ts_func.cpp 87.8 KB
Newer Older
1 2 3 4
#include "precomp.hpp"
#include <float.h>
#include <limits.h>

5 6 7 8
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "tegra.hpp"
#endif

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
using namespace cv;

namespace cvtest
{

const char* getTypeName( int type )
{
    static const char* type_names[] = { "8u", "8s", "16u", "16s", "32s", "32f", "64f", "ptr" };
    return type_names[CV_MAT_DEPTH(type)];
}

int typeByName( const char* name )
{
    int i;
    for( i = 0; i < CV_DEPTH_MAX; i++ )
        if( strcmp(name, getTypeName(i)) == 0 )
            return i;
    return -1;
}

string vec2str( const string& sep, const int* v, size_t nelems )
{
    char buf[32];
    string result = "";
    for( size_t i = 0; i < nelems; i++ )
    {
        sprintf(buf, "%d", v[i]);
        result += string(buf);
        if( i < nelems - 1 )
            result += sep;
    }
    return result;
}
42 43


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
Size randomSize(RNG& rng, double maxSizeLog)
{
    double width_log = rng.uniform(0., maxSizeLog);
    double height_log = rng.uniform(0., maxSizeLog - width_log);
    if( (unsigned)rng % 2 != 0 )
        std::swap(width_log, height_log);
    Size sz;
    sz.width = cvRound(exp(width_log));
    sz.height = cvRound(exp(height_log));
    return sz;
}

void randomSize(RNG& rng, int minDims, int maxDims, double maxSizeLog, vector<int>& sz)
{
    int i, dims = rng.uniform(minDims, maxDims+1);
    sz.resize(dims);
    for( i = 0; i < dims; i++ )
    {
        double v = rng.uniform(0., maxSizeLog);
        maxSizeLog -= v;
        sz[i] = cvRound(exp(v));
    }
    for( i = 0; i < dims; i++ )
    {
        int j = rng.uniform(0, dims);
        int k = rng.uniform(0, dims);
        std::swap(sz[j], sz[k]);
    }
}

int randomType(RNG& rng, int typeMask, int minChannels, int maxChannels)
{
    int channels = rng.uniform(minChannels, maxChannels+1);
    int depth = 0;
78
    CV_Assert((typeMask & DEPTH_MASK_ALL) != 0);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    for(;;)
    {
        depth = rng.uniform(CV_8U, CV_64F+1);
        if( ((1 << depth) & typeMask) != 0 )
            break;
    }
    return CV_MAKETYPE(depth, channels);
}

double getMinVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? 0 : depth == CV_8S ? SCHAR_MIN : depth == CV_16U ? 0 :
    depth == CV_16S ? SHRT_MIN : depth == CV_32S ? INT_MIN :
    depth == CV_32F ? -FLT_MAX : depth == CV_64F ? -DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
}

double getMaxVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? UCHAR_MAX : depth == CV_8S ? SCHAR_MAX : depth == CV_16U ? USHRT_MAX :
    depth == CV_16S ? SHRT_MAX : depth == CV_32S ? INT_MAX :
    depth == CV_32F ? FLT_MAX : depth == CV_64F ? DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
106 107
}

108 109 110 111 112 113 114 115
Mat randomMat(RNG& rng, Size size, int type, double minVal, double maxVal, bool useRoi)
{
    Size size0 = size;
    if( useRoi )
    {
        size0.width += std::max(rng.uniform(0, 10) - 5, 0);
        size0.height += std::max(rng.uniform(0, 10) - 5, 0);
    }
116

117
    Mat m(size0, type);
118

119
    rng.fill(m, RNG::UNIFORM, minVal, maxVal);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    if( size0 == size )
        return m;
    return m(Rect((size0.width-size.width)/2, (size0.height-size.height)/2, size.width, size.height));
}

