sgetri.c 6.62 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#include "clapack.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static real c_b20 = -1.f;
static real c_b22 = 1.f;

/* Subroutine */ int sgetri_(integer *n, real *a, integer *lda, integer *ipiv, 
	 real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, jb, nb, jj, jp, nn, iws, nbmin;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *), sgemv_(char *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *), sswap_(integer *, real *, integer *, 
	    real *, integer *), strsm_(char *, char *, char *, char *, 
	    integer *, integer *, real *, real *, integer *, real *, integer *
), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer ldwork, lwkopt;
    logical lquery;
    extern /* Subroutine */ int strtri_(char *, char *, integer *, real *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SGETRI computes the inverse of a matrix using the LU factorization */
/*  computed by SGETRF. */

/*  This method inverts U and then computes inv(A) by solving the system */
/*  inv(A)*L = inv(U) for inv(A). */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the factors L and U from the factorization */
/*          A = P*L*U as computed by SGETRF. */
/*          On exit, if INFO = 0, the inverse of the original matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices from SGETRF; for 1<=i<=N, row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
/*          For optimal performance LWORK >= N*NB, where NB is */
/*          the optimal blocksize returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
/*                singular and its inverse could not be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "SGETRI", " ", n, &c_n1, &c_n1, &c_n1);
    lwkopt = *n * nb;
    work[1] = (real) lwkopt;
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*lda < max(1,*n)) {
	*info = -3;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGETRI", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form inv(U).  If INFO > 0 from STRTRI, then U is singular, */
/*     and the inverse is not computed. */

    strtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
    if (*info > 0) {
	return 0;
    }

    nbmin = 2;
    ldwork = *n;
    if (nb > 1 && nb < *n) {
/* Computing MAX */
	i__1 = ldwork * nb;
	iws = max(i__1,1);
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX */
	    i__1 = 2, i__2 = ilaenv_(&c__2, "SGETRI", " ", n, &c_n1, &c_n1, &
		    c_n1);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = *n;
    }

/*     Solve the equation inv(A)*L = inv(U) for inv(A). */

    if (nb < nbmin || nb >= *n) {

/*        Use unblocked code. */

	for (j = *n; j >= 1; --j) {

/*           Copy current column of L to WORK and replace with zeros. */

	    i__1 = *n;
	    for (i__ = j + 1; i__ <= i__1; ++i__) {
		work[i__] = a[i__ + j * a_dim1];
		a[i__ + j * a_dim1] = 0.f;
/* L10: */
	    }

/*           Compute current column of inv(A). */

	    if (j < *n) {
		i__1 = *n - j;
		sgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 
			+ 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 
			+ 1], &c__1);
	    }
/* L20: */
	}
    } else {

/*        Use blocked code. */

	nn = (*n - 1) / nb * nb + 1;
	i__1 = -nb;
	for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
/* Computing MIN */
	    i__2 = nb, i__3 = *n - j + 1;
	    jb = min(i__2,i__3);

/*           Copy current block column of L to WORK and replace with */
/*           zeros. */

	    i__2 = j + jb - 1;
	    for (jj = j; jj <= i__2; ++jj) {
		i__3 = *n;
		for (i__ = jj + 1; i__ <= i__3; ++i__) {
		    work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
		    a[i__ + jj * a_dim1] = 0.f;
/* L30: */
		}
/* L40: */
	    }

/*           Compute current block column of inv(A). */

	    if (j + jb <= *n) {
		i__2 = *n - j - jb + 1;
		sgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, 
			&a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
			ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
	    }
	    strsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
		    work[j], &ldwork, &a[j * a_dim1 + 1], lda);
/* L50: */
	}
    }

/*     Apply column interchanges. */

    for (j = *n - 1; j >= 1; --j) {
	jp = ipiv[j];
	if (jp != j) {
	    sswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
	}
/* L60: */
    }

    work[1] = (real) iws;
    return 0;

/*     End of SGETRI */

} /* sgetri_ */