dlasd1.c 9.07 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
#include "clapack.h"

/* Table of constant values */

static integer c__0 = 0;
static doublereal c_b7 = 1.;
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre, 
	doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u, 
	integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
	iwork, doublereal *work, integer *info)
{
    /* System generated locals */
    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc, 
	    idxp, ldvt2;
    extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *), dlasd3_(
	    integer *, integer *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), 
	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *),
	     dlamrg_(integer *, integer *, doublereal *, integer *, integer *, 
	     integer *);
    integer isigma;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal orgnrm;
    integer coltyp;


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
/*  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */

/*  A related subroutine DLASD7 handles the case in which the singular */
/*  values (and the singular vectors in factored form) are desired. */

/*  DLASD1 computes the SVD as follows: */

/*                ( D1(in)  0    0     0 ) */
/*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in) */
/*                (   0     0   D2(in) 0 ) */

/*      = U(out) * ( D(out) 0) * VT(out) */

/*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
/*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
/*  elsewhere; and the entry b is empty if SQRE = 0. */

/*  The left singular vectors of the original matrix are stored in U, and */
/*  the transpose of the right singular vectors are stored in VT, and the */
/*  singular values are in D.  The algorithm consists of three stages: */

/*     The first stage consists of deflating the size of the problem */
/*     when there are multiple singular values or when there are zeros in */
/*     the Z vector.  For each such occurence the dimension of the */
/*     secular equation problem is reduced by one.  This stage is */
/*     performed by the routine DLASD2. */

/*     The second stage consists of calculating the updated */
/*     singular values. This is done by finding the square roots of the */
/*     roots of the secular equation via the routine DLASD4 (as called */
/*     by DLASD3). This routine also calculates the singular vectors of */
/*     the current problem. */

/*     The final stage consists of computing the updated singular vectors */
/*     directly using the updated singular values.  The singular vectors */
/*     for the current problem are multiplied with the singular vectors */
/*     from the overall problem. */

/*  Arguments */
/*  ========= */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block.  NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block.  NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has row dimension N = NL + NR + 1, */
/*         and column dimension M = N + SQRE. */

/*  D      (input/output) DOUBLE PRECISION array, */
/*                        dimension (N = NL+NR+1). */
/*         On entry D(1:NL,1:NL) contains the singular values of the */
/*         upper block; and D(NL+2:N) contains the singular values of */
/*         the lower block. On exit D(1:N) contains the singular values */
/*         of the modified matrix. */

/*  ALPHA  (input/output) DOUBLE PRECISION */
/*         Contains the diagonal element associated with the added row. */

/*  BETA   (input/output) DOUBLE PRECISION */
/*         Contains the off-diagonal element associated with the added */
/*         row. */

/*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
/*         On entry U(1:NL, 1:NL) contains the left singular vectors of */
/*         the upper block; U(NL+2:N, NL+2:N) contains the left singular */
/*         vectors of the lower block. On exit U contains the left */
/*         singular vectors of the bidiagonal matrix. */

/*  LDU    (input) INTEGER */
/*         The leading dimension of the array U.  LDU >= max( 1, N ). */

/*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
/*         where M = N + SQRE. */
/*         On entry VT(1:NL+1, 1:NL+1)' contains the right singular */
/*         vectors of the upper block; VT(NL+2:M, NL+2:M)' contains */
/*         the right singular vectors of the lower block. On exit */
/*         VT' contains the right singular vectors of the */
/*         bidiagonal matrix. */

/*  LDVT   (input) INTEGER */
/*         The leading dimension of the array VT.  LDVT >= max( 1, M ). */

/*  IDXQ  (output) INTEGER array, dimension(N) */
/*         This contains the permutation which will reintegrate the */
/*         subproblem just solved back into sorted order, i.e. */
/*         D( IDXQ( I = 1, N ) ) will be in ascending order. */

/*  IWORK  (workspace) INTEGER array, dimension( 4 * N ) */

/*  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */

/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    --idxq;
    --iwork;
    --work;

    /* Function Body */
    *info = 0;

    if (*nl < 1) {
	*info = -1;
    } else if (*nr < 1) {
	*info = -2;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD1", &i__1);
	return 0;
    }

    n = *nl + *nr + 1;
    m = n + *sqre;

/*     The following values are for bookkeeping purposes only.  They are */
/*     integer pointers which indicate the portion of the workspace */
/*     used by a particular array in DLASD2 and DLASD3. */

    ldu2 = n;
    ldvt2 = m;

    iz = 1;
    isigma = iz + m;
    iu2 = isigma + n;
    ivt2 = iu2 + ldu2 * n;
    iq = ivt2 + ldvt2 * m;

    idx = 1;
    idxc = idx + n;
    coltyp = idxc + n;
    idxp = coltyp + n;

/*     Scale. */

/* Computing MAX */
    d__1 = abs(*alpha), d__2 = abs(*beta);
    orgnrm = max(d__1,d__2);
    d__[*nl + 1] = 0.;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
	    orgnrm = (d__1 = d__[i__], abs(d__1));
	}
/* L10: */
    }
    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
    *alpha /= orgnrm;
    *beta /= orgnrm;

/*     Deflate singular values. */

    dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset], 
	    ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
	    work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
	    idxq[1], &iwork[coltyp], info);

/*     Solve Secular Equation and update singular vectors. */

    ldq = k;
    dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
	    u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
	    ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
    if (*info != 0) {
	return 0;
    }

/*     Unscale. */

    dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);

/*     Prepare the IDXQ sorting permutation. */

    n1 = k;
    n2 = n - k;
    dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);

    return 0;

/*     End of DLASD1 */

} /* dlasd1_ */