Mat randomMat(RNG& rng, const vector<int>& size, int type, double minVal, double maxVal, bool useRoi)
{
    int i, dims = (int)size.size();
    vector<int> size0(dims);
    vector<Range> r(dims);
    bool eqsize = true;
    for( i = 0; i < dims; i++ )
    {
        size0[i] = size[i];
        r[i] = Range::all();
        if( useRoi )
        {
            size0[i] += std::max(rng.uniform(0, 5) - 2, 0);
            r[i] = Range((size0[i] - size[i])/2, (size0[i] - size[i])/2 + size[i]);
        }
        eqsize = eqsize && size[i] == size0[i];
    }
142

143
    Mat m(dims, &size0[0], type);
144

145
    rng.fill(m, RNG::UNIFORM, minVal, maxVal);
146 147 148 149
    if( eqsize )
        return m;
    return m(&r[0]);
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
void add(const Mat& _a, double alpha, const Mat& _b, double beta,
        Scalar gamma, Mat& c, int ctype, bool calcAbs)
{
    Mat a = _a, b = _b;
    if( a.empty() || alpha == 0 )
    {
        // both alpha and beta can be 0, but at least one of a and b must be non-empty array,
        // otherwise we do not know the size of the output (and may be type of the output, when ctype<0)
        CV_Assert( !a.empty() || !b.empty() );
        if( !b.empty() )
        {
            a = b;
            alpha = beta;
            b = Mat();
            beta = 0;
        }
    }
    if( b.empty() || beta == 0 )
    {
        b = Mat();
        beta = 0;
    }
    else
        CV_Assert(a.size == b.size);
175

176 177 178 179 180 181
    if( ctype < 0 )
        ctype = a.depth();
    ctype = CV_MAKETYPE(CV_MAT_DEPTH(ctype), a.channels());
    c.create(a.dims, &a.size[0], ctype);
    const Mat *arrays[] = {&a, &b, &c, 0};
    Mat planes[3], buf[3];
182

183
    NAryMatIterator it(arrays, planes);
184
    size_t i, nplanes = it.nplanes;
185
    int cn=a.channels();
186
    int total = (int)planes[0].total(), maxsize = std::min(12*12*std::max(12/cn, 1), total);
187

188
    CV_Assert(planes[0].rows == 1);
189
    buf[0].create(1, maxsize, CV_64FC(cn));
190 191 192 193
    if(!b.empty())
        buf[1].create(1, maxsize, CV_64FC(cn));
    buf[2].create(1, maxsize, CV_64FC(cn));
    scalarToRawData(gamma, buf[2].data, CV_64FC(cn), (int)(maxsize*cn));
194

195 196
    for( i = 0; i < nplanes; i++, ++it)
    {
197
        for( int j = 0; j < total; j += maxsize )
198
        {
199 200 201 202
            int j2 = std::min(j + maxsize, total);
            Mat apart0 = planes[0].colRange(j, j2);
            Mat cpart0 = planes[2].colRange(j, j2);
            Mat apart = buf[0].colRange(0, j2 - j);
203

204 205 206 207
            apart0.convertTo(apart, apart.type(), alpha);
            size_t k, n = (j2 - j)*cn;
            double* aptr = (double*)apart.data;
            const double* gptr = (const double*)buf[2].data;
208

209 210 211 212 213 214 215 216 217 218 219
            if( b.empty() )
            {
                for( k = 0; k < n; k++ )
                    aptr[k] += gptr[k];
            }
            else
            {
                Mat bpart0 = planes[1].colRange((int)j, (int)j2);
                Mat bpart = buf[1].colRange(0, (int)(j2 - j));
                bpart0.convertTo(bpart, bpart.type(), beta);
                const double* bptr = (const double*)bpart.data;
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                for( k = 0; k < n; k++ )
                    aptr[k] += bptr[k] + gptr[k];
            }
            if( calcAbs )
                for( k = 0; k < n; k++ )
                    aptr[k] = fabs(aptr[k]);
            apart.convertTo(cpart0, cpart0.type(), 1, 0);
        }
    }
}


