dpotrf.c 7.01 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dpotrf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b13 = -1.;
static doublereal c_b14 = 1.;

/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
	lda, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer j, jb, nb;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical upper;
    extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
	     integer *), dpotf2_(char *, integer *, 
	    doublereal *, integer *, integer *), xerbla_(char *, 
	    integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);


48
/*  -- LAPACK routine (version 3.2) -- */
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DPOTRF computes the Cholesky factorization of a real symmetric */
/*  positive definite matrix A. */

/*  The factorization has the form */
/*     A = U**T * U,  if UPLO = 'U', or */
/*     A = L  * L**T,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  This is the block version of the algorithm, calling Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPOTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code. */

	dpotf2_(uplo, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code. */

	if (upper) {

/*           Compute the Cholesky factorization A = U'*U. */

	    i__1 = *n;
	    i__2 = nb;
	    for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		i__3 = j - 1;
		dsyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a[j * 
			a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda);
		dpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block row. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    dgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
			    c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) * 
			    a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) * 
			    a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    dtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
			    i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j 
			    + jb) * a_dim1], lda);
		}
/* L10: */
	    }

	} else {

/*           Compute the Cholesky factorization A = L*L'. */

	    i__2 = *n;
	    i__1 = nb;
	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		i__3 = j - 1;
		dsyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a[j + 
			a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda);
		dpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block column. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
			    c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1], 
			    lda, &c_b14, &a[j + jb + j * a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
			    jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb + 
			    j * a_dim1], lda);
		}
/* L20: */
	    }
	}
    }
    goto L40;

L30:
    *info = *info + j - 1;

L40:
    return 0;

/*     End of DPOTRF */

} /* dpotrf_ */