stat.cpp 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
44
#include <climits>
45 46 47 48 49 50 51 52 53 54 55 56

namespace cv
{

template<typename T> static inline Scalar rawToScalar(const T& v)
{
    Scalar s;
    typedef typename DataType<T>::channel_type T1;
    int i, n = DataType<T>::channels;
    for( i = 0; i < n; i++ )
        s.val[i] = ((T1*)&v)[i];
    return s;
57
}
58 59 60 61 62

/****************************************************************************************\
*                                        sum                                             *
\****************************************************************************************/

63
template<typename T, typename ST>
64
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
65
{
66 67
    const T* src = src0;
    if( !mask )
68
    {
Victoria Zhislina's avatar
Victoria Zhislina committed
69
        int i=0;
70 71 72 73
        int k = cn % 4;
        if( k == 1 )
        {
            ST s0 = dst[0];
Victoria Zhislina's avatar
Victoria Zhislina committed
74

75
            #if CV_ENABLE_UNROLLED
Victoria Zhislina's avatar
Victoria Zhislina committed
76
            for(; i <= len - 4; i += 4, src += cn*4 )
77
                s0 += src[0] + src[cn] + src[cn*2] + src[cn*3];
Victoria Zhislina's avatar
Victoria Zhislina committed
78
            #endif
79 80 81 82 83
            for( ; i < len; i++, src += cn )
                s0 += src[0];
            dst[0] = s0;
        }
        else if( k == 2 )
84
        {
85 86
            ST s0 = dst[0], s1 = dst[1];
            for( i = 0; i < len; i++, src += cn )
87
            {
88 89
                s0 += src[0];
                s1 += src[1];
90
            }
91 92 93 94 95 96 97
            dst[0] = s0;
            dst[1] = s1;
        }
        else if( k == 3 )
        {
            ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
            for( i = 0; i < len; i++, src += cn )
98
            {
99 100 101
                s0 += src[0];
                s1 += src[1];
                s2 += src[2];
102
            }
103 104 105
            dst[0] = s0;
            dst[1] = s1;
            dst[2] = s2;
106
        }
107

108
        for( ; k < cn; k += 4 )
109
        {
110 111 112 113 114 115 116 117 118 119 120
            src = src0 + k;
            ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3];
            for( i = 0; i < len; i++, src += cn )
            {
                s0 += src[0]; s1 += src[1];
                s2 += src[2]; s3 += src[3];
            }
            dst[k] = s0;
            dst[k+1] = s1;
            dst[k+2] = s2;
            dst[k+3] = s3;
121
        }
122
        return len;
123
    }
124

125 126
    int i, nzm = 0;
    if( cn == 1 )
127
    {
128 129 130 131 132 133 134 135 136 137
        ST s = dst[0];
        for( i = 0; i < len; i++ )
            if( mask[i] )
            {
                s += src[i];
                nzm++;
            }
        dst[0] = s;
    }
    else if( cn == 3 )
138
    {
139 140 141 142 143 144 145 146 147 148 149 150
        ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
        for( i = 0; i < len; i++, src += 3 )
            if( mask[i] )
            {
                s0 += src[0];
                s1 += src[1];
                s2 += src[2];
                nzm++;
            }
        dst[0] = s0;
        dst[1] = s1;
        dst[2] = s2;
151
    }
152 153 154 155 156 157
    else
    {
        for( i = 0; i < len; i++, src += cn )
            if( mask[i] )
            {
                int k = 0;
158
                #if CV_ENABLE_UNROLLED
159 160 161 162 163 164 165 166 167 168
                for( ; k <= cn - 4; k += 4 )
                {
                    ST s0, s1;
                    s0 = dst[k] + src[k];
                    s1 = dst[k+1] + src[k+1];
                    dst[k] = s0; dst[k+1] = s1;
                    s0 = dst[k+2] + src[k+2];
                    s1 = dst[k+3] + src[k+3];
                    dst[k+2] = s0; dst[k+3] = s1;
                }
Victoria Zhislina's avatar
Victoria Zhislina committed
169
                #endif
170 171 172 173 174 175
                for( ; k < cn; k++ )
                    dst[k] += src[k];
                nzm++;
            }
    }
    return nzm;
176 177
}

178

179 180
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
181

182 183
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
184

185 186
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
187

188 189
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
190

191 192
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
193

194 195
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
196

197 198
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
199

200 201
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int);

202 203
static SumFunc sumTab[] =
{
204 205 206 207 208
    (SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
    (SumFunc)sum16u, (SumFunc)sum16s,
    (SumFunc)sum32s,
    (SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
    0
209
};
210

211 212 213
template<typename T>
static int countNonZero_(const T* src, int len )
{
Victoria Zhislina's avatar
Victoria Zhislina committed
214
    int i=0, nz = 0;
215
    #if CV_ENABLE_UNROLLED
Victoria Zhislina's avatar
Victoria Zhislina committed
216
    for(; i <= len - 4; i += 4 )
217
        nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0);
Victoria Zhislina's avatar
Victoria Zhislina committed
218
    #endif
219 220 221
    for( ; i < len; i++ )
        nz += src[i] != 0;
    return nz;
222 223
}

224
static int countNonZero8u( const uchar* src, int len )
225
{
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    int i=0, nz = 0;
#if CV_SSE2
    if(USE_SSE2)//5x-6x
    {
        __m128i pattern = _mm_setzero_si128 ();
        static uchar tab[256];
        static volatile bool initialized = false;
        if( !initialized )
        {
            // we compute inverse popcount table,
            // since we pass (img[x] == 0) mask as index in the table.
            for( int j = 0; j < 256; j++ )
            {
                int val = 0;
                for( int mask = 1; mask < 256; mask += mask )
                    val += (j & mask) == 0;
                tab[j] = (uchar)val;
            }
            initialized = true;
        }
246

247 248 249 250 251 252 253 254 255 256
        for (; i<=len-16; i+=16)
        {
            __m128i r0 = _mm_loadu_si128((const __m128i*)(src+i));
            int val = _mm_movemask_epi8(_mm_cmpeq_epi8(r0, pattern));
            nz += tab[val & 255] + tab[val >> 8];
        }
    }
#endif
    for( ; i < len; i++ )
        nz += src[i] != 0;
257 258 259
    return nz;
}

260 261
static int countNonZero16u( const ushort* src, int len )
{ return countNonZero_(src, len); }
262

263 264 265 266 267
static int countNonZero32s( const int* src, int len )
{ return countNonZero_(src, len); }

static int countNonZero32f( const float* src, int len )
{ return countNonZero_(src, len); }
268

269 270
static int countNonZero64f( const double* src, int len )
{ return countNonZero_(src, len); }
271

272
typedef int (*CountNonZeroFunc)(const uchar*, int);
273

274
static CountNonZeroFunc countNonZeroTab[] =
275
{
276 277 278 279
    (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u),
    (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u),
    (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f),
    (CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0
280
};
281

