dsytf2.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dsytf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15 16 17 18 19

/* Table of constant values */

static integer c__1 = 1;

20 21 22 23 24 25
/* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
	lda, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1, d__2, d__3;
26

27 28
    /* Builtin functions */
    double sqrt(doublereal);
29

30
    /* Local variables */
31 32 33 34 35
    integer i__, j, k;
    doublereal t, r1, d11, d12, d21, d22;
    integer kk, kp;
    doublereal wk, wkm1, wkp1;
    integer imax, jmax;
36 37
    extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
38
    doublereal alpha;
39 40 41 42 43
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
44 45 46
    integer kstep;
    logical upper;
    doublereal absakk;
47 48 49
    extern integer idamax_(integer *, doublereal *, integer *);
    extern logical disnan_(doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    doublereal colmax, rowmax;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYTF2 computes the factorization of a real symmetric matrix A using */
/*  the Bunch-Kaufman diagonal pivoting method: */

/*     A = U*D*U'  or  A = L*D*L' */

/*  where U (or L) is a product of permutation and unit upper (lower) */
/*  triangular matrices, U' is the transpose of U, and D is symmetric and */
/*  block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */

/*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n-by-n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n-by-n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, the block diagonal matrix D and the multipliers used */
/*          to obtain the factor U or L (see below for further details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D. */
/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
/*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
/*               has been completed, but the block diagonal matrix D is */
/*               exactly singular, and division by zero will occur if it */
/*               is used to solve a system of equations. */

/*  Further Details */
/*  =============== */

/*  09-29-06 - patch from */
/*    Bobby Cheng, MathWorks */

/*    Replace l.204 and l.372 */
/*         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
/*    by */
/*         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */

/*  01-01-96 - Based on modifications by */
/*    J. Lewis, Boeing Computer Services Company */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/*  1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
/*         Company */

/*  If UPLO = 'U', then A = U*D*U', where */
/*     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
/*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
/*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
/*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */

/*             (   I    v    0   )   k-s */
/*     U(k) =  (   0    I    0   )   s */
/*             (   0    0    I   )   n-k */
/*                k-s   s   n-k */

/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
/*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
/*  and A(k,k), and v overwrites A(1:k-2,k-1:k). */

/*  If UPLO = 'L', then A = L*D*L', where */
/*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
/*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
/*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
/*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */

/*             (   I    0     0   )  k-1 */
/*     L(k) =  (   0    I     0   )  s */
/*             (   0    v     I   )  n-k-s+1 */
/*                k-1   s  n-k-s+1 */

/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
/*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
/*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYTF2", &i__1);
	return 0;
    }

/*     Initialize ALPHA for use in choosing pivot block size. */

    alpha = (sqrt(17.) + 1.) / 8.;

    if (upper) {

216
/*        Factorize A as U*D*U' using the upper triangle of A */
217

218 219
/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2 */
220 221 222 223 224 225 226 227 228 229 230

	k = *n;
L10:

/*        If K < 1, exit from loop */

	if (k < 1) {
	    goto L70;
	}
	kstep = 1;

231 232
/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */
233 234 235

	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));

236 237
/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

	if (k > 1) {
	    i__1 = k - 1;
	    imax = idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {

/*           Column K is zero or contains a NaN: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

263 264
/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

		i__1 = k - imax;
		jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1], 
			lda);
		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
		if (imax > 1) {
		    i__1 = imax - 1;
		    jmax = idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
			    abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
			alpha * rowmax) {

287 288
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */
289 290 291 292

		    kp = imax;
		} else {

293 294
/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
/*                 pivot block */
295 296 297 298 299 300 301 302 303

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k - kstep + 1;
	    if (kp != kk) {

304 305
/*              Interchange rows and columns KK and KP in the leading */
/*              submatrix A(1:k,1:k) */
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

		i__1 = kp - 1;
		dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], 
			 &c__1);
		i__1 = kk - kp - 1;
		dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
			1) * a_dim1], lda);
		t = a[kk + kk * a_dim1];
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
		a[kp + kp * a_dim1] = t;
		if (kstep == 2) {
		    t = a[k - 1 + k * a_dim1];
		    a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
		    a[kp + k * a_dim1] = t;
		}
	    }

/*           Update the leading submatrix */

	    if (kstep == 1) {

327
/*              1-by-1 pivot block D(k): column k now holds */
328

329
/*              W(k) = U(k)*D(k) */
330

331
/*              where U(k) is the k-th column of U */
332

333
/*              Perform a rank-1 update of A(1:k-1,1:k-1) as */
334

335
/*              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
336 337 338 339 340 341 342 343 344 345 346 347 348

		r1 = 1. / a[k + k * a_dim1];
		i__1 = k - 1;
		d__1 = -r1;
		dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
			a_offset], lda);

