data.cpp 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <ctype.h>

44
#define MISS_VAL    FLT_MAX
45 46
#define CV_VAR_MISS    0

47
CvTrainTestSplit::CvTrainTestSplit()
48 49 50 51 52 53
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = -1;
    mix = false;
}

54
CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix )
55 56 57 58 59
{
    train_sample_part_mode = CV_COUNT;
    train_sample_part.count = _train_sample_count;
    mix = _mix;
}
60

61
CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix )
62 63 64 65 66 67 68 69
{
    train_sample_part_mode = CV_PORTION;
    train_sample_part.portion = _train_sample_portion;
    mix = _mix;
}

////////////////

70
CvMLData::CvMLData()
71 72 73 74 75 76 77 78 79 80 81 82
{
    values = missing = var_types = var_idx_mask = response_out = var_idx_out = var_types_out = 0;
    train_sample_idx = test_sample_idx = 0;
    sample_idx = 0;
    response_idx = -1;

    train_sample_count = -1;

    delimiter = ',';
    miss_ch = '?';
    //flt_separator = '.';

83
    rng = &cv::theRNG();
84 85
}

86
CvMLData::~CvMLData()
87 88 89 90
{
    clear();
}

91
void CvMLData::free_train_test_idx()
92 93 94 95 96 97
{
    cvReleaseMat( &train_sample_idx );
    cvReleaseMat( &test_sample_idx );
    sample_idx = 0;
}

98
void CvMLData::clear()
99
{
100
    class_map.clear();
101 102 103 104 105 106 107 108 109 110 111

    cvReleaseMat( &values );
    cvReleaseMat( &missing );
    cvReleaseMat( &var_types );
    cvReleaseMat( &var_idx_mask );

    cvReleaseMat( &response_out );
    cvReleaseMat( &var_idx_out );
    cvReleaseMat( &var_types_out );

    free_train_test_idx();
112

113 114 115 116 117 118 119 120 121
    total_class_count = 0;

    response_idx = -1;

    train_sample_count = -1;
}

static char *fgets_chomp(char *str, int n, FILE *stream)
{
122 123 124 125 126 127 128 129 130 131 132
    char *head = fgets(str, n, stream);
    if( head )
    {
        for(char *tail = head + strlen(head) - 1; tail >= head; --tail)
        {
            if( *tail != '\r'  && *tail != '\n' )
                break;
            *tail = '\0';
        }
    }
    return head;
133 134 135
}


136
int CvMLData::read_csv(const char* filename)
137
{
138
    const int M = 1000000;
139 140 141 142 143 144 145
    const char str_delimiter[3] = { ' ', delimiter, '\0' };
    FILE* file = 0;
    CvMemStorage* storage;
    CvSeq* seq;
    char *ptr;
    float* el_ptr;
    CvSeqReader reader;
146
    int cols_count = 0;
147 148 149 150 151
    uchar *var_types_ptr = 0;

    clear();

    file = fopen( filename, "rt" );
152

153 154 155 156
    if( !file )
        return -1;

    // read the first line and determine the number of variables
157 158
    std::vector<char> _buf(M);
    char* buf = &_buf[0];
159 160 161
    if( !fgets_chomp( buf, M, file ))
    {
        fclose(file);
162
        return -1;
163
    }
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    ptr = buf;
    while( *ptr == ' ' )
        ptr++;
    for( ; *ptr != '\0'; )
    {
        if(*ptr == delimiter || *ptr == ' ')
        {
            cols_count++;
            ptr++;
            while( *ptr == ' ' ) ptr++;
        }
        else
            ptr++;
    }
179

180
    cols_count++;
181

182 183 184
    if ( cols_count == 0)
    {
        fclose(file);
185
        return -1;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }

    // create temporary memory storage to store the whole database
    el_ptr = new float[cols_count];
    storage = cvCreateMemStorage();
    seq = cvCreateSeq( 0, sizeof(*seq), cols_count*sizeof(float), storage );

    var_types = cvCreateMat( 1, cols_count, CV_8U );
    cvZero( var_types );
    var_types_ptr = var_types->data.ptr;

    for(;;)
    {
        char *token = NULL;
        int type;
        token = strtok(buf, str_delimiter);
202
        if (!token)
203
            break;
204 205 206 207 208 209 210 211
        for (int i = 0; i < cols_count-1; i++)
        {
            str_to_flt_elem( token, el_ptr[i], type);
            var_types_ptr[i] |= type;
            token = strtok(NULL, str_delimiter);
            if (!token)
            {
                fclose(file);
212
                return -1;
213 214 215 216 217
            }
        }
        str_to_flt_elem( token, el_ptr[cols_count-1], type);
        var_types_ptr[cols_count-1] |= type;
        cvSeqPush( seq, el_ptr );
218
        if( !fgets_chomp( buf, M, file ) )
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            break;
    }
    fclose(file);