282

283 284
template<typename T, typename ST, typename SQT>
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
285
{
286
    const T* src = src0;
287

288
    if( !mask )
289
    {
290 291
        int i;
        int k = cn % 4;
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        if( k == 1 )
        {
            ST s0 = sum[0];
            SQT sq0 = sqsum[0];
            for( i = 0; i < len; i++, src += cn )
            {
                T v = src[0];
                s0 += v; sq0 += (SQT)v*v;
            }
            sum[0] = s0;
            sqsum[0] = sq0;
        }
        else if( k == 2 )
        {
            ST s0 = sum[0], s1 = sum[1];
            SQT sq0 = sqsum[0], sq1 = sqsum[1];
            for( i = 0; i < len; i++, src += cn )
            {
                T v0 = src[0], v1 = src[1];
                s0 += v0; sq0 += (SQT)v0*v0;
                s1 += v1; sq1 += (SQT)v1*v1;
            }
            sum[0] = s0; sum[1] = s1;
            sqsum[0] = sq0; sqsum[1] = sq1;
        }
        else if( k == 3 )
        {
            ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
            SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
            for( i = 0; i < len; i++, src += cn )
            {
                T v0 = src[0], v1 = src[1], v2 = src[2];
                s0 += v0; sq0 += (SQT)v0*v0;
                s1 += v1; sq1 += (SQT)v1*v1;
                s2 += v2; sq2 += (SQT)v2*v2;
            }
            sum[0] = s0; sum[1] = s1; sum[2] = s2;
            sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
        }
332

333
        for( ; k < cn; k += 4 )
334
        {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
            src = src0 + k;
            ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3];
            SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3];
            for( i = 0; i < len; i++, src += cn )
            {
                T v0, v1;
                v0 = src[0], v1 = src[1];
                s0 += v0; sq0 += (SQT)v0*v0;
                s1 += v1; sq1 += (SQT)v1*v1;
                v0 = src[2], v1 = src[3];
                s2 += v0; sq2 += (SQT)v0*v0;
                s3 += v1; sq3 += (SQT)v1*v1;
            }
            sum[k] = s0; sum[k+1] = s1;
            sum[k+2] = s2; sum[k+3] = s3;
            sqsum[k] = sq0; sqsum[k+1] = sq1;
            sqsum[k+2] = sq2; sqsum[k+3] = sq3;
352
        }
353
        return len;
354
    }
355

356
    int i, nzm = 0;
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    if( cn == 1 )
    {
        ST s0 = sum[0];
        SQT sq0 = sqsum[0];
        for( i = 0; i < len; i++ )
            if( mask[i] )
            {
                T v = src[i];
                s0 += v; sq0 += (SQT)v*v;
                nzm++;
            }
        sum[0] = s0;
        sqsum[0] = sq0;
    }
    else if( cn == 3 )
    {
        ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
        SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
        for( i = 0; i < len; i++, src += 3 )
            if( mask[i] )
            {
                T v0 = src[0], v1 = src[1], v2 = src[2];
                s0 += v0; sq0 += (SQT)v0*v0;
                s1 += v1; sq1 += (SQT)v1*v1;
                s2 += v2; sq2 += (SQT)v2*v2;
                nzm++;
            }
        sum[0] = s0; sum[1] = s1; sum[2] = s2;
        sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
    }
    else
    {
        for( i = 0; i < len; i++, src += cn )
            if( mask[i] )
            {
                for( int k = 0; k < cn; k++ )
                {
                    T v = src[k];
                    ST s = sum[k] + v;
                    SQT sq = sqsum[k] + (SQT)v*v;
                    sum[k] = s; sqsum[k] = sq;
                }
                nzm++;
            }
    }
    return nzm;
404
}
405 406


407 408
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
409

410 411
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
412

413 414
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
415

416 417
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
418

419 420
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
421

422 423
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
424

425 426
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
427

428
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
429

430
static SumSqrFunc sumSqrTab[] =
431
{
432 433
    (SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
    (SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0
434
};
435

436
}
437

438
cv::Scalar cv::sum( InputArray _src )
439 440 441 442
{
    Mat src = _src.getMat();
    int k, cn = src.channels(), depth = src.depth();
    SumFunc func = sumTab[depth];
443

444
    CV_Assert( cn <= 4 && func != 0 );
445

446 447 448 449 450 451 452 453 454 455
    const Mat* arrays[] = {&src, 0};
    uchar* ptrs[1];
    NAryMatIterator it(arrays, ptrs);
    Scalar s;
    int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
    int j, count = 0;
    AutoBuffer<int> _buf;
    int* buf = (int*)&s[0];
    size_t esz = 0;
    bool blockSum = depth < CV_32S;
456

457
    if( blockSum )
458
    {
459 460 461 462
        intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
        blockSize = std::min(blockSize, intSumBlockSize);
        _buf.allocate(cn);
        buf = _buf;
463

464 465 466 467
        for( k = 0; k < cn; k++ )
            buf[k] = 0;
        esz = src.elemSize();
    }
468

469 470 471
    for( size_t i = 0; i < it.nplanes; i++, ++it )
    {
        for( j = 0; j < total; j += blockSize )
472
        {
473 474 475 476 477 478 479 480 481 482 483 484 485
            int bsz = std::min(total - j, blockSize);
            func( ptrs[0], 0, (uchar*)buf, bsz, cn );
            count += bsz;
            if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
            {
                for( k = 0; k < cn; k++ )
                {
                    s[k] += buf[k];
                    buf[k] = 0;
                }
                count = 0;
            }
            ptrs[0] += bsz*esz;
486 487
        }
    }
488
    return s;
489 490
}

491
int cv::countNonZero( InputArray _src )
492 493 494
{
    Mat src = _src.getMat();
    CountNonZeroFunc func = countNonZeroTab[src.depth()];
495

496
    CV_Assert( src.channels() == 1 && func != 0 );
497

498 499 500 501
    const Mat* arrays[] = {&src, 0};
    uchar* ptrs[1];
    NAryMatIterator it(arrays, ptrs);
    int total = (int)it.size, nz = 0;
502

503 504
    for( size_t i = 0; i < it.nplanes; i++, ++it )
        nz += func( ptrs[0], total );
505

506
    return nz;
507
}
508

509
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
510
{
511
    Mat src = _src.getMat(), mask = _mask.getMat();
512
    CV_Assert( mask.empty() || mask.type() == CV_8U );
513

514 515
    int k, cn = src.channels(), depth = src.depth();
    SumFunc func = sumTab[depth];
516

517
    CV_Assert( cn <= 4 && func != 0 );
518

519 520 521 522 523 524 525 526 527 528
    const Mat* arrays[] = {&src, &mask, 0};
    uchar* ptrs[2];
    NAryMatIterator it(arrays, ptrs);
    Scalar s;
    int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
    int j, count = 0;
    AutoBuffer<int> _buf;
    int* buf = (int*)&s[0];
    bool blockSum = depth <= CV_16S;
    size_t esz = 0, nz0 = 0;
529

