em.cpp 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

44
namespace cv
45
{
46 47
namespace ml
{
48

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
49
const double minEigenValue = DBL_EPSILON;
50

51
class CV_EXPORTS EMImpl : public EM
52
{
53
public:
54 55 56 57 58 59 60 61

    int nclusters;
    int covMatType;
    TermCriteria termCrit;

    CV_IMPL_PROPERTY_S(TermCriteria, TermCriteria, termCrit)

    void setClustersNumber(int val)
62
    {
63
        nclusters = val;
64
        CV_Assert(nclusters >= 1);
65
    }
66

67 68 69 70
    int getClustersNumber() const
    {
        return nclusters;
    }
71

72
    void setCovarianceMatrixType(int val)
73
    {
74 75 76 77
        covMatType = val;
        CV_Assert(covMatType == COV_MAT_SPHERICAL ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_GENERIC);
78 79
    }

80
    int getCovarianceMatrixType() const
81
    {
82
        return covMatType;
83
    }
84

85 86 87 88 89 90 91 92 93
    EMImpl()
    {
        nclusters = DEFAULT_NCLUSTERS;
        covMatType=EM::COV_MAT_DIAGONAL;
        termCrit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, EM::DEFAULT_MAX_ITERS, 1e-6);
    }

    virtual ~EMImpl() {}

94 95 96 97 98 99
    void clear()
    {
        trainSamples.release();
        trainProbs.release();
        trainLogLikelihoods.release();
        trainLabels.release();
100

101 102 103
        weights.release();
        means.release();
        covs.clear();
104

105 106 107
        covsEigenValues.clear();
        invCovsEigenValues.clear();
        covsRotateMats.clear();
108

109 110
        logWeightDivDet.release();
    }
111

112 113 114
    bool train(const Ptr<TrainData>& data, int)
    {
        Mat samples = data->getTrainSamples(), labels;
115
        return trainEM(samples, labels, noArray(), noArray());
116 117
    }

118
    bool trainEM(InputArray samples,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
119
               OutputArray logLikelihoods,
120
               OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
121
               OutputArray probs)
122 123 124 125 126
    {
        Mat samplesMat = samples.getMat();
        setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
        return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
    }
127

128
    bool trainE(InputArray samples,
129 130 131
                InputArray _means0,
                InputArray _covs0,
                InputArray _weights0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
132
                OutputArray logLikelihoods,
133
                OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
134
                OutputArray probs)
135 136 137 138
    {
        Mat samplesMat = samples.getMat();
        std::vector<Mat> covs0;
        _covs0.getMatVector(covs0);
139

140
        Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
141

142 143 144 145
        setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
                     !_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0);
        return doTrain(START_E_STEP, logLikelihoods, labels, probs);
    }
146

147
    bool trainM(InputArray samples,
148
                InputArray _probs0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
149
                OutputArray logLikelihoods,
150
                OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
151
                OutputArray probs)
152
    {
153 154
        Mat samplesMat = samples.getMat();
        Mat probs0 = _probs0.getMat();
155

156 157
        setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
        return doTrain(START_M_STEP, logLikelihoods, labels, probs);
158 159
    }

160 161 162 163 164 165 166
    float predict(InputArray _inputs, OutputArray _outputs, int) const
    {
        bool needprobs = _outputs.needed();
        Mat samples = _inputs.getMat(), probs, probsrow;
        int ptype = CV_32F;
        float firstres = 0.f;
        int i, nsamples = samples.rows;
167

168 169 170 171
        if( needprobs )
        {
            if( _outputs.fixedType() )
                ptype = _outputs.type();
172
            _outputs.create(samples.rows, nclusters, ptype);
173 174 175
        }
        else
            nsamples = std::min(nsamples, 1);
176

