slasq4.c 8.94 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* slasq4.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17
/* Subroutine */ int slasq4_(integer *i0, integer *n0, real *z__, integer *pp, 
	 integer *n0in, real *dmin__, real *dmin1, real *dmin2, real *dn, 
18
	real *dn1, real *dn2, real *tau, integer *ttype, real *g)
19 20 21 22 23 24 25 26 27 28 29 30 31 32
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real s, a2, b1, b2;
    integer i4, nn, np;
    real gam, gap1, gap2;


33 34 35 36 37 38 39 40 41
/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
/*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
/*  -- Berkeley                                                        -- */
/*  -- November 2008                                                   -- */

/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLASQ4 computes an approximation TAU to the smallest eigenvalue */
/*  using values of d from the previous transform. */

/*  I0    (input) INTEGER */
/*        First index. */

/*  N0    (input) INTEGER */
/*        Last index. */

/*  Z     (input) REAL array, dimension ( 4*N ) */
/*        Z holds the qd array. */

/*  PP    (input) INTEGER */
/*        PP=0 for ping, PP=1 for pong. */

66
/*  NOIN  (input) INTEGER */
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*        The value of N0 at start of EIGTEST. */

/*  DMIN  (input) REAL */
/*        Minimum value of d. */

/*  DMIN1 (input) REAL */
/*        Minimum value of d, excluding D( N0 ). */

/*  DMIN2 (input) REAL */
/*        Minimum value of d, excluding D( N0 ) and D( N0-1 ). */

/*  DN    (input) REAL */
/*        d(N) */

/*  DN1   (input) REAL */
/*        d(N-1) */

/*  DN2   (input) REAL */
/*        d(N-2) */

/*  TAU   (output) REAL */
/*        This is the shift. */

/*  TTYPE (output) INTEGER */
/*        Shift type. */

93 94 95 96
/*  G     (input/output) REAL */
/*        G is passed as an argument in order to save its value between */
/*        calls to SLASQ4. */

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/*  Further Details */
/*  =============== */
/*  CNST1 = 9/16 */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     A negative DMIN forces the shift to take that absolute value */
/*     TTYPE records the type of shift. */

114 115 116 117
    /* Parameter adjustments */
    --z__;

    /* Function Body */
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    if (*dmin__ <= 0.f) {
	*tau = -(*dmin__);
	*ttype = -1;
	return 0;
    }

    nn = (*n0 << 2) + *pp;
    if (*n0in == *n0) {

/*        No eigenvalues deflated. */

	if (*dmin__ == *dn || *dmin__ == *dn1) {

	    b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
	    b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
	    a2 = z__[nn - 7] + z__[nn - 5];

/*           Cases 2 and 3. */

	    if (*dmin__ == *dn && *dmin1 == *dn1) {
		gap2 = *dmin2 - a2 - *dmin2 * .25f;
		if (gap2 > 0.f && gap2 > b2) {
		    gap1 = a2 - *dn - b2 / gap2 * b2;
		} else {
		    gap1 = a2 - *dn - (b1 + b2);
		}
		if (gap1 > 0.f && gap1 > b1) {
/* Computing MAX */
		    r__1 = *dn - b1 / gap1 * b1, r__2 = *dmin__ * .5f;
		    s = dmax(r__1,r__2);
		    *ttype = -2;
		} else {
		    s = 0.f;
		    if (*dn > b1) {
			s = *dn - b1;
		    }
		    if (a2 > b1 + b2) {
/* Computing MIN */
			r__1 = s, r__2 = a2 - (b1 + b2);
			s = dmin(r__1,r__2);
		    }
/* Computing MAX */
		    r__1 = s, r__2 = *dmin__ * .333f;
		    s = dmax(r__1,r__2);
		    *ttype = -3;
		}
	    } else {

/*              Case 4. */

		*ttype = -4;
		s = *dmin__ * .25f;
		if (*dmin__ == *dn) {
		    gam = *dn;
		    a2 = 0.f;
		    if (z__[nn - 5] > z__[nn - 7]) {
			return 0;
		    }
		    b2 = z__[nn - 5] / z__[nn - 7];
		    np = nn - 9;
		} else {
		    np = nn - (*pp << 1);
		    b2 = z__[np - 2];
		    gam = *dn1;
		    if (z__[np - 4] > z__[np - 2]) {
			return 0;
		    }
		    a2 = z__[np - 4] / z__[np - 2];
		    if (z__[nn - 9] > z__[nn - 11]) {
			return 0;
		    }
		    b2 = z__[nn - 9] / z__[nn - 11];
		    np = nn - 13;
		}

/*              Approximate contribution to norm squared from I < NN-1. */

		a2 += b2;
		i__1 = (*i0 << 2) - 1 + *pp;
		for (i4 = np; i4 >= i__1; i4 += -4) {
		    if (b2 == 0.f) {
			goto L20;
		    }
		    b1 = b2;
		    if (z__[i4] > z__[i4 - 2]) {
			return 0;
		    }
		    b2 *= z__[i4] / z__[i4 - 2];
		    a2 += b2;
		    if (dmax(b2,b1) * 100.f < a2 || .563f < a2) {
			goto L20;
		    }
/* L10: */
		}
L20:
		a2 *= 1.05f;