530 531 532 533 534 535
    if( blockSum )
    {
        intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
        blockSize = std::min(blockSize, intSumBlockSize);
        _buf.allocate(cn);
        buf = _buf;
536

537 538 539 540
        for( k = 0; k < cn; k++ )
            buf[k] = 0;
        esz = src.elemSize();
    }
541

542
    for( size_t i = 0; i < it.nplanes; i++, ++it )
543
    {
544 545 546 547 548 549 550
        for( j = 0; j < total; j += blockSize )
        {
            int bsz = std::min(total - j, blockSize);
            int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn );
            count += nz;
            nz0 += nz;
            if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
551
            {
552 553 554 555 556 557
                for( k = 0; k < cn; k++ )
                {
                    s[k] += buf[k];
                    buf[k] = 0;
                }
                count = 0;
558
            }
559 560 561 562
            ptrs[0] += bsz*esz;
            if( ptrs[1] )
                ptrs[1] += bsz;
        }
563
    }
564
    return s*(nz0 ? 1./nz0 : 0);
565
}
566

567

568
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
569
{
570
    Mat src = _src.getMat(), mask = _mask.getMat();
571
    CV_Assert( mask.empty() || mask.type() == CV_8U );
572

573 574
    int k, cn = src.channels(), depth = src.depth();
    SumSqrFunc func = sumSqrTab[depth];
575

576
    CV_Assert( func != 0 );
577

578 579 580
    const Mat* arrays[] = {&src, &mask, 0};
    uchar* ptrs[2];
    NAryMatIterator it(arrays, ptrs);
581
    int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
582 583 584 585 586 587
    int j, count = 0, nz0 = 0;
    AutoBuffer<double> _buf(cn*4);
    double *s = (double*)_buf, *sq = s + cn;
    int *sbuf = (int*)s, *sqbuf = (int*)sq;
    bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S;
    size_t esz = 0;
588

589 590
    for( k = 0; k < cn; k++ )
        s[k] = sq[k] = 0;
591

592
    if( blockSum )
593
    {
594 595 596 597 598 599 600 601 602
        intSumBlockSize = 1 << 15;
        blockSize = std::min(blockSize, intSumBlockSize);
        sbuf = (int*)(sq + cn);
        if( blockSqSum )
            sqbuf = sbuf + cn;
        for( k = 0; k < cn; k++ )
            sbuf[k] = sqbuf[k] = 0;
        esz = src.elemSize();
    }
603

604
    for( size_t i = 0; i < it.nplanes; i++, ++it )
605
    {
606
        for( j = 0; j < total; j += blockSize )
607
        {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
            int bsz = std::min(total - j, blockSize);
            int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn );
            count += nz;
            nz0 += nz;
            if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
            {
                for( k = 0; k < cn; k++ )
                {
                    s[k] += sbuf[k];
                    sbuf[k] = 0;
                }
                if( blockSqSum )
                {
                    for( k = 0; k < cn; k++ )
                    {
                        sq[k] += sqbuf[k];
                        sqbuf[k] = 0;
                    }
                }
                count = 0;
            }
            ptrs[0] += bsz*esz;
            if( ptrs[1] )
                ptrs[1] += bsz;
632
        }
633
    }
634

635
    double scale = nz0 ? 1./nz0 : 0.;
636
    for( k = 0; k < cn; k++ )
637
    {
638 639
        s[k] *= scale;
        sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.));
640
    }
641

642
    for( j = 0; j < 2; j++ )
643
    {
644
        const double* sptr = j == 0 ? s : sq;
645
        _OutputArray _dst = j == 0 ? _mean : _sdv;
646 647 648 649 650 651 652 653
        if( !_dst.needed() )
            continue;

        if( !_dst.fixedSize() )
            _dst.create(cn, 1, CV_64F, -1, true);
        Mat dst = _dst.getMat();
        int dcn = (int)dst.total();
        CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
654
                   (dst.cols == 1 || dst.rows == 1) && dcn >= cn );
655 656 657 658 659
        double* dptr = dst.ptr<double>();
        for( k = 0; k < cn; k++ )
            dptr[k] = sptr[k];
        for( ; k < dcn; k++ )
            dptr[k] = 0;
660 661 662 663 664 665 666
    }
}

/****************************************************************************************\
*                                       minMaxLoc                                        *
\****************************************************************************************/

667 668 669
namespace cv
{

670
template<typename T, typename WT> static void
671 672
minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal,
            size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx )
673
{
674
    WT minVal = *_minVal, maxVal = *_maxVal;
675
    size_t minIdx = *_minIdx, maxIdx = *_maxIdx;
676

677
    if( !mask )
678
    {
679
        for( int i = 0; i < len; i++ )
680
        {
681
            T val = src[i];
682
            if( val < minVal )
683
            {
684
                minVal = val;
685
                minIdx = startIdx + i;
686
            }
687
            if( val > maxVal )
688
            {
689
                maxVal = val;
690
                maxIdx = startIdx + i;
691 692 693
            }
        }
    }
694
    else
695
    {
696
        for( int i = 0; i < len; i++ )
697
        {
698 699
            T val = src[i];
            if( mask[i] && val < minVal )
700
            {
701
                minVal = val;
702
                minIdx = startIdx + i;
703
            }
704
            if( mask[i] && val > maxVal )
705
            {
706
                maxVal = val;
707
                maxIdx = startIdx + i;
708 709 710 711
            }
        }
    }

712 713 714 715
    *_minIdx = minIdx;
    *_maxIdx = maxIdx;
    *_minVal = minVal;
    *_maxVal = maxVal;
716 717
}

718 719 720
static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval,
                         size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
721

722 723 724
static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval,
                         size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
725

726 727 728
static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval,
                          size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
729

730 731 732
static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval,
                          size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
733

734 735 736
static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval,
                          size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
737

738 739 740
static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval,
                          size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
741

742 743
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval,
                          size_t* minidx, size_t* maxidx, int len, size_t startidx )
744
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
745

746
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t);
747

748 749
static MinMaxIdxFunc minmaxTab[] =
{
750 751 752 753 754
    (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s),
    (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s),
    (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s),
    (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f),
    0
755
};
756

757 758 759
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
    int i, d = a.dims;
760 761 762 763 764 765 766 767 768 769 770
    if( ofs > 0 )
    {
        ofs--;
        for( i = d-1; i >= 0; i-- )
        {
            int sz = a.size[i];
            idx[i] = (int)(ofs % sz);
            ofs /= sz;
        }
    }
    else
771
    {
772 773
        for( i = d-1; i >= 0; i-- )
            idx[i] = -1;
774 775
    }
}
776