    values = cvCreateMat( seq->total, cols_count, CV_32FC1 );
    missing = cvCreateMat( seq->total, cols_count, CV_8U );
    var_idx_mask = cvCreateMat( 1, values->cols, CV_8UC1 );
    cvSet( var_idx_mask, cvRealScalar(1) );
    train_sample_count = seq->total;

    cvStartReadSeq( seq, &reader );
    for(int i = 0; i < seq->total; i++ )
    {
        const float* sdata = (float*)reader.ptr;
        float* ddata = values->data.fl + cols_count*i;
        uchar* dm = missing->data.ptr + cols_count*i;

        for( int j = 0; j < cols_count; j++ )
        {
            ddata[j] = sdata[j];
            dm[j] = ( fabs( MISS_VAL - sdata[j] ) <= FLT_EPSILON );
        }
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    if ( cvNorm( missing, 0, CV_L1 ) <= FLT_EPSILON )
        cvReleaseMat( &missing );

    cvReleaseMemStorage( &storage );
    delete []el_ptr;
    return 0;
}

252
const CvMat* CvMLData::get_values() const
253 254 255 256
{
    return values;
}

257
const CvMat* CvMLData::get_missing() const
258
{
259 260 261 262 263 264 265 266
    CV_FUNCNAME( "CvMLData::get_missing" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    __END__;

267 268 269
    return missing;
}

270 271 272 273 274
const std::map<std::string, int>& CvMLData::get_class_labels_map() const
{
    return class_map;
}

275
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type)
276
{
277

278 279 280 281 282 283 284 285 286 287 288 289 290
    char* stopstring = NULL;
    flt_elem = (float)strtod( token, &stopstring );
    assert( stopstring );
    type = CV_VAR_ORDERED;
    if ( *stopstring == miss_ch && strlen(stopstring) == 1 ) // missed value
    {
        flt_elem = MISS_VAL;
        type = CV_VAR_MISS;
    }
    else
    {
        if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label
        {
291
            int idx = class_map[token];
292 293 294 295
            if ( idx == 0)
            {
                total_class_count++;
                idx = total_class_count;
296
                class_map[token] = idx;
297 298 299 300 301 302 303
            }
            flt_elem = (float)idx;
            type = CV_VAR_CATEGORICAL;
        }
    }
}

304
void CvMLData::set_delimiter(char ch)
305
{
306
    CV_FUNCNAME( "CvMLData::set_delimited" );
307 308 309 310
    __BEGIN__;

    if (ch == miss_ch /*|| ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
311

312 313 314 315 316
    delimiter = ch;

    __END__;
}

317
char CvMLData::get_delimiter() const
318
{
319 320 321 322 323 324
    return delimiter;
}

void CvMLData::set_miss_ch(char ch)
{
    CV_FUNCNAME( "CvMLData::set_miss_ch" );
325 326 327 328
    __BEGIN__;

    if (ch == delimiter/* || ch == flt_separator*/)
        CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
329

330 331 332 333 334
    miss_ch = ch;

    __END__;
}

335
char CvMLData::get_miss_ch() const
336 337 338 339 340
{
    return miss_ch;
}

void CvMLData::set_response_idx( int idx )
341
{
342
    CV_FUNCNAME( "CvMLData::set_response_idx" );
343 344 345 346 347 348 349 350 351 352 353 354 355 356
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    if ( idx >= values->cols)
        CV_ERROR( CV_StsBadArg, "idx value is not correct" );

    if ( response_idx >= 0 )
        chahge_var_idx( response_idx, true );
    if ( idx >= 0 )
        chahge_var_idx( idx, false );
    response_idx = idx;

357
    __END__;
358 359
}

360
int CvMLData::get_response_idx() const
361
{
362 363 364 365 366 367
    CV_FUNCNAME( "CvMLData::get_response_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
     __END__;
368 369 370 371 372 373
    return response_idx;
}

void CvMLData::change_var_type( int var_idx, int type )
{
    CV_FUNCNAME( "CvMLData::change_var_type" );
374
    __BEGIN__;
375

376 377 378 379
    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
380

381 382 383 384 385 386 387 388
     var_count = values->cols;

    if ( var_idx < 0 || var_idx >= var_count)
        CV_ERROR( CV_StsBadArg, "var_idx is not correct" );

    if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL)
         CV_ERROR( CV_StsBadArg, "type is not correct" );

389
    assert( var_types );
390 391 392 393 394 395 396 397 398
    if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED)
        CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
    var_types->data.ptr[var_idx] = (uchar)type;

    __END__;

    return;
}

399
void CvMLData::set_var_types( const char* str )
400
{
401
    CV_FUNCNAME( "CvMLData::set_var_types" );
402 403 404 405 406 407 408 409 410 411
    __BEGIN__;

    const char* ord = 0, *cat = 0;
    int var_count = 0, set_var_type_count = 0;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    assert( var_types );
412