/*              Rayleigh quotient residual bound. */

		if (a2 < .563f) {
		    s = gam * (1.f - sqrt(a2)) / (a2 + 1.f);
		}
	    }
	} else if (*dmin__ == *dn2) {

/*           Case 5. */

	    *ttype = -5;
	    s = *dmin__ * .25f;

/*           Compute contribution to norm squared from I > NN-2. */

	    np = nn - (*pp << 1);
	    b1 = z__[np - 2];
	    b2 = z__[np - 6];
	    gam = *dn2;
	    if (z__[np - 8] > b2 || z__[np - 4] > b1) {
		return 0;
	    }
	    a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.f);

/*           Approximate contribution to norm squared from I < NN-2. */

	    if (*n0 - *i0 > 2) {
		b2 = z__[nn - 13] / z__[nn - 15];
		a2 += b2;
		i__1 = (*i0 << 2) - 1 + *pp;
		for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
		    if (b2 == 0.f) {
			goto L40;
		    }
		    b1 = b2;
		    if (z__[i4] > z__[i4 - 2]) {
			return 0;
		    }
		    b2 *= z__[i4] / z__[i4 - 2];
		    a2 += b2;
		    if (dmax(b2,b1) * 100.f < a2 || .563f < a2) {
			goto L40;
		    }
/* L30: */
		}
L40:
		a2 *= 1.05f;
	    }

	    if (a2 < .563f) {
		s = gam * (1.f - sqrt(a2)) / (a2 + 1.f);
	    }
	} else {

/*           Case 6, no information to guide us. */

	    if (*ttype == -6) {
272
		*g += (1.f - *g) * .333f;
273
	    } else if (*ttype == -18) {
274
		*g = .083250000000000005f;
275
	    } else {
276
		*g = .25f;
277
	    }
278
	    s = *g * *dmin__;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	    *ttype = -6;
	}

    } else if (*n0in == *n0 + 1) {

/*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */

	if (*dmin1 == *dn1 && *dmin2 == *dn2) {

/*           Cases 7 and 8. */

	    *ttype = -7;
	    s = *dmin1 * .333f;
	    if (z__[nn - 5] > z__[nn - 7]) {
		return 0;
	    }
	    b1 = z__[nn - 5] / z__[nn - 7];
	    b2 = b1;
	    if (b2 == 0.f) {
		goto L60;
	    }
	    i__1 = (*i0 << 2) - 1 + *pp;
	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
		a2 = b1;
		if (z__[i4] > z__[i4 - 2]) {
		    return 0;
		}
		b1 *= z__[i4] / z__[i4 - 2];
		b2 += b1;
		if (dmax(b1,a2) * 100.f < b2) {
		    goto L60;
		}
/* L50: */
	    }
L60:
	    b2 = sqrt(b2 * 1.05f);
/* Computing 2nd power */
	    r__1 = b2;
	    a2 = *dmin1 / (r__1 * r__1 + 1.f);
	    gap2 = *dmin2 * .5f - a2;
	    if (gap2 > 0.f && gap2 > b2 * a2) {
/* Computing MAX */
		r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2);
		s = dmax(r__1,r__2);
	    } else {
/* Computing MAX */
		r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f);
		s = dmax(r__1,r__2);
		*ttype = -8;
	    }
	} else {

/*           Case 9. */

	    s = *dmin1 * .25f;
	    if (*dmin1 == *dn1) {
		s = *dmin1 * .5f;
	    }
	    *ttype = -9;
	}

    } else if (*n0in == *n0 + 2) {

/*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */

/*        Cases 10 and 11. */

	if (*dmin2 == *dn2 && z__[nn - 5] * 2.f < z__[nn - 7]) {
	    *ttype = -10;
	    s = *dmin2 * .333f;
	    if (z__[nn - 5] > z__[nn - 7]) {
		return 0;
	    }
	    b1 = z__[nn - 5] / z__[nn - 7];
	    b2 = b1;
	    if (b2 == 0.f) {
		goto L80;
	    }
	    i__1 = (*i0 << 2) - 1 + *pp;
	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
		if (z__[i4] > z__[i4 - 2]) {
		    return 0;
		}
		b1 *= z__[i4] / z__[i4 - 2];
		b2 += b1;
		if (b1 * 100.f < b2) {
		    goto L80;
		}
/* L70: */
	    }
L80:
	    b2 = sqrt(b2 * 1.05f);
/* Computing 2nd power */
	    r__1 = b2;
	    a2 = *dmin2 / (r__1 * r__1 + 1.f);
	    gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
		    nn - 9]) - a2;
	    if (gap2 > 0.f && gap2 > b2 * a2) {
/* Computing MAX */
		r__1 = s, r__2 = a2 * (1.f - a2 * 1.01f * (b2 / gap2) * b2);
		s = dmax(r__1,r__2);
	    } else {
/* Computing MAX */
		r__1 = s, r__2 = a2 * (1.f - b2 * 1.01f);
		s = dmax(r__1,r__2);
	    }
	} else {
	    s = *dmin2 * .25f;
	    *ttype = -11;
	}
    } else if (*n0in > *n0 + 2) {

/*        Case 12, more than two eigenvalues deflated. No information. */

	s = 0.f;
	*ttype = -12;
    }

    *tau = s;
    return 0;

/*     End of SLASQ4 */

} /* slasq4_ */