777
}
778

779
void cv::minMaxIdx(InputArray _src, double* minVal,
780
                   double* maxVal, int* minIdx, int* maxIdx,
781
                   InputArray _mask)
782
{
783
    Mat src = _src.getMat(), mask = _mask.getMat();
784
    int depth = src.depth(), cn = src.channels();
785

786 787
    CV_Assert( (cn == 1 && (mask.empty() || mask.type() == CV_8U)) ||
               (cn >= 1 && mask.empty() && !minIdx && !maxIdx) );
788 789
    MinMaxIdxFunc func = minmaxTab[depth];
    CV_Assert( func != 0 );
790

791 792 793
    const Mat* arrays[] = {&src, &mask, 0};
    uchar* ptrs[2];
    NAryMatIterator it(arrays, ptrs);
794

795
    size_t minidx = 0, maxidx = 0;
796 797 798 799 800
    int iminval = INT_MAX, imaxval = INT_MIN;
    float fminval = FLT_MAX, fmaxval = -FLT_MAX;
    double dminval = DBL_MAX, dmaxval = -DBL_MAX;
    size_t startidx = 1;
    int *minval = &iminval, *maxval = &imaxval;
801
    int planeSize = (int)it.size*cn;
802

803 804 805 806
    if( depth == CV_32F )
        minval = (int*)&fminval, maxval = (int*)&fmaxval;
    else if( depth == CV_64F )
        minval = (int*)&dminval, maxval = (int*)&dmaxval;
807

808 809
    for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize )
        func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx );
810

811
    if( minidx == 0 )
812 813 814 815 816
        dminval = dmaxval = 0;
    else if( depth == CV_32F )
        dminval = fminval, dmaxval = fmaxval;
    else if( depth <= CV_32S )
        dminval = iminval, dmaxval = imaxval;
817

818
    if( minVal )
819
        *minVal = dminval;
820
    if( maxVal )
821
        *maxVal = dmaxval;
822

823
    if( minIdx )
824
        ofs2idx(src, minidx, minIdx);
825
    if( maxIdx )
826
        ofs2idx(src, maxidx, maxIdx);
827
}
828

829
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal,
830
                    Point* minLoc, Point* maxLoc, InputArray mask )
831 832 833
{
    Mat img = _img.getMat();
    CV_Assert(img.dims <= 2);
834

835 836 837 838 839 840
    minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask);
    if( minLoc )
        std::swap(minLoc->x, minLoc->y);
    if( maxLoc )
        std::swap(maxLoc->x, maxLoc->y);
}
841

842 843 844 845
/****************************************************************************************\
*                                         norm                                           *
\****************************************************************************************/

846
namespace cv
847 848
{

849 850 851 852 853 854 855 856
float normL2Sqr_(const float* a, const float* b, int n)
{
    int j = 0; float d = 0.f;
#if CV_SSE
    if( USE_SSE2 )
    {
        float CV_DECL_ALIGNED(16) buf[4];
        __m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
857

858 859 860 861 862 863 864 865 866 867 868 869
        for( ; j <= n - 8; j += 8 )
        {
            __m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
            __m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
            d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0));
            d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1));
        }
        _mm_store_ps(buf, _mm_add_ps(d0, d1));
        d = buf[0] + buf[1] + buf[2] + buf[3];
    }
    else
#endif
870
    {
871 872 873 874 875 876
        for( ; j <= n - 4; j += 4 )
        {
            float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3];
            d += t0*t0 + t1*t1 + t2*t2 + t3*t3;
        }
    }
877

878 879 880 881 882 883 884 885
    for( ; j < n; j++ )
    {
        float t = a[j] - b[j];
        d += t*t;
    }
    return d;
}

886

887 888 889 890 891 892 893
float normL1_(const float* a, const float* b, int n)
{
    int j = 0; float d = 0.f;
#if CV_SSE
    if( USE_SSE2 )
    {
        float CV_DECL_ALIGNED(16) buf[4];
894
        static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
895
        __m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
896
        __m128 absmask = _mm_load_ps((const float*)absbuf);
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        for( ; j <= n - 8; j += 8 )
        {
            __m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
            __m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
            d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask));
            d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask));
        }
        _mm_store_ps(buf, _mm_add_ps(d0, d1));
        d = buf[0] + buf[1] + buf[2] + buf[3];
    }
    else
#endif
    {
        for( ; j <= n - 4; j += 4 )
        {
            d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
914
                    std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
915 916
        }
    }
Victoria Zhislina's avatar
Victoria Zhislina committed
917

918 919 920 921 922 923 924 925 926 927 928 929
    for( ; j < n; j++ )
        d += std::abs(a[j] - b[j]);
    return d;
}

int normL1_(const uchar* a, const uchar* b, int n)
{
    int j = 0, d = 0;
#if CV_SSE
    if( USE_SSE2 )
    {
        __m128i d0 = _mm_setzero_si128();
930

931 932 933 934
        for( ; j <= n - 16; j += 16 )
        {
            __m128i t0 = _mm_loadu_si128((const __m128i*)(a + j));
            __m128i t1 = _mm_loadu_si128((const __m128i*)(b + j));
935

936 937 938 939 940 941 942
            d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1));
        }

        for( ; j <= n - 4; j += 4 )
        {
            __m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j));
            __m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j));
943

944 945 946 947 948 949 950 951 952 953
            d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1));
        }
        d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0)));
    }
    else
#endif
    {
        for( ; j <= n - 4; j += 4 )
        {
            d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
954
                    std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
955 956 957 958 959 960 961
        }
    }
    for( ; j < n; j++ )
        d += std::abs(a[j] - b[j]);
    return d;
}

962
static const uchar popCountTable[] =
963 964 965 966 967 968 969 970 971 972
{
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
973

974 975 976 977 978 979 980 981 982 983 984
static const uchar popCountTable2[] =
{
    0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
    1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
    1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
    2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
    1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
    2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
    1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
    2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4
};
985

986 987 988 989 990 991 992 993 994 995 996
static const uchar popCountTable4[] =
{
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
997

998
static int normHamming(const uchar* a, int n)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
    int i = 0, result = 0;
#if CV_NEON
    if (CPU_HAS_NEON_FEATURE)
    {
        uint32x4_t bits = vmovq_n_u32(0);
        for (; i <= n - 16; i += 16) {
            uint8x16_t A_vec = vld1q_u8 (a + i);
            uint8x16_t bitsSet = vcntq_u8 (A_vec);
            uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
            uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
            bits = vaddq_u32(bits, bitSet4);
        }
        uint64x2_t bitSet2 = vpaddlq_u32 (bits);
        result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
        result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
    }
    else
#endif
        for( ; i <= n - 4; i += 4 )
            result += popCountTable[a[i]] + popCountTable[a[i+1]] +
            popCountTable[a[i+2]] + popCountTable[a[i+3]];
    for( ; i < n; i++ )
        result += popCountTable[a[i]];
    return result;
}
1025