177
        for( i = 0; i < nsamples; i++ )
178
        {
179 180 181 182 183
            if( needprobs )
                probsrow = probs.row(i);
            Vec2d res = computeProbabilities(samples.row(i), needprobs ? &probsrow : 0, ptype);
            if( i == 0 )
                firstres = (float)res[1];
184
        }
185
        return firstres;
186 187
    }

188
    Vec2d predict2(InputArray _sample, OutputArray _probs) const
189
    {
190 191 192
        int ptype = CV_32F;
        Mat sample = _sample.getMat();
        CV_Assert(isTrained());
193

194 195 196 197 198 199 200 201
        CV_Assert(!sample.empty());
        if(sample.type() != CV_64FC1)
        {
            Mat tmp;
            sample.convertTo(tmp, CV_64FC1);
            sample = tmp;
        }
        sample.reshape(1, 1);
202

203 204 205 206 207
        Mat probs;
        if( _probs.needed() )
        {
            if( _probs.fixedType() )
                ptype = _probs.type();
208
            _probs.create(1, nclusters, ptype);
209 210
            probs = _probs.getMat();
        }
211

212
        return computeProbabilities(sample, !probs.empty() ? &probs : 0, ptype);
213
    }
214

215
    bool isTrained() const
216
    {
217
        return !means.empty();
218 219
    }

220
    bool isClassifier() const
221
    {
222
        return true;
223 224
    }

225
    int getVarCount() const
226
    {
227
        return means.cols;
228 229
    }

230
    String getDefaultName() const
231
    {
232 233
        return "opencv_ml_em";
    }
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    static void checkTrainData(int startStep, const Mat& samples,
                               int nclusters, int covMatType, const Mat* probs, const Mat* means,
                               const std::vector<Mat>* covs, const Mat* weights)
    {
        // Check samples.
        CV_Assert(!samples.empty());
        CV_Assert(samples.channels() == 1);

        int nsamples = samples.rows;
        int dim = samples.cols;

        // Check training params.
        CV_Assert(nclusters > 0);
        CV_Assert(nclusters <= nsamples);
        CV_Assert(startStep == START_AUTO_STEP ||
                  startStep == START_E_STEP ||
                  startStep == START_M_STEP);
        CV_Assert(covMatType == COV_MAT_GENERIC ||
                  covMatType == COV_MAT_DIAGONAL ||
                  covMatType == COV_MAT_SPHERICAL);

        CV_Assert(!probs ||
            (!probs->empty() &&
             probs->rows == nsamples && probs->cols == nclusters &&
             (probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));

        CV_Assert(!weights ||
            (!weights->empty() &&
             (weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
             (weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));

        CV_Assert(!means ||
            (!means->empty() &&
             means->rows == nclusters && means->cols == dim &&
             means->channels() == 1));

        CV_Assert(!covs ||
            (!covs->empty() &&
             static_cast<int>(covs->size()) == nclusters));
        if(covs)
275
        {
276 277 278 279 280 281
            const Size covSize(dim, dim);
            for(size_t i = 0; i < covs->size(); i++)
            {
                const Mat& m = (*covs)[i];
                CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
            }
282
        }
283 284

        if(startStep == START_E_STEP)
285
        {
286
            CV_Assert(means);
287
        }
288
        else if(startStep == START_M_STEP)
289
        {
290
            CV_Assert(probs);
291
        }
292
    }
293

294
    static void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
295
    {
296 297
        if(src.type() == dstType && !isAlwaysClone)
            dst = src;
298
        else
299
            src.convertTo(dst, dstType);
300
    }
301

302
    static void preprocessProbability(Mat& probs)
303
    {
304
        max(probs, 0., probs);
305

306 307
        const double uniformProbability = (double)(1./probs.cols);
        for(int y = 0; y < probs.rows; y++)
308
        {
309
            Mat sampleProbs = probs.row(y);
310

311 312 313 314 315 316 317
            double maxVal = 0;
            minMaxLoc(sampleProbs, 0, &maxVal);
            if(maxVal < FLT_EPSILON)
                sampleProbs.setTo(uniformProbability);
            else
                normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
        }
318 319
    }