/*              Store U(k) in column k */

		i__1 = k - 1;
		dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
	    } else {

349
/*              2-by-2 pivot block D(k): columns k and k-1 now hold */
350

351
/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
352

353 354
/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/*              of U */
355

356
/*              Perform a rank-2 update of A(1:k-2,1:k-2) as */
357

358 359
/*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
/*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		if (k > 2) {

		    d12 = a[k - 1 + k * a_dim1];
		    d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
		    d11 = a[k + k * a_dim1] / d12;
		    t = 1. / (d11 * d22 - 1.);
		    d12 = t / d12;

		    for (j = k - 2; j >= 1; --j) {
			wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k 
				* a_dim1]);
			wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) * 
				a_dim1]);
			for (i__ = j; i__ >= 1; --i__) {
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
				    + k * a_dim1] * wk - a[i__ + (k - 1) * 
				    a_dim1] * wkm1;
/* L20: */
			}
			a[j + k * a_dim1] = wk;
			a[j + (k - 1) * a_dim1] = wkm1;
/* L30: */
		    }

		}

	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k - 1] = -kp;
	}

/*        Decrease K and return to the start of the main loop */

	k -= kstep;
	goto L10;

    } else {

406
/*        Factorize A as L*D*L' using the lower triangle of A */
407

408 409
/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2 */
410 411 412 413 414 415 416 417 418 419 420

	k = 1;
L40:

/*        If K > N, exit from loop */

	if (k > *n) {
	    goto L70;
	}
	kstep = 1;

421 422
/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */
423 424 425

	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));

426 427
/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	if (k < *n) {
	    i__1 = *n - k;
	    imax = k + idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {

/*           Column K is zero or contains a NaN: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

453 454
/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

		i__1 = imax - k;
		jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
		if (imax < *n) {
		    i__1 = *n - imax;
		    jmax = imax + idamax_(&i__1, &a[imax + 1 + imax * a_dim1], 
			     &c__1);
/* Computing MAX */
		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
			    abs(d__1));
		    rowmax = max(d__2,d__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
			alpha * rowmax) {

477 478
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */
479 480 481 482

		    kp = imax;
		} else {

483 484
/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
/*                 pivot block */
485 486 487 488 489 490 491 492 493

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k + kstep - 1;
	    if (kp != kk) {

494 495
/*              Interchange rows and columns KK and KP in the trailing */
/*              submatrix A(k:n,k:n) */
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

		if (kp < *n) {
		    i__1 = *n - kp;
		    dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
			    + kp * a_dim1], &c__1);
		}
		i__1 = kp - kk - 1;
		dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 
			1) * a_dim1], lda);
		t = a[kk + kk * a_dim1];
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
		a[kp + kp * a_dim1] = t;
		if (kstep == 2) {
		    t = a[k + 1 + k * a_dim1];
		    a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
		    a[kp + k * a_dim1] = t;
		}
	    }

/*           Update the trailing submatrix */

	    if (kstep == 1) {

519
/*              1-by-1 pivot block D(k): column k now holds */
520

521
/*              W(k) = L(k)*D(k) */
522

523
/*              where L(k) is the k-th column of L */
524 525 526

		if (k < *n) {

527
/*                 Perform a rank-1 update of A(k+1:n,k+1:n) as */
528

529
/*                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

		    d11 = 1. / a[k + k * a_dim1];
		    i__1 = *n - k;
		    d__1 = -d11;
		    dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
			    a[k + 1 + (k + 1) * a_dim1], lda);

/*                 Store L(k) in column K */

		    i__1 = *n - k;
		    dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
		}
	    } else {

/*              2-by-2 pivot block D(k) */

		if (k < *n - 1) {

548
/*                 Perform a rank-2 update of A(k+2:n,k+2:n) as */
549

550
/*                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */
551

552 553
/*                 where L(k) and L(k+1) are the k-th and (k+1)-th */
/*                 columns of L */
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

		    d21 = a[k + 1 + k * a_dim1];
		    d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
		    d22 = a[k + k * a_dim1] / d21;
		    t = 1. / (d11 * d22 - 1.);
		    d21 = t / d21;

		    i__1 = *n;
		    for (j = k + 2; j <= i__1; ++j) {

			wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) * 
				a_dim1]);
			wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k 
				* a_dim1]);

			i__2 = *n;
			for (i__ = j; i__ <= i__2; ++i__) {
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
				    + k * a_dim1] * wk - a[i__ + (k + 1) * 
				    a_dim1] * wkp1;
/* L50: */
			}

			a[j + k * a_dim1] = wk;
			a[j + (k + 1) * a_dim1] = wkp1;

/* L60: */
		    }
		}
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k + 1] = -kp;
	}

/*        Increase K and return to the start of the main loop */

	k += kstep;
	goto L40;

    }

L70:

    return 0;

/*     End of DSYTF2 */

} /* dsytf2_ */