1026 1027 1028
int normHamming(const uchar* a, const uchar* b, int n)
{
    int i = 0, result = 0;
1029
#if CV_NEON
1030 1031
    if (CPU_HAS_NEON_FEATURE)
    {
1032 1033
        uint32x4_t bits = vmovq_n_u32(0);
        for (; i <= n - 16; i += 16) {
1034 1035 1036 1037 1038 1039
            uint8x16_t A_vec = vld1q_u8 (a + i);
            uint8x16_t B_vec = vld1q_u8 (b + i);
            uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
            uint8x16_t bitsSet = vcntq_u8 (AxorB);
            uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
            uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
1040
            bits = vaddq_u32(bits, bitSet4);
1041
        }
1042 1043 1044
        uint64x2_t bitSet2 = vpaddlq_u32 (bits);
        result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
        result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
1045 1046 1047 1048 1049
    }
    else
#endif
        for( ; i <= n - 4; i += 4 )
            result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] +
1050
                    popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]];
1051 1052 1053 1054
    for( ; i < n; i++ )
        result += popCountTable[a[i] ^ b[i]];
    return result;
}
1055

1056
static int normHamming(const uchar* a, int n, int cellSize)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
    if( cellSize == 1 )
        return normHamming(a, n);
    const uchar* tab = 0;
    if( cellSize == 2 )
        tab = popCountTable2;
    else if( cellSize == 4 )
        tab = popCountTable4;
    else
        CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" );
    int i = 0, result = 0;
#if CV_ENABLE_UNROLLED
    for( ; i <= n - 4; i += 4 )
        result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]];
#endif
    for( ; i < n; i++ )
        result += tab[a[i]];
    return result;
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
int normHamming(const uchar* a, const uchar* b, int n, int cellSize)
{
    if( cellSize == 1 )
        return normHamming(a, b, n);
    const uchar* tab = 0;
    if( cellSize == 2 )
        tab = popCountTable2;
    else if( cellSize == 4 )
        tab = popCountTable4;
    else
        CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" );
    int i = 0, result = 0;
1089
    #if CV_ENABLE_UNROLLED
1090 1091
    for( ; i <= n - 4; i += 4 )
        result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] +
1092
                tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]];
Victoria Zhislina's avatar
Victoria Zhislina committed
1093
    #endif
1094 1095 1096 1097
    for( ; i < n; i++ )
        result += tab[a[i] ^ b[i]];
    return result;
}
1098 1099


1100 1101
template<typename T, typename ST> int
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn)
1102
{
1103 1104
    ST result = *_result;
    if( !mask )
1105
    {
1106
        result = std::max(result, normInf<T, ST>(src, len*cn));
1107 1108 1109 1110 1111
    }
    else
    {
        for( int i = 0; i < len; i++, src += cn )
            if( mask[i] )
1112
            {
1113
                for( int k = 0; k < cn; k++ )
1114
                    result = std::max(result, ST(fast_abs(src[k])));
1115
            }
1116 1117 1118 1119
    }
    *_result = result;
    return 0;
}
1120

1121 1122 1123 1124 1125 1126
template<typename T, typename ST> int
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
    ST result = *_result;
    if( !mask )
    {
1127
        result += normL1<T, ST>(src, len*cn);
1128 1129 1130 1131 1132
    }
    else
    {
        for( int i = 0; i < len; i++, src += cn )
            if( mask[i] )
1133
            {
1134
                for( int k = 0; k < cn; k++ )
1135
                    result += fast_abs(src[k]);
1136 1137
            }
    }
1138 1139
    *_result = result;
    return 0;
1140 1141
}

1142 1143
template<typename T, typename ST> int
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn)
1144
{
1145 1146
    ST result = *_result;
    if( !mask )
1147
    {
1148
        result += normL2Sqr<T, ST>(src, len*cn);
1149
    }
1150
    else
1151
    {
1152 1153
        for( int i = 0; i < len; i++, src += cn )
            if( mask[i] )
1154
            {
1155
                for( int k = 0; k < cn; k++ )
1156
                {
1157 1158
                    T v = src[k];
                    result += (ST)v*v;
1159
                }
1160 1161
            }
    }
1162 1163
    *_result = result;
    return 0;
1164
}
1165

1166 1167 1168 1169 1170
template<typename T, typename ST> int
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
    ST result = *_result;
    if( !mask )
1171
    {
1172
        result = std::max(result, normInf<T, ST>(src1, src2, len*cn));
1173 1174 1175 1176 1177
    }
    else
    {
        for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
            if( mask[i] )
1178
            {
1179
                for( int k = 0; k < cn; k++ )
1180
                    result = std::max(result, (ST)std::abs(src1[k] - src2[k]));
1181
            }
1182
    }
1183 1184
    *_result = result;
    return 0;
1185 1186
}

1187 1188
template<typename T, typename ST> int
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
1189
{
1190 1191
    ST result = *_result;
    if( !mask )
1192
    {
1193
        result += normL1<T, ST>(src1, src2, len*cn);
1194 1195 1196 1197 1198
    }
    else
    {
        for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
            if( mask[i] )
1199
            {
1200 1201
                for( int k = 0; k < cn; k++ )
                    result += std::abs(src1[k] - src2[k]);
1202 1203
            }
    }
1204 1205
    *_result = result;
    return 0;
1206 1207
}

1208 1209
template<typename T, typename ST> int
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
1210
{
1211 1212
    ST result = *_result;
    if( !mask )
1213
    {
1214
        result += normL2Sqr<T, ST>(src1, src2, len*cn);
1215
    }
1216
    else
1217
    {
1218 1219
        for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
            if( mask[i] )
1220
            {
1221
                for( int k = 0; k < cn; k++ )
1222
                {
1223 1224
                    ST v = src1[k] - src2[k];
                    result += v*v;
1225
                }
1226 1227
            }
    }
1228 1229
    *_result = result;
    return 0;
1230
}
1231

1232 1233

#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \
1234
    static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
1235
{ return norm##L##_(src, mask, r, len, cn); } \
1236 1237
    static int normDiff##L##_##suffix(const type* src1, const type* src2, \
    const uchar* mask, ntype* r, int len, int cn) \
1238
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); }
1239

1240
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \
1241 1242 1243
    CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
    CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
    CV_DEF_NORM_FUNC(L2, suffix, type, l2type)
1244 1245 1246 1247 1248 1249 1250 1251

CV_DEF_NORM_ALL(8u, uchar, int, int, int)
CV_DEF_NORM_ALL(8s, schar, int, int, int)
CV_DEF_NORM_ALL(16u, ushort, int, int, double)
CV_DEF_NORM_ALL(16s, short, int, int, double)
CV_DEF_NORM_ALL(32s, int, int, double, double)
CV_DEF_NORM_ALL(32f, float, float, double, double)
CV_DEF_NORM_ALL(64f, double, double, double, double)
1252