413
    ord = strstr( str, "ord" );
414
    cat = strstr( str, "cat" );
415 416
    if ( !ord && !cat )
        CV_ERROR( CV_StsBadArg, "types string is not correct" );
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431
    if ( !ord && strlen(cat) == 3 ) // str == "cat"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_CATEGORICAL) );
        return;
    }

    if ( !cat && strlen(ord) == 3 ) // str == "ord"
    {
        cvSet( var_types, cvScalarAll(CV_VAR_ORDERED) );
        return;
    }

    if ( ord ) // parse ord str
    {
432
        char* stopstring = NULL;
433 434
        if ( ord[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449
        ord += 4; // pass "ord["
        do
        {
            int b1 = (int)strtod( ord, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            ord = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL)
                    CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
                var_types->data.ptr[b1] = CV_VAR_ORDERED;
                set_var_type_count++;
            }
450
            else
451
            {
452
                if ( stopstring[0] == '-')
453 454 455
                {
                    int b2 = (int)strtod( ord, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
456
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );
457 458 459 460
                    ord = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                    {
                        if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL)
461
                            CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
462 463 464 465 466 467 468 469 470 471 472 473 474
                        var_types->data.ptr[i] = CV_VAR_ORDERED;
                    }
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
475
    }
476 477 478

    if ( cat ) // parse cat str
    {
479
        char* stopstring = NULL;
480 481
        if ( cat[3] != '[')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
482

483 484 485 486 487 488 489 490 491 492 493 494
        cat += 4; // pass "cat["
        do
        {
            int b1 = (int)strtod( cat, &stopstring );
            if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
                CV_ERROR( CV_StsBadArg, "types string is not correct" );
            cat = stopstring + 1;
            if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
            {
                var_types->data.ptr[b1] = CV_VAR_CATEGORICAL;
                set_var_type_count++;
            }
495
            else
496
            {
497
                if ( stopstring[0] == '-')
498 499 500
                {
                    int b2 = (int)strtod( cat, &stopstring);
                    if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
501
                        CV_ERROR( CV_StsBadArg, "types string is not correct" );
502 503 504 505 506 507 508 509 510 511 512 513 514 515
                    cat = stopstring + 1;
                    for (int i = b1; i <= b2; i++)
                        var_types->data.ptr[i] = CV_VAR_CATEGORICAL;
                    set_var_type_count += b2 - b1 + 1;
                }
                else
                    CV_ERROR( CV_StsBadArg, "types string is not correct" );

            }
        }
        while (*stopstring != ']');

        if ( stopstring[1] != '\0' && stopstring[1] != ',')
            CV_ERROR( CV_StsBadArg, "types string is not correct" );
516
    }
517 518 519 520 521 522 523

    if (set_var_type_count != var_count)
        CV_ERROR( CV_StsBadArg, "types string is not correct" );

     __END__;
}

524
const CvMat* CvMLData::get_var_types()
525
{
526
    CV_FUNCNAME( "CvMLData::get_var_types" );
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    __BEGIN__;

    uchar *var_types_out_ptr = 0;
    int avcount, vt_size;
    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );

    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    vt_size = avcount + (response_idx >= 0);

    if ( avcount == values->cols || (avcount == values->cols-1 && response_idx == values->cols-1) )
        return var_types;

542
    if ( !var_types_out || ( var_types_out && var_types_out->cols != vt_size ) )
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    {
        cvReleaseMat( &var_types_out );
        var_types_out = cvCreateMat( 1, vt_size, CV_8UC1 );
    }

    var_types_out_ptr = var_types_out->data.ptr;
    for( int i = 0; i < var_types->cols; i++)
    {
        if (i == response_idx || !var_idx_mask->data.ptr[i]) continue;
        *var_types_out_ptr = var_types->data.ptr[i];
        var_types_out_ptr++;
    }
    if ( response_idx >= 0 )
        *var_types_out_ptr = var_types->data.ptr[response_idx];

    __END__;

    return var_types_out;
}

563
int CvMLData::get_var_type( int var_idx ) const
564 565 566 567 568
{
    return var_types->data.ptr[var_idx];
}

const CvMat* CvMLData::get_responses()
569
{
570
    CV_FUNCNAME( "CvMLData::get_responses_ptr" );
571 572 573 574 575 576 577
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    var_count = values->cols;
578

579 580 581 582 583 584 585 586 587 588 589 590 591
    if ( response_idx < 0 || response_idx >= var_count )
       return 0;
    if ( !response_out )
        response_out = cvCreateMatHeader( values->rows, 1, CV_32FC1 );
    else
        cvInitMatHeader( response_out, values->rows, 1, CV_32FC1);
    cvGetCol( values, response_out, response_idx );