320 321 322 323 324 325 326
    void setTrainData(int startStep, const Mat& samples,
                      const Mat* probs0,
                      const Mat* means0,
                      const std::vector<Mat>* covs0,
                      const Mat* weights0)
    {
        clear();
327

328
        checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
329

330 331 332
        bool isKMeansInit = (startStep == START_AUTO_STEP) || (startStep == START_E_STEP && (covs0 == 0 || weights0 == 0));
        // Set checked data
        preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
333

334 335 336 337 338 339
        // set probs
        if(probs0 && startStep == START_M_STEP)
        {
            preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
            preprocessProbability(trainProbs);
        }
340

341 342 343 344 345 346 347
        // set weights
        if(weights0 && (startStep == START_E_STEP && covs0))
        {
            weights0->convertTo(weights, CV_64FC1);
            weights.reshape(1,1);
            preprocessProbability(weights);
        }
348

349 350 351 352 353 354 355 356 357 358 359
        // set means
        if(means0 && (startStep == START_E_STEP/* || startStep == START_AUTO_STEP*/))
            means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);

        // set covs
        if(covs0 && (startStep == START_E_STEP && weights0))
        {
            covs.resize(nclusters);
            for(size_t i = 0; i < covs0->size(); i++)
                (*covs0)[i].convertTo(covs[i], CV_64FC1);
        }
360
    }
361

362
    void decomposeCovs()
363
    {
364 365 366 367 368 369
        CV_Assert(!covs.empty());
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
370
        {
371 372 373 374 375 376 377 378 379 380 381
            CV_Assert(!covs[clusterIndex].empty());

            SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);

            if(covMatType == COV_MAT_SPHERICAL)
            {
                double maxSingularVal = svd.w.at<double>(0);
                covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
            }
            else if(covMatType == COV_MAT_DIAGONAL)
            {
art-programmer's avatar
art-programmer committed
382
                covsEigenValues[clusterIndex] = covs[clusterIndex].diag().clone(); //Preserve the original order of eigen values.
383 384 385 386 387 388 389 390
            }
            else //COV_MAT_GENERIC
            {
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
391 392 393
        }
    }

394
    void clusterTrainSamples()
395
    {
396
        int nsamples = trainSamples.rows;
397

398
        // Cluster samples, compute/update means
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        // Convert samples and means to 32F, because kmeans requires this type.
        Mat trainSamplesFlt, meansFlt;
        if(trainSamples.type() != CV_32FC1)
            trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
        else
            trainSamplesFlt = trainSamples;
        if(!means.empty())
        {
            if(means.type() != CV_32FC1)
                means.convertTo(meansFlt, CV_32FC1);
            else
                meansFlt = means;
        }

        Mat labels;
        kmeans(trainSamplesFlt, nclusters, labels,
               TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
               10, KMEANS_PP_CENTERS, meansFlt);
418

419 420 421 422 423 424 425 426 427
        // Convert samples and means back to 64F.
        CV_Assert(meansFlt.type() == CV_32FC1);
        if(trainSamples.type() != CV_64FC1)
        {
            Mat trainSamplesBuffer;
            trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
            trainSamples = trainSamplesBuffer;
        }
        meansFlt.convertTo(means, CV_64FC1);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        // Compute weights and covs
        weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            Mat clusterSamples;
            for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
            {
                if(labels.at<int>(sampleIndex) == clusterIndex)
                {
                    const Mat sample = trainSamples.row(sampleIndex);
                    clusterSamples.push_back(sample);
                }
            }
            CV_Assert(!clusterSamples.empty());
444

445 446 447 448
            calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
                CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
            weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
        }
449

450
        decomposeCovs();
451
    }
452

453
    void computeLogWeightDivDet()
454
    {
455 456 457 458 459 460 461 462 463 464 465 466 467 468
        CV_Assert(!covsEigenValues.empty());