1253

1254
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
1255
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
1256 1257 1258

static NormFunc normTab[3][8] =
{
1259
    {
1260 1261
        (NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s),
        (NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0
1262 1263
    },
    {
1264 1265
        (NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s),
        (NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0
1266 1267
    },
    {
1268 1269
        (NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s),
        (NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0
1270
    }
1271
};
1272

1273
static NormDiffFunc normDiffTab[3][8] =
1274 1275
{
    {
1276
        (NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s,
1277
        (NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s,
1278
        (NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f),
1279 1280 1281
        (NormDiffFunc)normDiffInf_64f, 0
    },
    {
1282
        (NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s,
1283
        (NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s,
1284
        (NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f),
1285 1286 1287
        (NormDiffFunc)normDiffL1_64f, 0
    },
    {
1288
        (NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s,
1289
        (NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s,
1290
        (NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f),
1291 1292 1293
        (NormDiffFunc)normDiffL2_64f, 0
    }
};
1294

1295
}
1296

1297
double cv::norm( InputArray _src, int normType, InputArray _mask )
1298 1299 1300
{
    Mat src = _src.getMat(), mask = _mask.getMat();
    int depth = src.depth(), cn = src.channels();
1301

1302
    normType &= 7;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1303 1304
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR ||
               ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src.type() == CV_8U) );
1305

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1306
    if( src.isContinuous() && mask.empty() )
1307
    {
1308 1309
        size_t len = src.total()*cn;
        if( len == (size_t)(int)len )
1310
        {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1311
            if( depth == CV_32F )
1312
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1313
                const float* data = src.ptr<float>();
1314

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                if( normType == NORM_L2 )
                {
                    double result = 0;
                    GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
                    return std::sqrt(result);
                }
                if( normType == NORM_L2SQR )
                {
                    double result = 0;
                    GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
                    return result;
                }
                if( normType == NORM_L1 )
                {
                    double result = 0;
                    GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1);
                    return result;
                }
                if( normType == NORM_INF )
                {
                    float result = 0;
                    GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1);
                    return result;
                }
1339
            }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1340
            if( depth == CV_8U )
1341
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1342
                const uchar* data = src.ptr<uchar>();
1343

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1344 1345
                if( normType == NORM_HAMMING )
                    return normHamming(data, (int)len);
1346

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1347 1348
                if( normType == NORM_HAMMING2 )
                    return normHamming(data, (int)len, 2);
1349
            }
1350 1351
        }
    }
1352

1353
    CV_Assert( mask.empty() || mask.type() == CV_8U );
1354

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1355 1356 1357 1358 1359 1360 1361 1362 1363
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        if( !mask.empty() )
        {
            Mat temp;
            bitwise_and(src, mask, temp);
            return norm(temp, normType);
        }
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1364

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1365 1366 1367 1368 1369
        const Mat* arrays[] = {&src, 0};
        uchar* ptrs[1];
        NAryMatIterator it(arrays, ptrs);
        int total = (int)it.size;
        int result = 0;
1370

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1371 1372
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            result += normHamming(ptrs[0], total, cellSize);
1373

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1374 1375
        return result;
    }
1376

1377 1378
    NormFunc func = normTab[normType >> 1][depth];
    CV_Assert( func != 0 );
1379

1380 1381
    const Mat* arrays[] = {&src, &mask, 0};
    uchar* ptrs[2];
1382 1383 1384 1385 1386 1387 1388 1389
    union
    {
        double d;
        int i;
        float f;
    }
    result;
    result.d = 0;
1390 1391 1392
    NAryMatIterator it(arrays, ptrs);
    int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
    bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1393
            ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S);
1394
    int isum = 0;
1395
    int *ibuf = &result.i;
1396
    size_t esz = 0;
1397

1398
    if( blockSum )
1399
    {
1400 1401 1402 1403 1404
        intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn;
        blockSize = std::min(blockSize, intSumBlockSize);
        ibuf = &isum;
        esz = src.elemSize();
    }
1405

1406
    for( size_t i = 0; i < it.nplanes; i++, ++it )
1407
    {
1408
        for( j = 0; j < total; j += blockSize )
1409
        {
1410
            int bsz = std::min(total - j, blockSize);
1411 1412
            func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn );
            count += bsz;
1413 1414
            if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
            {
1415
                result.d += isum;
1416 1417 1418 1419 1420 1421
                isum = 0;
                count = 0;
            }
            ptrs[0] += bsz*esz;
            if( ptrs[1] )
                ptrs[1] += bsz;
1422 1423
        }
    }
1424

1425
    if( normType == NORM_INF )
1426
    {
1427 1428 1429
        if( depth == CV_64F )
            ;
        else if( depth == CV_32F )
1430
            result.d = result.f;
1431
        else
1432
            result.d = result.i;
1433
    }
1434
    else if( normType == NORM_L2 )
1435
        result.d = std::sqrt(result.d);
1436

1437
    return result.d;
1438 1439
}

1440

1441
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask )
1442
{
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1443 1444
    if( normType & CV_RELATIVE )
        return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON);
1445

1446 1447
    Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
    int depth = src1.depth(), cn = src1.channels();
1448

1449
    CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
1450

1451
    normType &= 7;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1452 1453
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR ||
              ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) );
1454

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1455
    if( src1.isContinuous() && src2.isContinuous() && mask.empty() )
1456
    {
1457 1458
        size_t len = src1.total()*src1.channels();
        if( len == (size_t)(int)len )
1459
        {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1460
            if( src1.depth() == CV_32F )
1461
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1462 1463
                const float* data1 = src1.ptr<float>();
                const float* data2 = src2.ptr<float>();
1464

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                if( normType == NORM_L2 )
                {
                    double result = 0;
                    GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
                    return std::sqrt(result);
                }
                if( normType == NORM_L2SQR )
                {
                    double result = 0;
                    GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
                    return result;
                }
                if( normType == NORM_L1 )
                {
                    double result = 0;
                    GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1);
                    return result;
                }
                if( normType == NORM_INF )
                {
                    float result = 0;
                    GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1);
                    return result;
                }
1489
            }
1490 1491
        }
    }
1492

1493
    CV_Assert( mask.empty() || mask.type() == CV_8U );
1494

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        if( !mask.empty() )
        {
            Mat temp;
            bitwise_xor(src1, src2, temp);
            bitwise_and(temp, mask, temp);
            return norm(temp, normType);
        }
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1505

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1506 1507 1508 1509 1510
        const Mat* arrays[] = {&src1, &src2, 0};
        uchar* ptrs[2];
        NAryMatIterator it(arrays, ptrs);
        int total = (int)it.size;
        int result = 0;
1511

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1512 1513
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            result += normHamming(ptrs[0], ptrs[1], total, cellSize);
1514

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1515 1516
        return result;
    }
1517

1518 1519
    NormDiffFunc func = normDiffTab[normType >> 1][depth];
    CV_Assert( func != 0 );
1520

