3676
    ocl::Kernel k1("calculate_histogram", ocl::imgproc::histogram_oclsrc,
                   format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d -D kercn=%d -D T=%s%s",
                          BINS, compunits, wgs, kercn,
                          kercn == 4 ? "int" : ocl::typeToStr(CV_8UC(kercn)),
                          _src.isContinuous() ? " -D HAVE_SRC_CONT" : ""));
    if (k1.empty())
3677 3678
        return false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3679 3680 3681 3682 3683 3684 3685
    UMat src = _src.getUMat(), ghist(1, BINS * compunits, CV_32SC1);

    k1.args(ocl::KernelArg::ReadOnly(src),
            ocl::KernelArg::PtrWriteOnly(ghist), (int)src.total());

    size_t globalsize = compunits * wgs;
    if (!k1.run(1, &globalsize, &wgs, false))
3686 3687
        return false;

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3688 3689 3690 3691 3692 3693 3694
    wgs = std::min<size_t>(ocl::Device::getDefault().maxWorkGroupSize(), BINS);
    UMat lut(1, 256, CV_8UC1);
    ocl::Kernel k2("calcLUT", ocl::imgproc::histogram_oclsrc,
                  format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d",
                         BINS, compunits, (int)wgs));
    k2.args(ocl::KernelArg::PtrWriteOnly(lut),
           ocl::KernelArg::PtrReadOnly(ghist), (int)_src.total());
3695 3696

    // calculation of LUT
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3697
    if (!k2.run(1, &wgs, &wgs, false))
3698 3699 3700 3701 3702 3703 3704 3705 3706
        return false;

    // execute LUT transparently
    LUT(_src, lut, _dst);
    return true;
}

}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3707 3708
#endif

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
#ifdef HAVE_OPENVX
namespace cv
{
static bool openvx_equalize_hist(Mat srcMat, Mat dstMat)
{
    using namespace ivx;

    try
    {
        Context context = Context::create();
        Image srcImage = Image::createFromHandle(context, Image::matTypeToFormat(srcMat.type()),
                                                 Image::createAddressing(srcMat), srcMat.data);
        Image dstImage = Image::createFromHandle(context, Image::matTypeToFormat(dstMat.type()),
                                                 Image::createAddressing(dstMat), dstMat.data);

        IVX_CHECK_STATUS(vxuEqualizeHist(context, srcImage, dstImage));

#ifdef VX_VERSION_1_1
        //we should take user memory back before release
        //(it's not done automatically according to standard)
        srcImage.swapHandle(); dstImage.swapHandle();
#endif
    }
    catch (RuntimeError & e)
    {
        CV_Error(CV_StsInternal, e.what());
        return false;
    }
    catch (WrapperError & e)
    {
        CV_Error(CV_StsInternal, e.what());
        return false;
    }

    return true;
}
}
#endif

3748 3749
void cv::equalizeHist( InputArray _src, OutputArray _dst )
{
3750 3751
    CV_INSTRUMENT_REGION()

3752
    CV_Assert( _src.type() == CV_8UC1 );
3753

3754 3755
    if (_src.empty())
        return;
3756

Ilya Lavrenov's avatar
Ilya Lavrenov committed
3757 3758
    CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
               ocl_equalizeHist(_src, _dst))
3759

3760 3761 3762 3763
    Mat src = _src.getMat();
    _dst.create( src.size(), src.type() );
    Mat dst = _dst.getMat();

3764 3765 3766 3767 3768 3769 3770
#ifdef HAVE_OPENVX
    if(openvx_equalize_hist(src, dst))
    {
        return;
    }
#endif

3771
    Mutex histogramLockInstance;
3772

3773 3774 3775
    const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
    int hist[hist_sz] = {0,};
    int lut[hist_sz];
3776

3777
    EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);
3778
    EqualizeHistLut_Invoker      lutBody(src, dst, lut);
3779
    cv::Range heightRange(0, src.rows);
3780

3781
    if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
3782
        parallel_for_(heightRange, calcBody);
3783 3784
    else
        calcBody(heightRange);
3785 3786 3787 3788 3789 3790 3791 3792 3793

    int i = 0;
    while (!hist[i]) ++i;

    int total = (int)src.total();
    if (hist[i] == total)
    {
        dst.setTo(i);
        return;
3794
    }
3795

3796
    float scale = (hist_sz - 1.f)/(total - hist[i]);
3797 3798
    int sum = 0;

3799
    for (lut[i++] = 0; i < hist_sz; ++i)
3800 3801
    {
        sum += hist[i];
3802
        lut[i] = saturate_cast<uchar>(sum * scale);
3803 3804
    }

3805
    if(EqualizeHistLut_Invoker::isWorthParallel(src))
3806
        parallel_for_(heightRange, lutBody);
3807 3808
    else
        lutBody(heightRange);
3809 3810
}

3811 3812
// ----------------------------------------------------------------------