template<typename _Tp1, typename _Tp2> inline void
convert_(const _Tp1* src, _Tp2* dst, size_t total, double alpha, double beta)
{
    size_t i;
    if( alpha == 1 && beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]);
    else if( beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha);
    else
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha + beta);
}

template<typename _Tp> inline void
convertTo(const _Tp* src, void* dst, int dtype, size_t total, double alpha, double beta)
{
    switch( CV_MAT_DEPTH(dtype) )
    {
    case CV_8U:
        convert_(src, (uchar*)dst, total, alpha, beta);
        break;
    case CV_8S:
        convert_(src, (schar*)dst, total, alpha, beta);
        break;
    case CV_16U:
        convert_(src, (ushort*)dst, total, alpha, beta);
        break;
    case CV_16S:
        convert_(src, (short*)dst, total, alpha, beta);
        break;
    case CV_32S:
        convert_(src, (int*)dst, total, alpha, beta);
        break;
    case CV_32F:
        convert_(src, (float*)dst, total, alpha, beta);
        break;
    case CV_64F:
        convert_(src, (double*)dst, total, alpha, beta);
        break;
    default:
        CV_Assert(0);
    }
}
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292
void convert(const Mat& src, Mat& dst, int dtype, double alpha, double beta)
{
    dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), src.channels());
    dst.create(src.dims, &src.size[0], dtype);
    if( alpha == 0 )
    {
        set( dst, Scalar::all(beta) );
        return;
    }
    if( dtype == src.type() && alpha == 1 && beta == 0 )
    {
        copy( src, dst );
        return;
    }
293

294 295
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
296

297 298
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
299
    size_t i, nplanes = it.nplanes;
300

301 302 303 304
    for( i = 0; i < nplanes; i++, ++it)
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        switch( src.depth() )
        {
        case CV_8U:
            convertTo((const uchar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_8S:
            convertTo((const schar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16U:
            convertTo((const ushort*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16S:
            convertTo((const short*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32S:
            convertTo((const int*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32F:
            convertTo((const float*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_64F:
            convertTo((const double*)sptr, dptr, dtype, total, alpha, beta);
            break;
        }
    }
}
332 333


334 335 336
void copy(const Mat& src, Mat& dst, const Mat& mask, bool invertMask)
{
    dst.create(src.dims, &src.size[0], src.type());
337

338 339 340 341 342
    if(mask.empty())
    {
        const Mat* arrays[] = {&src, &dst, 0};
        Mat planes[2];
        NAryMatIterator it(arrays, planes);
343
        size_t i, nplanes = it.nplanes;
344
        size_t planeSize = planes[0].total()*src.elemSize();
345

346 347
        for( i = 0; i < nplanes; i++, ++it )
            memcpy(planes[1].data, planes[0].data, planeSize);
348

349 350
        return;
    }
351

352
    CV_Assert( src.size == mask.size && mask.type() == CV_8U );
353

354 355
    const Mat *arrays[]={&src, &dst, &mask, 0};
    Mat planes[3];
356

357 358
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = src.elemSize(), total = planes[0].total();
359
    size_t i, nplanes = it.nplanes;
360

361 362 363 364 365
    for( i = 0; i < nplanes; i++, ++it)
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
        const uchar* mptr = planes[2].data;
366

367 368 369 370 371 372 373 374 375
        for( j = 0; j < total; j++, sptr += elemSize, dptr += elemSize )
        {
            if( (mptr[j] != 0) ^ invertMask )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = sptr[k];
        }
    }
}

376

377 378 379 380 381
void set(Mat& dst, const Scalar& gamma, const Mat& mask)
{
    double buf[12];
    scalarToRawData(gamma, &buf, dst.type(), dst.channels());
    const uchar* gptr = (const uchar*)&buf[0];
382

