digits.py 5.18 KB
Newer Older
1
#!/usr/bin/env python
2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
'''
SVM and KNearest digit recognition.

Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a SVM and KNearest classifiers on it and evaluates
their accuracy.

Following preprocessing is applied to the dataset:
 - Moment-based image deskew (see deskew())
 - Digit images are split into 4 10x10 cells and 16-bin
   histogram of oriented gradients is computed for each
   cell
 - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))


[1] R. Arandjelovic, A. Zisserman
    "Three things everyone should know to improve object retrieval"
    http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf

Usage:
   digits.py
'''

import numpy as np
import cv2
from multiprocessing.pool import ThreadPool
from common import clock, mosaic
from numpy.linalg import norm

SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
DIGITS_FN = 'data/digits.png'

def split2d(img, cell_size, flatten=True):
    h, w = img.shape[:2]
    sx, sy = cell_size
    cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
    cells = np.array(cells)
    if flatten:
        cells = cells.reshape(-1, sy, sx)
    return cells

def load_digits(fn):
    print 'loading "%s" ...' % fn
    digits_img = cv2.imread(fn, 0)
    digits = split2d(digits_img, (SZ, SZ))
    labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
    return digits, labels

def deskew(img):
    m = cv2.moments(img)
    if abs(m['mu02']) < 1e-2:
        return img.copy()
    skew = m['mu11']/m['mu02']
    M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
    img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
    return img

class StatModel(object):
    def load(self, fn):
        self.model.load(fn)
    def save(self, fn):
        self.model.save(fn)

class KNearest(StatModel):
    def __init__(self, k = 3):
        self.k = k
        self.model = cv2.KNearest()

    def train(self, samples, responses):
        self.model = cv2.KNearest()
        self.model.train(samples, responses)

    def predict(self, samples):
        retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k)
        return results.ravel()

class SVM(StatModel):
    def __init__(self, C = 1, gamma = 0.5):
        self.params = dict( kernel_type = cv2.SVM_RBF,
                            svm_type = cv2.SVM_C_SVC,
                            C = C,
                            gamma = gamma )
        self.model = cv2.SVM()

    def train(self, samples, responses):
        self.model = cv2.SVM()
        self.model.train(samples, responses, params = self.params)

    def predict(self, samples):
        return self.model.predict_all(samples).ravel()


def evaluate_model(model, digits, samples, labels):
    resp = model.predict(samples)
    err = (labels != resp).mean()
    print 'error: %.2f %%' % (err*100)

    confusion = np.zeros((10, 10), np.int32)
    for i, j in zip(labels, resp):
        confusion[i, j] += 1
    print 'confusion matrix:'
    print confusion
    print

    vis = []
    for img, flag in zip(digits, resp == labels):
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        if not flag:
            img[...,:2] = 0
        vis.append(img)
    return mosaic(25, vis)

def preprocess_simple(digits):
    return np.float32(digits).reshape(-1, SZ*SZ) / 255.0

def preprocess_hog(digits):
    samples = []
    for img in digits:
        gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
        gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
        mag, ang = cv2.cartToPolar(gx, gy)
        bin_n = 16
        bin = np.int32(bin_n*ang/(2*np.pi))
        bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
        mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
        hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
        hist = np.hstack(hists)

        # transform to Hellinger kernel
        eps = 1e-7
        hist /= hist.sum() + eps
        hist = np.sqrt(hist)
        hist /= norm(hist) + eps

        samples.append(hist)
    return np.float32(samples)


if __name__ == '__main__':
    print __doc__

    digits, labels = load_digits(DIGITS_FN)

    print 'preprocessing...'
    # shuffle digits
    rand = np.random.RandomState(321)
    shuffle = rand.permutation(len(digits))
    digits, labels = digits[shuffle], labels[shuffle]

    digits2 = map(deskew, digits)
    samples = preprocess_hog(digits2)

    train_n = int(0.9*len(samples))
    cv2.imshow('test set', mosaic(25, digits[train_n:]))
    digits_train, digits_test = np.split(digits2, [train_n])
    samples_train, samples_test = np.split(samples, [train_n])
    labels_train, labels_test = np.split(labels, [train_n])


    print 'training KNearest...'
    model = KNearest(k=4)
    model.train(samples_train, labels_train)
    vis = evaluate_model(model, digits_test, samples_test, labels_test)
    cv2.imshow('KNearest test', vis)

    print 'training SVM...'
    model = SVM(C=2.67, gamma=5.383)
    model.train(samples_train, labels_train)
    vis = evaluate_model(model, digits_test, samples_test, labels_test)
    cv2.imshow('SVM test', vis)
    print 'saving SVM as "digits_svm.dat"...'
    model.save('digits_svm.dat')

    cv2.waitKey(0)