    __END__;

    return response_out;
}

592
void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
593
{
594
    CV_FUNCNAME( "CvMLData::set_division" );
595 596 597 598 599 600 601 602
    __BEGIN__;

    int sample_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    sample_count = values->rows;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
    float train_sample_portion;

    if (spl->train_sample_part_mode == CV_COUNT)
    {
        train_sample_count = spl->train_sample_part.count;
        if (train_sample_count > sample_count)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
        train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count;
    }
    else // dtype.train_sample_part_mode == CV_PORTION
    {
        train_sample_portion = spl->train_sample_part.portion;
        if ( train_sample_portion > 1)
            CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
618
        train_sample_portion = train_sample_portion <= FLT_EPSILON ||
619
            1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion;
620
        train_sample_count = std::max(1, cvFloor( train_sample_portion * sample_count ));
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    }

    if ( train_sample_count == sample_count )
    {
        free_train_test_idx();
        return;
    }

    if ( train_sample_idx && train_sample_idx->cols != train_sample_count )
        free_train_test_idx();

    if ( !sample_idx)
    {
        int test_sample_count = sample_count- train_sample_count;
        sample_idx = (int*)cvAlloc( sample_count * sizeof(sample_idx[0]) );
        for (int i = 0; i < sample_count; i++ )
            sample_idx[i] = i;
        train_sample_idx = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 );
        *train_sample_idx = cvMat( 1, train_sample_count, CV_32SC1, &sample_idx[0] );
640 641 642

        CV_Assert(test_sample_count > 0);
        test_sample_idx = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 );
643 644
        *test_sample_idx = cvMat( 1, test_sample_count, CV_32SC1, &sample_idx[train_sample_count] );
    }
645

646 647 648
    mix = spl->mix;
    if ( mix )
        mix_train_and_test_idx();
649

650 651 652
    __END__;
}

653
const CvMat* CvMLData::get_train_sample_idx() const
654
{
655 656 657 658 659 660 661
    CV_FUNCNAME( "CvMLData::get_train_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

662 663 664
    return train_sample_idx;
}

665
const CvMat* CvMLData::get_test_sample_idx() const
666
{
667 668 669 670 671 672 673
    CV_FUNCNAME( "CvMLData::get_test_sample_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

674 675 676 677
    return test_sample_idx;
}

void CvMLData::mix_train_and_test_idx()
678
{
679 680 681 682 683 684 685 686 687
    CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" );
    __BEGIN__;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );
    __END__;

    if ( !sample_idx)
        return;
688 689 690 691 692 693

    if ( train_sample_count > 0 && train_sample_count < values->rows )
    {
        int n = values->rows;
        for (int i = 0; i < n; i++)
        {
694 695
            int a = (*rng)(n);
            int b = (*rng)(n);
696 697 698 699 700 701
            int t;
            CV_SWAP( sample_idx[a], sample_idx[b], t );
        }
    }
}

702
const CvMat* CvMLData::get_var_idx()
703
{
704
     CV_FUNCNAME( "CvMLData::get_var_idx" );
705 706 707 708 709 710 711 712
    __BEGIN__;

    int avcount = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    assert( var_idx_mask );
713

714 715 716 717 718
    avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) );
    int* vidx;

    if ( avcount == values->cols )
        return 0;
719 720

    if ( !var_idx_out || ( var_idx_out && var_idx_out->cols != avcount ) )
721 722 723 724 725 726 727 728
    {
        cvReleaseMat( &var_idx_out );
        var_idx_out = cvCreateMat( 1, avcount, CV_32SC1);
        if ( response_idx >=0 )
            var_idx_mask->data.ptr[response_idx] = 0;
    }

    vidx = var_idx_out->data.i;
729

730 731
    for(int i = 0; i < var_idx_mask->cols; i++)
        if ( var_idx_mask->data.ptr[i] )
732
        {
733 734 735 736 737 738 739 740 741
            *vidx = i;
            vidx++;
        }

    __END__;

    return var_idx_out;
}

742
void CvMLData::chahge_var_idx( int vi, bool state )
743
{
744 745 746 747 748 749
    change_var_idx( vi, state );
}

void CvMLData::change_var_idx( int vi, bool state )
{
     CV_FUNCNAME( "CvMLData::change_var_idx" );
750 751 752 753 754 755 756 757 758 759 760 761
    __BEGIN__;

    int var_count = 0;

    if ( !values )
        CV_ERROR( CV_StsInternal, "data is empty" );

    var_count = values->cols;

    if ( vi < 0 || vi >= var_count)
        CV_ERROR( CV_StsBadArg, "variable index is not correct" );

762
    assert( var_idx_mask );
763 764 765 766 767 768
    var_idx_mask->data.ptr[vi] = state;

    __END__;
}

/* End of file. */