1521 1522
    const Mat* arrays[] = {&src1, &src2, &mask, 0};
    uchar* ptrs[3];
1523 1524 1525 1526 1527 1528 1529 1530 1531
    union
    {
        double d;
        float f;
        int i;
        unsigned u;
    }
    result;
    result.d = 0;
1532 1533 1534
    NAryMatIterator it(arrays, ptrs);
    int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
    bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
1535
            ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S);
1536 1537
    unsigned isum = 0;
    unsigned *ibuf = &result.u;
1538
    size_t esz = 0;
1539

1540
    if( blockSum )
1541
    {
1542 1543 1544 1545
        intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15);
        blockSize = std::min(blockSize, intSumBlockSize);
        ibuf = &isum;
        esz = src1.elemSize();
1546
    }
1547

1548
    for( size_t i = 0; i < it.nplanes; i++, ++it )
1549
    {
1550
        for( j = 0; j < total; j += blockSize )
1551
        {
1552 1553 1554 1555 1556
            int bsz = std::min(total - j, blockSize);
            func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn );
            count += bsz;
            if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
            {
1557
                result.d += isum;
1558 1559 1560 1561 1562 1563 1564
                isum = 0;
                count = 0;
            }
            ptrs[0] += bsz*esz;
            ptrs[1] += bsz*esz;
            if( ptrs[2] )
                ptrs[2] += bsz;
1565 1566
        }
    }
1567

1568
    if( normType == NORM_INF )
1569
    {
1570 1571 1572
        if( depth == CV_64F )
            ;
        else if( depth == CV_32F )
1573
            result.d = result.f;
1574
        else
1575
            result.d = result.u;
1576
    }
1577
    else if( normType == NORM_L2 )
1578
        result.d = std::sqrt(result.d);
1579

1580
    return result.d;
1581 1582 1583
}


1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
///////////////////////////////////// batch distance ///////////////////////////////////////

namespace cv
{

template<typename _Tp, typename _Rt>
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2,
                  int nvecs, int len, _Rt* dist, const uchar* mask)
{
    step2 /= sizeof(src2[0]);
    if( !mask )
    {
        for( int i = 0; i < nvecs; i++ )
            dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len);
    }
    else
    {
        _Rt val0 = std::numeric_limits<_Rt>::max();
        for( int i = 0; i < nvecs; i++ )
            dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
    }
}

template<typename _Tp, typename _Rt>
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2,
                     int nvecs, int len, _Rt* dist, const uchar* mask)
{
    step2 /= sizeof(src2[0]);
    if( !mask )
    {
        for( int i = 0; i < nvecs; i++ )
            dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len);
    }
    else
    {
        _Rt val0 = std::numeric_limits<_Rt>::max();
        for( int i = 0; i < nvecs; i++ )
            dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
    }
}

template<typename _Tp, typename _Rt>
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2,
                  int nvecs, int len, _Rt* dist, const uchar* mask)
{
    step2 /= sizeof(src2[0]);
    if( !mask )
    {
        for( int i = 0; i < nvecs; i++ )
            dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len));
    }
    else
    {
        _Rt val0 = std::numeric_limits<_Rt>::max();
        for( int i = 0; i < nvecs; i++ )
            dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0;
    }
}

static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2,
                             int nvecs, int len, int* dist, const uchar* mask)
{
    step2 /= sizeof(src2[0]);
    if( !mask )
    {
        for( int i = 0; i < nvecs; i++ )
            dist[i] = normHamming(src1, src2 + step2*i, len);
    }
    else
    {
        int val0 = INT_MAX;
        for( int i = 0; i < nvecs; i++ )
            dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len) : val0;
    }
}

static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2,
                              int nvecs, int len, int* dist, const uchar* mask)
{
    step2 /= sizeof(src2[0]);
    if( !mask )
    {
        for( int i = 0; i < nvecs; i++ )
            dist[i] = normHamming(src1, src2 + step2*i, len, 2);
    }
    else
    {
        int val0 = INT_MAX;
        for( int i = 0; i < nvecs; i++ )
            dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len, 2) : val0;
    }
}

static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2,
                               int nvecs, int len, int* dist, const uchar* mask)
{
    batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2,
                               int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2,
                                  int nvecs, int len, int* dist, const uchar* mask)
{
    batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2,
                                  int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2,
                               int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL1_32f(const float* src1, const float* src2, size_t step2,
                             int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2,
                                int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}

static void batchDistL2_32f(const float* src1, const float* src2, size_t step2,
                             int nvecs, int len, float* dist, const uchar* mask)
{
    batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}

typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2,
                              int nvecs, int len, uchar* dist, const uchar* mask);

1728

1729
struct BatchDistInvoker : public ParallelLoopBody
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
{
    BatchDistInvoker( const Mat& _src1, const Mat& _src2,
                      Mat& _dist, Mat& _nidx, int _K,
                      const Mat& _mask, int _update,
                      BatchDistFunc _func)
    {
        src1 = &_src1;
        src2 = &_src2;
        dist = &_dist;
        nidx = &_nidx;
        K = _K;
        mask = &_mask;
        update = _update;
        func = _func;
    }
1745

1746
    void operator()(const Range& range) const
1747 1748 1749
    {
        AutoBuffer<int> buf(src2->rows);
        int* bufptr = buf;
1750

1751
        for( int i = range.start; i < range.end; i++ )
1752 1753 1754
        {
            func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols,
                 K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0);
1755

1756 1757 1758 1759 1760 1761
            if( K > 0 )
            {
                int* nidxptr = nidx->ptr<int>(i);
                // since positive float's can be compared just like int's,
                // we handle both CV_32S and CV_32F cases with a single branch
                int* distptr = (int*)dist->ptr(i);
1762

1763
                int j, k;
1764

1765 1766 1767
                for( j = 0; j < src2->rows; j++ )
                {
                    int d = bufptr[j];
1768
                    if( d < distptr[K-1] )
1769
                    {
1770
                        for( k = K-2; k >= 0 && distptr[k] > d; k-- )
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
                        {
                            nidxptr[k+1] = nidxptr[k];
                            distptr[k+1] = distptr[k];
                        }
                        nidxptr[k+1] = j + update;
                        distptr[k+1] = d;
                    }
                }
            }
        }
    }
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791
    const Mat *src1;
    const Mat *src2;
    Mat *dist;
    Mat *nidx;
    const Mat *mask;
    int K;
    int update;
    BatchDistFunc func;
};
1792

1793
}
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
void cv::batchDistance( InputArray _src1, InputArray _src2,
                        OutputArray _dist, int dtype, OutputArray _nidx,
                        int normType, int K, InputArray _mask,
                        int update, bool crosscheck )
{
    Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
    int type = src1.type();
    CV_Assert( type == src2.type() && src1.cols == src2.cols &&
               (type == CV_32F || type == CV_8U));
    CV_Assert( _nidx.needed() == (K > 0) );
1805