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
/* Implementation of RTTI and Generic Functions for CvHistogram */
#define CV_TYPE_NAME_HIST "opencv-hist"

static int icvIsHist( const void * ptr )
{
    return CV_IS_HIST( ((CvHistogram*)ptr) );
}

static CvHistogram * icvCloneHist( const CvHistogram * src )
{
    CvHistogram * dst=NULL;
    cvCopyHist(src, &dst);
    return dst;
}

static void *icvReadHist( CvFileStorage * fs, CvFileNode * node )
{
    CvHistogram * h = 0;
    int type = 0;
    int is_uniform = 0;
    int have_ranges = 0;

    h = (CvHistogram *)cvAlloc( sizeof(CvHistogram) );

    type = cvReadIntByName( fs, node, "type", 0 );
    is_uniform = cvReadIntByName( fs, node, "is_uniform", 0 );
    have_ranges = cvReadIntByName( fs, node, "have_ranges", 0 );
    h->type = CV_HIST_MAGIC_VAL | type |
        (is_uniform ? CV_HIST_UNIFORM_FLAG : 0) |
        (have_ranges ? CV_HIST_RANGES_FLAG : 0);

    if(type == CV_HIST_ARRAY)
    {
        // read histogram bins
        CvMatND* mat = (CvMatND*)cvReadByName( fs, node, "mat" );
        int i, sizes[CV_MAX_DIM];

        if(!CV_IS_MATND(mat))
            CV_Error( CV_StsError, "Expected CvMatND");

        for(i=0; i<mat->dims; i++)
            sizes[i] = mat->dim[i].size;

        cvInitMatNDHeader( &(h->mat), mat->dims, sizes, mat->type, mat->data.ptr );
        h->bins = &(h->mat);

        // take ownership of refcount pointer as well
        h->mat.refcount = mat->refcount;

        // increase refcount so freeing temp header doesn't free data
3863
        cvIncRefData( mat );
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963

        // free temporary header
        cvReleaseMatND( &mat );
    }
    else
    {
        h->bins = cvReadByName( fs, node, "bins" );
        if(!CV_IS_SPARSE_MAT(h->bins)){
            CV_Error( CV_StsError, "Unknown Histogram type");
        }
    }

    // read thresholds
    if(have_ranges)
    {
        int i, dims, size[CV_MAX_DIM], total = 0;
        CvSeqReader reader;
        CvFileNode * thresh_node;

        dims = cvGetDims( h->bins, size );
        for( i = 0; i < dims; i++ )
            total += size[i]+1;

        thresh_node = cvGetFileNodeByName( fs, node, "thresh" );
        if(!thresh_node)
            CV_Error( CV_StsError, "'thresh' node is missing");
        cvStartReadRawData( fs, thresh_node, &reader );

        if(is_uniform)
        {
            for(i=0; i<dims; i++)
                cvReadRawDataSlice( fs, &reader, 2, h->thresh[i], "f" );
            h->thresh2 = NULL;
        }
        else
        {
            float* dim_ranges;
            h->thresh2 = (float**)cvAlloc(
                dims*sizeof(h->thresh2[0])+
                total*sizeof(h->thresh2[0][0]));
            dim_ranges = (float*)(h->thresh2 + dims);
            for(i=0; i < dims; i++)
            {
                h->thresh2[i] = dim_ranges;
                cvReadRawDataSlice( fs, &reader, size[i]+1, dim_ranges, "f" );
                dim_ranges += size[i] + 1;
            }
        }
    }

    return h;
}

static void icvWriteHist( CvFileStorage* fs, const char* name,
                          const void* struct_ptr, CvAttrList /*attributes*/ )
{
    const CvHistogram * hist = (const CvHistogram *) struct_ptr;
    int sizes[CV_MAX_DIM];
    int dims;
    int i;
    int is_uniform, have_ranges;

    cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HIST );

    is_uniform = (CV_IS_UNIFORM_HIST(hist) ? 1 : 0);
    have_ranges = (hist->type & CV_HIST_RANGES_FLAG ? 1 : 0);

    cvWriteInt( fs, "type", (hist->type & 1) );
    cvWriteInt( fs, "is_uniform", is_uniform );
    cvWriteInt( fs, "have_ranges", have_ranges );
    if(!CV_IS_SPARSE_HIST(hist))
        cvWrite( fs, "mat", &(hist->mat) );
    else
        cvWrite( fs, "bins", hist->bins );

    // write thresholds
    if(have_ranges){
        dims = cvGetDims( hist->bins, sizes );
        cvStartWriteStruct( fs, "thresh", CV_NODE_SEQ + CV_NODE_FLOW );
        if(is_uniform){
            for(i=0; i<dims; i++){
                cvWriteRawData( fs, hist->thresh[i], 2, "f" );
            }
        }
        else{
            for(i=0; i<dims; i++){
                cvWriteRawData( fs, hist->thresh2[i], sizes[i]+1, "f" );
            }
        }
        cvEndWriteStruct( fs );
    }

    cvEndWriteStruct( fs );
}


CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist,
                  icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist );

/* End of file. */