        Mat logWeights;
        cv::max(weights, DBL_MIN, weights);
        log(weights, logWeights);

        logWeightDivDet.create(1, nclusters, CV_64FC1);
        // note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            double logDetCov = 0.;
            const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total());
            for(int di = 0; di < evalCount; di++)
469
                logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0));
470 471 472

            logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
        }
473 474
    }

475
    bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
476
    {
477 478 479
        int dim = trainSamples.cols;
        // Precompute the empty initial train data in the cases of START_E_STEP and START_AUTO_STEP
        if(startStep != START_M_STEP)
480
        {
481 482 483 484 485
            if(covs.empty())
            {
                CV_Assert(weights.empty());
                clusterTrainSamples();
            }
486
        }
487 488

        if(!covs.empty() && covsEigenValues.empty() )
489
        {
490 491
            CV_Assert(invCovsEigenValues.empty());
            decomposeCovs();
492
        }
493

494 495
        if(startStep == START_M_STEP)
            mStep();
496

497
        double trainLogLikelihood, prevTrainLogLikelihood = 0.;
498 499 500
        int maxIters = (termCrit.type & TermCriteria::MAX_ITER) ?
            termCrit.maxCount : DEFAULT_MAX_ITERS;
        double epsilon = (termCrit.type & TermCriteria::EPS) ? termCrit.epsilon : 0.;
501

502 503 504 505
        for(int iter = 0; ; iter++)
        {
            eStep();
            trainLogLikelihood = sum(trainLogLikelihoods)[0];
506

507 508 509 510 511 512 513 514
            if(iter >= maxIters - 1)
                break;

            double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
            if( iter != 0 &&
                (trainLogLikelihoodDelta < -DBL_EPSILON ||
                 trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
                break;
515

516
            mStep();
517

518 519 520 521
            prevTrainLogLikelihood = trainLogLikelihood;
        }

        if( trainLogLikelihood <= -DBL_MAX/10000. )
522
        {
523 524
            clear();
            return false;
525 526
        }

527 528 529 530
        // postprocess covs
        covs.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
531
            if(covMatType == COV_MAT_SPHERICAL)
532 533 534 535
            {
                covs[clusterIndex].create(dim, dim, CV_64FC1);
                setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
            }
536
            else if(covMatType == COV_MAT_DIAGONAL)
537 538 539 540
            {
                covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
            }
        }
541

542 543 544 545 546 547
        if(labels.needed())
            trainLabels.copyTo(labels);
        if(probs.needed())
            trainProbs.copyTo(probs);
        if(logLikelihoods.needed())
            trainLogLikelihoods.copyTo(logLikelihoods);
548

549 550 551 552
        trainSamples.release();
        trainProbs.release();
        trainLabels.release();
        trainLogLikelihoods.release();
553

554 555
        return true;
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    Vec2d computeProbabilities(const Mat& sample, Mat* probs, int ptype) const
    {
        // L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
        // q = arg(max_k(L_ik))
        // probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
        // see Alex Smola's blog http://blog.smola.org/page/2 for
        // details on the log-sum-exp trick

        int stype = sample.type();
        CV_Assert(!means.empty());
        CV_Assert((stype == CV_32F || stype == CV_64F) && (ptype == CV_32F || ptype == CV_64F));
        CV_Assert(sample.size() == Size(means.cols, 1));

        int dim = sample.cols;

        Mat L(1, nclusters, CV_64FC1), centeredSample(1, dim, CV_64F);
        int i, label = 0;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            const double* mptr = means.ptr<double>(clusterIndex);
            double* dptr = centeredSample.ptr<double>();
            if( stype == CV_32F )
            {
                const float* sptr = sample.ptr<float>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
            else
            {
                const double* sptr = sample.ptr<double>();
                for( i = 0; i < dim; i++ )
                    dptr[i] = sptr[i] - mptr[i];
            }
590