1806 1807 1808 1809 1810 1811 1812
    if( dtype == -1 )
    {
        dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
    }
    CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);

    K = std::min(K, src2.rows);
1813

1814 1815 1816 1817 1818 1819 1820
    _dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype);
    Mat dist = _dist.getMat(), nidx;
    if( _nidx.needed() )
    {
        _nidx.create(dist.size(), CV_32S);
        nidx = _nidx.getMat();
    }
1821

1822 1823 1824 1825 1826
    if( update == 0 && K > 0 )
    {
        dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX);
        nidx = Scalar::all(-1);
    }
1827

1828 1829 1830 1831 1832
    if( crosscheck )
    {
        CV_Assert( K == 1 && update == 0 && mask.empty() );
        Mat tdist, tidx;
        batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false);
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        // if an idx-th element from src1 appeared to be the nearest to i-th element of src2,
        // we update the minimum mutual distance between idx-th element of src1 and the whole src2 set.
        // As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest
        // to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1.
        // If nidx[idx] = -1, it means that there is no such ideal couple for it in src2.
        // This O(N) procedure is called cross-check and it helps to eliminate some false matches.
        if( dtype == CV_32S )
        {
            for( int i = 0; i < tdist.rows; i++ )
            {
                int idx = tidx.at<int>(i);
                int d = tdist.at<int>(i), d0 = dist.at<int>(idx);
                if( d < d0 )
                {
1848
                    dist.at<int>(idx) = d;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
                    nidx.at<int>(idx) = i + update;
                }
            }
        }
        else
        {
            for( int i = 0; i < tdist.rows; i++ )
            {
                int idx = tidx.at<int>(i);
                float d = tdist.at<float>(i), d0 = dist.at<float>(idx);
                if( d < d0 )
                {
1861
                    dist.at<float>(idx) = d;
1862 1863 1864 1865 1866 1867
                    nidx.at<int>(idx) = i + update;
                }
            }
        }
        return;
    }
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    BatchDistFunc func = 0;
    if( type == CV_8U )
    {
        if( normType == NORM_L1 && dtype == CV_32S )
            func = (BatchDistFunc)batchDistL1_8u32s;
        else if( normType == NORM_L1 && dtype == CV_32F )
            func = (BatchDistFunc)batchDistL1_8u32f;
        else if( normType == NORM_L2SQR && dtype == CV_32S )
            func = (BatchDistFunc)batchDistL2Sqr_8u32s;
        else if( normType == NORM_L2SQR && dtype == CV_32F )
            func = (BatchDistFunc)batchDistL2Sqr_8u32f;
        else if( normType == NORM_L2 && dtype == CV_32F )
            func = (BatchDistFunc)batchDistL2_8u32f;
        else if( normType == NORM_HAMMING && dtype == CV_32S )
            func = (BatchDistFunc)batchDistHamming;
        else if( normType == NORM_HAMMING2 && dtype == CV_32S )
            func = (BatchDistFunc)batchDistHamming2;
    }
    else if( type == CV_32F && dtype == CV_32F )
    {
        if( normType == NORM_L1 )
            func = (BatchDistFunc)batchDistL1_32f;
        else if( normType == NORM_L2SQR )
            func = (BatchDistFunc)batchDistL2Sqr_32f;
        else if( normType == NORM_L2 )
            func = (BatchDistFunc)batchDistL2_32f;
    }
1896

1897 1898 1899 1900
    if( func == 0 )
        CV_Error_(CV_StsUnsupportedFormat,
                  ("The combination of type=%d, dtype=%d and normType=%d is not supported",
                   type, dtype, normType));
1901

1902 1903
    parallel_for_(Range(0, src1.rows),
                  BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
1904 1905 1906
}


1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
void cv::findNonZero( InputArray _src, OutputArray _idx )
{
    Mat src = _src.getMat();
    CV_Assert( src.type() == CV_8UC1 );
    int n = countNonZero(src);
    if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() )
        _idx.release();
    _idx.create(n, 1, CV_32SC2);
    Mat idx = _idx.getMat();
    CV_Assert(idx.isContinuous());
    Point* idx_ptr = (Point*)idx.data;
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    for( int i = 0; i < src.rows; i++ )
    {
        const uchar* bin_ptr = src.ptr(i);
        for( int j = 0; j < src.cols; j++ )
            if( bin_ptr[j] )
                *idx_ptr++ = Point(j, i);
    }
}


1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
CV_IMPL CvScalar cvSum( const CvArr* srcarr )
{
    cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1));
    if( CV_IS_IMAGE(srcarr) )
    {
        int coi = cvGetImageCOI((IplImage*)srcarr);
        if( coi )
        {
            CV_Assert( 0 < coi && coi <= 4 );
            sum = cv::Scalar(sum[coi-1]);
        }
    }
    return sum;
}

CV_IMPL int cvCountNonZero( const CvArr* imgarr )
{
    cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
    if( img.channels() > 1 )
        cv::extractImageCOI(imgarr, img);
    return countNonZero(img);
}


CV_IMPL  CvScalar
cvAvg( const void* imgarr, const void* maskarr )
{
    cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
    cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr));
    if( CV_IS_IMAGE(imgarr) )
    {
        int coi = cvGetImageCOI((IplImage*)imgarr);
        if( coi )
        {
            CV_Assert( 0 < coi && coi <= 4 );
            mean = cv::Scalar(mean[coi-1]);
        }
    }
    return mean;
}


CV_IMPL  void
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr )
{
    cv::Scalar mean, sdv;

    cv::Mat mask;
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);

    cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask );

    if( CV_IS_IMAGE(imgarr) )
    {
        int coi = cvGetImageCOI((IplImage*)imgarr);
        if( coi )
        {
            CV_Assert( 0 < coi && coi <= 4 );
            mean = cv::Scalar(mean[coi-1]);
            sdv = cv::Scalar(sdv[coi-1]);
        }
    }

    if( _mean )
        *(cv::Scalar*)_mean = mean;
    if( _sdv )
        *(cv::Scalar*)_sdv = sdv;
}


CV_IMPL void
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal,
             CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr )
{
    cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1);
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    if( img.channels() > 1 )
        cv::extractImageCOI(imgarr, img);

    cv::minMaxLoc( img, _minVal, _maxVal,
2011
                   (cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
}


CV_IMPL  double
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr )
{
    cv::Mat a, mask;
    if( !imgA )
    {
        imgA = imgB;
        imgB = 0;
    }

    a = cv::cvarrToMat(imgA, false, true, 1);
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);

    if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 )
        cv::extractImageCOI(imgA, a);

    if( !imgB )
        return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask);

    cv::Mat b = cv::cvarrToMat(imgB, false, true, 1);
    if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 )
        cv::extractImageCOI(imgB, b);

    return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask);
2040
}