find_obj.py 5.92 KB
Newer Older
1
#!/usr/bin/env python
2

3 4 5 6
'''
Feature-based image matching sample.

USAGE
7
  find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
8

9 10
  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.
11

12
  Press left mouse button on a feature point to see its matching point.
13 14 15 16 17 18 19 20 21 22 23 24 25
'''

import numpy as np
import cv2
from common import anorm, getsize

FLANN_INDEX_KDTREE = 1  # bug: flann enums are missing
FLANN_INDEX_LSH    = 6


def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
26
        detector = cv2.xfeatures2d.SIFT()
27 28
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
29
        detector = cv2.xfeatures2d.SURF(800)
30 31 32 33
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
34 35 36
    elif chunks[0] == 'akaze':
        detector = cv2.AKAZE()
        norm = cv2.NORM_HAMMING
37 38 39
    elif chunks[0] == 'brisk':
        detector = cv2.BRISK()
        norm = cv2.NORM_HAMMING
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher


def filter_matches(kp1, kp2, matches, ratio = 0.75):
    mkp1, mkp2 = [], []
    for m in matches:
        if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            m = m[0]
            mkp1.append( kp1[m.queryIdx] )
            mkp2.append( kp2[m.trainIdx] )
    p1 = np.float32([kp.pt for kp in mkp1])
    p2 = np.float32([kp.pt for kp in mkp2])
    kp_pairs = zip(mkp1, mkp2)
    return p1, p2, kp_pairs

def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
    vis[:h1, :w1] = img1
    vis[:h2, w1:w1+w2] = img2
    vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)

    if H is not None:
        corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
        corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
        cv2.polylines(vis, [corners], True, (255, 255, 255))

    if status is None:
        status = np.ones(len(kp_pairs), np.bool_)
    p1 = np.int32([kpp[0].pt for kpp in kp_pairs])
    p2 = np.int32([kpp[1].pt for kpp in kp_pairs]) + (w1, 0)

    green = (0, 255, 0)
    red = (0, 0, 255)
    white = (255, 255, 255)
    kp_color = (51, 103, 236)
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            col = green
            cv2.circle(vis, (x1, y1), 2, col, -1)
            cv2.circle(vis, (x2, y2), 2, col, -1)
        else:
            col = red
            r = 2
            thickness = 3
            cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
            cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
            cv2.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
            cv2.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
    vis0 = vis.copy()
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            cv2.line(vis, (x1, y1), (x2, y2), green)

    cv2.imshow(win, vis)
    def onmouse(event, x, y, flags, param):
        cur_vis = vis
        if flags & cv2.EVENT_FLAG_LBUTTON:
            cur_vis = vis0.copy()
            r = 8
            m = (anorm(p1 - (x, y)) < r) | (anorm(p2 - (x, y)) < r)
            idxs = np.where(m)[0]
            kp1s, kp2s = [], []
            for i in idxs:
                 (x1, y1), (x2, y2) = p1[i], p2[i]
                 col = (red, green)[status[i]]
                 cv2.line(cur_vis, (x1, y1), (x2, y2), col)
                 kp1, kp2 = kp_pairs[i]
                 kp1s.append(kp1)
                 kp2s.append(kp2)
            cur_vis = cv2.drawKeypoints(cur_vis, kp1s, flags=4, color=kp_color)
            cur_vis[:,w1:] = cv2.drawKeypoints(cur_vis[:,w1:], kp2s, flags=4, color=kp_color)

        cv2.imshow(win, cur_vis)
    cv2.setMouseCallback(win, onmouse)
    return vis


if __name__ == '__main__':
    print __doc__

    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
    opts = dict(opts)
    feature_name = opts.get('--feature', 'sift')
139 140
    try:
        fn1, fn2 = args
141
    except:
142 143
        fn1 = '../cpp/box.png'
        fn2 = '../cpp/box_in_scene.png'
144 145 146 147

    img1 = cv2.imread(fn1, 0)
    img2 = cv2.imread(fn2, 0)
    detector, matcher = init_feature(feature_name)
148 149 150 151

    if img1 is None:
        print 'Failed to load fn1:', fn1
        sys.exit(1)
152

153 154 155
    if img2 is None:
        print 'Failed to load fn2:', fn2
        sys.exit(1)
156

157
    if detector is None:
158 159
        print 'unknown feature:', feature_name
        sys.exit(1)
160

161
    print 'using', feature_name
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    kp1, desc1 = detector.detectAndCompute(img1, None)
    kp2, desc2 = detector.detectAndCompute(img2, None)
    print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))

    def match_and_draw(win):
        print 'matching...'
        raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
        p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
        if len(p1) >= 4:
            H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
            print '%d / %d  inliers/matched' % (np.sum(status), len(status))
        else:
            H, status = None, None
            print '%d matches found, not enough for homography estimation' % len(p1)

        vis = explore_match(win, img1, img2, kp_pairs, status, H)

    match_and_draw('find_obj')
    cv2.waitKey()
    cv2.destroyAllWindows()