test_hough.cpp 8.49 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
10
//                           License Agreement
11 12
//                For Open Source Computer Vision Library
//
13 14
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_CUDA

47 48
using namespace cvtest;

49 50 51
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughLines

52
PARAM_TEST_CASE(HoughLines, cv::cuda::DeviceInfo, cv::Size, UseRoi)
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
    static void generateLines(cv::Mat& img)
    {
        img.setTo(cv::Scalar::all(0));

        cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
        cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
        cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
        cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
    }

    static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
    {
        dst.setTo(cv::Scalar::all(0));

        for (size_t i = 0; i < lines.size(); ++i)
        {
            float rho = lines[i][0], theta = lines[i][1];
            cv::Point pt1, pt2;
            double a = std::cos(theta), b = std::sin(theta);
            double x0 = a*rho, y0 = b*rho;
            pt1.x = cvRound(x0 + 1000*(-b));
            pt1.y = cvRound(y0 + 1000*(a));
            pt2.x = cvRound(x0 - 1000*(-b));
            pt2.y = cvRound(y0 - 1000*(a));
            cv::line(dst, pt1, pt2, cv::Scalar::all(255));
        }
    }
};

83
CUDA_TEST_P(HoughLines, Accuracy)
84
{
85 86
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
    cv::cuda::setDevice(devInfo.deviceID());
87 88 89 90
    const cv::Size size = GET_PARAM(1);
    const bool useRoi = GET_PARAM(2);

    const float rho = 1.0f;
91
    const float theta = (float) (1.5 * CV_PI / 180.0);
92 93 94 95 96
    const int threshold = 100;

    cv::Mat src(size, CV_8UC1);
    generateLines(src);

97
    cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, threshold);
98

99
    cv::cuda::GpuMat d_lines;
100
    hough->detect(loadMat(src, useRoi), d_lines);
101 102

    std::vector<cv::Vec2f> lines;
103
    hough->downloadResults(d_lines, lines);
104 105 106 107 108 109 110

    cv::Mat dst(size, CV_8UC1);
    drawLines(dst, lines);

    ASSERT_MAT_NEAR(src, dst, 0.0);
}

111
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HoughLines, testing::Combine(
112 113 114 115 116 117 118
    ALL_DEVICES,
    DIFFERENT_SIZES,
    WHOLE_SUBMAT));

///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughCircles

119
PARAM_TEST_CASE(HoughCircles, cv::cuda::DeviceInfo, cv::Size, UseRoi)
120 121 122 123 124 125 126 127 128 129
{
    static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
    {
        dst.setTo(cv::Scalar::all(0));

        for (size_t i = 0; i < circles.size(); ++i)
            cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
    }
};

130
CUDA_TEST_P(HoughCircles, Accuracy)
131
{
132 133
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
    cv::cuda::setDevice(devInfo.deviceID());
134 135 136 137
    const cv::Size size = GET_PARAM(1);
    const bool useRoi = GET_PARAM(2);

    const float dp = 2.0f;
138
    const float minDist = 0.0f;
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    const int minRadius = 10;
    const int maxRadius = 20;
    const int cannyThreshold = 100;
    const int votesThreshold = 20;

    std::vector<cv::Vec3f> circles_gold(4);
    circles_gold[0] = cv::Vec3i(20, 20, minRadius);
    circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
    circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
    circles_gold[3] = cv::Vec3i(80, 10, maxRadius);

    cv::Mat src(size, CV_8UC1);
    drawCircles(src, circles_gold, true);

153
    cv::Ptr<cv::cuda::HoughCirclesDetector> houghCircles = cv::cuda::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
154

155
    cv::cuda::GpuMat d_circles;
156
    houghCircles->detect(loadMat(src, useRoi), d_circles);
157 158

    std::vector<cv::Vec3f> circles;
159
    d_circles.download(circles);
160 161 162 163 164 165 166 167 168 169 170 171 172

    ASSERT_FALSE(circles.empty());

    for (size_t i = 0; i < circles.size(); ++i)
    {
        cv::Vec3f cur = circles[i];

        bool found = false;

        for (size_t j = 0; j < circles_gold.size(); ++j)
        {
            cv::Vec3f gold = circles_gold[j];

173
            if (std::fabs(cur[0] - gold[0]) < 5 && std::fabs(cur[1] - gold[1]) < 5 && std::fabs(cur[2] - gold[2]) < 5)
174 175 176 177 178 179 180 181 182 183
            {
                found = true;
                break;
            }
        }

        ASSERT_TRUE(found);
    }
}

184
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HoughCircles, testing::Combine(
185 186 187 188 189 190 191
    ALL_DEVICES,
    DIFFERENT_SIZES,
    WHOLE_SUBMAT));

///////////////////////////////////////////////////////////////////////////////////////////////////////
// GeneralizedHough

192
PARAM_TEST_CASE(GeneralizedHough, cv::cuda::DeviceInfo, UseRoi)
193 194 195
{
};

196
CUDA_TEST_P(GeneralizedHough, Ballard)
197
{
198 199
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
    cv::cuda::setDevice(devInfo.deviceID());
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    const bool useRoi = GET_PARAM(1);

    cv::Mat templ = readImage("../cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(templ.empty());

    cv::Point templCenter(templ.cols / 2, templ.rows / 2);

    const size_t gold_count = 3;
    cv::Point pos_gold[gold_count];
    pos_gold[0] = cv::Point(templCenter.x + 10, templCenter.y + 10);
    pos_gold[1] = cv::Point(2 * templCenter.x + 40, templCenter.y + 10);
    pos_gold[2] = cv::Point(2 * templCenter.x + 40, 2 * templCenter.y + 40);

    cv::Mat image(templ.rows * 3, templ.cols * 3, CV_8UC1, cv::Scalar::all(0));
    for (size_t i = 0; i < gold_count; ++i)
    {
        cv::Rect rec(pos_gold[i].x - templCenter.x, pos_gold[i].y - templCenter.y, templ.cols, templ.rows);
        cv::Mat imageROI = image(rec);
        templ.copyTo(imageROI);
    }

221
    cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::cuda::createGeneralizedHoughBallard();
222
    alg->setVotesThreshold(200);
223

224
    alg->setTemplate(loadMat(templ, useRoi));
225

226
    cv::cuda::GpuMat d_pos;
227
    alg->detect(loadMat(image, useRoi), d_pos);
228 229

    std::vector<cv::Vec4f> pos;
230
    d_pos.download(pos);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

    ASSERT_EQ(gold_count, pos.size());

    for (size_t i = 0; i < gold_count; ++i)
    {
        cv::Point gold = pos_gold[i];

        bool found = false;

        for (size_t j = 0; j < pos.size(); ++j)
        {
            cv::Point2f p(pos[j][0], pos[j][1]);

            if (::fabs(p.x - gold.x) < 2 && ::fabs(p.y - gold.y) < 2)
            {
                found = true;
                break;
            }
        }

        ASSERT_TRUE(found);
    }
}

255
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, GeneralizedHough, testing::Combine(
256 257 258 259
    ALL_DEVICES,
    WHOLE_SUBMAT));

#endif // HAVE_CUDA