383 384 385 386 387
    if(mask.empty())
    {
        const Mat* arrays[] = {&dst, 0};
        Mat plane;
        NAryMatIterator it(arrays, &plane);
388
        size_t i, nplanes = it.nplanes;
389
        size_t j, k, elemSize = dst.elemSize(), planeSize = plane.total()*elemSize;
390

391 392 393 394
        for( k = 1; k < elemSize; k++ )
            if( gptr[k] != gptr[0] )
                break;
        bool uniform = k >= elemSize;
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        for( i = 0; i < nplanes; i++, ++it )
        {
            uchar* dptr = plane.data;
            if( uniform )
                memset( dptr, gptr[0], planeSize );
            else if( i == 0 )
            {
                for( j = 0; j < planeSize; j += elemSize, dptr += elemSize )
                    for( k = 0; k < elemSize; k++ )
                        dptr[k] = gptr[k];
            }
            else
                memcpy(dptr, dst.data, planeSize);
        }
        return;
    }
412

413
    CV_Assert( dst.size == mask.size && mask.type() == CV_8U );
414

415 416
    const Mat *arrays[]={&dst, &mask, 0};
    Mat planes[2];
417

418 419
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = dst.elemSize(), total = planes[0].total();
420
    size_t i, nplanes = it.nplanes;
421

422 423 424 425
    for( i = 0; i < nplanes; i++, ++it)
    {
        uchar* dptr = planes[0].data;
        const uchar* mptr = planes[1].data;
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440
        for( j = 0; j < total; j++, dptr += elemSize )
        {
            if( mptr[j] )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = gptr[k];
        }
    }
}


void insert(const Mat& src, Mat& dst, int coi)
{
    CV_Assert( dst.size == src.size && src.depth() == dst.depth() &&
              0 <= coi && coi < dst.channels() );
441

442 443 444
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
445
    size_t i, nplanes = it.nplanes;
446
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
447

448 449 450 451
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data + coi*size0;
452

453 454 455 456 457 458 459 460
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size0; k++ )
                dptr[k] = sptr[k];
        }
    }
}

461

462 463 464 465
void extract(const Mat& src, Mat& dst, int coi)
{
    dst.create( src.dims, &src.size[0], src.depth() );
    CV_Assert( 0 <= coi && coi < src.channels() );
466

467 468 469
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
470
    size_t i, nplanes = it.nplanes;
471
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
472

473 474 475 476
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data + coi*size1;
        uchar* dptr = planes[1].data;
477

478 479 480 481 482 483 484
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
485 486


487 488 489 490 491
void transpose(const Mat& src, Mat& dst)
{
    CV_Assert(src.dims == 2);
    dst.create(src.cols, src.rows, src.type());
    int i, j, k, esz = (int)src.elemSize();
492

493 494 495 496
    for( i = 0; i < dst.rows; i++ )
    {
        const uchar* sptr = src.ptr(0) + i*esz;
        uchar* dptr = dst.ptr(i);
497

498 499 500 501 502 503 504 505
        for( j = 0; j < dst.cols; j++, sptr += src.step[0], dptr += esz )
        {
            for( k = 0; k < esz; k++ )
                dptr[k] = sptr[k];
        }
    }
}

506

507 508 509 510 511 512 513 514 515 516 517
template<typename _Tp> static void
randUniInt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            int val = cvFloor( randInt(rng)*scale[k] + delta[k] );
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

518

519 520 521 522 523 524 525 526 527 528 529
template<typename _Tp> static void
randUniFlt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            double val = randReal(rng)*scale[k] + delta[k];
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