591 592
            Mat rotatedCenteredSample = covMatType != COV_MAT_GENERIC ?
                    centeredSample : centeredSample * covsRotateMats[clusterIndex];
593

594 595 596 597 598 599 600 601 602
            double Lval = 0;
            for(int di = 0; di < dim; di++)
            {
                double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0);
                double val = rotatedCenteredSample.at<double>(di);
                Lval += w * val * val;
            }
            CV_DbgAssert(!logWeightDivDet.empty());
            L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
603

604 605 606
            if(L.at<double>(clusterIndex) > L.at<double>(label))
                label = clusterIndex;
        }
607

608 609 610 611 612 613 614 615
        double maxLVal = L.at<double>(label);
        double expDiffSum = 0;
        for( i = 0; i < L.cols; i++ )
        {
            double v = std::exp(L.at<double>(i) - maxLVal);
            L.at<double>(i) = v;
            expDiffSum += v; // sum_j(exp(L_ij - L_iq))
        }
616

617 618
        if(probs)
            L.convertTo(*probs, ptype, 1./expDiffSum);
619

620 621 622
        Vec2d res;
        res[0] = std::log(expDiffSum)  + maxLVal - 0.5 * dim * CV_LOG2PI;
        res[1] = label;
623

624 625
        return res;
    }
626

627
    void eStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
628
    {
629
        // Compute probs_ik from means_k, covs_k and weights_k.
630
        trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
631 632
        trainLabels.create(trainSamples.rows, 1, CV_32SC1);
        trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
633

634 635 636 637
        computeLogWeightDivDet();

        CV_DbgAssert(trainSamples.type() == CV_64FC1);
        CV_DbgAssert(means.type() == CV_64FC1);
638

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
639
        for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
640 641 642 643 644 645
        {
            Mat sampleProbs = trainProbs.row(sampleIndex);
            Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs, CV_64F);
            trainLogLikelihoods.at<double>(sampleIndex) = res[0];
            trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]);
        }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
646 647
    }

648
    void mStep()
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
649
    {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        // Update means_k, covs_k and weights_k from probs_ik
        int dim = trainSamples.cols;

        // Update weights
        // not normalized first
        reduce(trainProbs, weights, 0, CV_REDUCE_SUM);

        // Update means
        means.create(nclusters, dim, CV_64FC1);
        means = Scalar(0);

        const double minPosWeight = trainSamples.rows * DBL_EPSILON;
        double minWeight = DBL_MAX;
        int minWeightClusterIndex = -1;
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
        {
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
668

669 670 671 672 673
            if(weights.at<double>(clusterIndex) < minWeight)
            {
                minWeight = weights.at<double>(clusterIndex);
                minWeightClusterIndex = clusterIndex;
            }
674

675 676 677 678 679
            Mat clusterMean = means.row(clusterIndex);
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
                clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
            clusterMean /= weights.at<double>(clusterIndex);
        }
680

681 682 683 684 685 686 687
        // Update covsEigenValues and invCovsEigenValues
        covs.resize(nclusters);
        covsEigenValues.resize(nclusters);
        if(covMatType == COV_MAT_GENERIC)
            covsRotateMats.resize(nclusters);
        invCovsEigenValues.resize(nclusters);
        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
688
        {
689 690
            if(weights.at<double>(clusterIndex) <= minPosWeight)
                continue;
691

692 693
            if(covMatType != COV_MAT_SPHERICAL)
                covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
694
            else
695 696 697 698 699 700 701 702 703 704 705 706
                covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);

            if(covMatType == COV_MAT_GENERIC)
                covs[clusterIndex].create(dim, dim, CV_64FC1);

            Mat clusterCov = covMatType != COV_MAT_GENERIC ?
                covsEigenValues[clusterIndex] : covs[clusterIndex];

            clusterCov = Scalar(0);

            Mat centeredSample;
            for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
707
            {
708 709 710 711 712
                centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);

                if(covMatType == COV_MAT_GENERIC)
                    clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
                else
713
                {
714 715 716 717 718 719
                    double p = trainProbs.at<double>(sampleIndex, clusterIndex);
                    for(int di = 0; di < dim; di++ )
                    {
                        double val = centeredSample.at<double>(di);
                        clusterCov.at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0) += p*val*val;
                    }
720
                }
721 722
            }

723 724 725 726 727 728 729 730 731 732 733 734
            if(covMatType == COV_MAT_SPHERICAL)
                clusterCov /= dim;

            clusterCov /= weights.at<double>(clusterIndex);

            // Update covsRotateMats for COV_MAT_GENERIC only
            if(covMatType == COV_MAT_GENERIC)
            {
                SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
                covsEigenValues[clusterIndex] = svd.w;
                covsRotateMats[clusterIndex] = svd.u;
            }
735

736
            max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
737

738 739 740 741 742
            // update invCovsEigenValues
            invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
        }

        for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
743
        {
744 745 746 747 748 749 750 751 752 753
            if(weights.at<double>(clusterIndex) <= minPosWeight)
            {
                Mat clusterMean = means.row(clusterIndex);
                means.row(minWeightClusterIndex).copyTo(clusterMean);
                covs[minWeightClusterIndex].copyTo(covs[clusterIndex]);
                covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]);
                if(covMatType == COV_MAT_GENERIC)
                    covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]);
                invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]);
            }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
754
        }
755

756 757 758
        // Normalize weights
        weights /= trainSamples.rows;
    }
759

760 761
    void write_params(FileStorage& fs) const
    {
762 763 764 765 766 767
        fs << "nclusters" << nclusters;
        fs << "cov_mat_type" << (covMatType == COV_MAT_SPHERICAL ? String("spherical") :
                                 covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
                                 covMatType == COV_MAT_GENERIC ? String("generic") :
                                 format("unknown_%d", covMatType));
        writeTermCrit(fs, termCrit);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
768
    }
769

770
    void write(FileStorage& fs) const
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
771
    {
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        fs << "training_params" << "{";
        write_params(fs);
        fs << "}";
        fs << "weights" << weights;
        fs << "means" << means;

        size_t i, n = covs.size();

        fs << "covs" << "[";
        for( i = 0; i < n; i++ )
            fs << covs[i];
        fs << "]";
    }

    void read_params(const FileNode& fn)
    {
788
        nclusters = (int)fn["nclusters"];
789
        String s = (String)fn["cov_mat_type"];
790
        covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
791 792
                             s == "diagonal" ? COV_MAT_DIAGONAL :
                             s == "generic" ? COV_MAT_GENERIC : -1;
793 794
        CV_Assert(covMatType >= 0);
        termCrit = readTermCrit(fn);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    }

    void read(const FileNode& fn)
    {
        clear();
        read_params(fn["training_params"]);

        fn["weights"] >> weights;
        fn["means"] >> means;

        FileNode cfn = fn["covs"];
        FileNodeIterator cfn_it = cfn.begin();
        int i, n = (int)cfn.size();
        covs.resize(n);

        for( i = 0; i < n; i++, ++cfn_it )
            (*cfn_it) >> covs[i];

        decomposeCovs();
        computeLogWeightDivDet();
815
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    Mat getWeights() const { return weights; }
    Mat getMeans() const { return means; }
    void getCovs(std::vector<Mat>& _covs) const
    {
        _covs.resize(covs.size());
        std::copy(covs.begin(), covs.end(), _covs.begin());
    }

    // all inner matrices have type CV_64FC1
    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    Mat weights;
    Mat means;
    std::vector<Mat> covs;

    std::vector<Mat> covsEigenValues;
    std::vector<Mat> covsRotateMats;
    std::vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
};

841
Ptr<EM> EM::create()
842
{
843
    return makePtr<EMImpl>();
844 845 846
}

}
847
} // namespace cv
848 849

/* End of file. */