530

531 532 533 534 535
void randUni( RNG& rng, Mat& a, const Scalar& param0, const Scalar& param1 )
{
    Scalar scale = param0;
    Scalar delta = param1;
    double C = a.depth() < CV_32F ? 1./(65536.*65536.) : 1.;
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    for( int k = 0; k < 4; k++ )
    {
        double s = scale.val[k] - delta.val[k];
        if( s >= 0 )
            scale.val[k] = s;
        else
        {
            delta.val[k] = scale.val[k];
            scale.val[k] = -s;
        }
        scale.val[k] *= C;
    }

    const Mat *arrays[]={&a, 0};
    Mat plane;
552

553
    NAryMatIterator it(arrays, &plane);
554
    size_t i, nplanes = it.nplanes;
555
    int depth = a.depth(), cn = a.channels();
556
    size_t total = plane.total()*cn;
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    for( i = 0; i < nplanes; i++, ++it )
    {
        switch( depth )
        {
        case CV_8U:
            randUniInt_(rng, plane.ptr<uchar>(), total, cn, scale, delta);
            break;
        case CV_8S:
            randUniInt_(rng, plane.ptr<schar>(), total, cn, scale, delta);
            break;
        case CV_16U:
            randUniInt_(rng, plane.ptr<ushort>(), total, cn, scale, delta);
            break;
        case CV_16S:
            randUniInt_(rng, plane.ptr<short>(), total, cn, scale, delta);
            break;
        case CV_32S:
            randUniInt_(rng, plane.ptr<int>(), total, cn, scale, delta);
            break;
        case CV_32F:
            randUniFlt_(rng, plane.ptr<float>(), total, cn, scale, delta);
            break;
        case CV_64F:
            randUniFlt_(rng, plane.ptr<double>(), total, cn, scale, delta);
            break;
        default:
            CV_Assert(0);
        }
    }
}
588 589


590 591 592 593 594
template<typename _Tp> static void
erode_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
595

596 597 598 599
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
600

601 602 603 604 605 606 607 608 609 610
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::min(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}

611

612 613 614 615 616
template<typename _Tp> static void
dilate_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
617

618 619 620 621
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
622

623 624 625 626 627 628 629 630 631
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::max(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}
632 633


634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
void erode(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
           int borderType, const Scalar& _borderValue)
{
    //if( _src.type() == CV_16UC3 && _src.size() == Size(1, 2) )
    //    putchar('*');
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMaxVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
655

656 657 658 659 660 661 662 663
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    switch( src.depth() )
    {
    case CV_8U:
        erode_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        erode_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        erode_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        erode_<short>(src, dst, ofs);
        break;
    case CV_32S:
        erode_<int>(src, dst, ofs);
        break;
    case CV_32F:
        erode_<float>(src, dst, ofs);
        break;
    case CV_64F:
        erode_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
}

void dilate(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
            int borderType, const Scalar& _borderValue)
{
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
712

713 714 715 716 717 718 719 720
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    switch( src.depth() )
    {
    case CV_8U:
        dilate_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        dilate_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        dilate_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        dilate_<short>(src, dst, ofs);
        break;
    case CV_32S:
        dilate_<int>(src, dst, ofs);
        break;
    case CV_32F:
        dilate_<float>(src, dst, ofs);
        break;
    case CV_64F:
        dilate_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
748 749
}

750 751 752 753 754 755 756

template<typename _Tp> static void
filter2D_(const Mat& src, Mat& dst, const vector<int>& ofsvec, const vector<double>& coeffvec)
{
    const int* ofs = &ofsvec[0];
    const double* coeff = &coeffvec[0];
    int width = dst.cols*dst.channels(), ncoeffs = (int)ofsvec.size();
757

758 759 760 761
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        double* dptr = dst.ptr<double>(y);
762

763 764 765 766 767 768 769 770 771
        for( int x = 0; x < width; x++ )
        {
            double s = 0;
            for( int i = 0; i < ncoeffs; i++ )
                s += sptr[x + ofs[i]]*coeff[i];
            dptr[x] = s;
        }
    }
}
772 773


774 775 776 777 778 779 780 781 782 783 784 785 786 787
void filter2D(const Mat& _src, Mat& dst, int ddepth, const Mat& kernel,
              Point anchor, double delta, int borderType, const Scalar& _borderValue)
{
    Mat src, _dst;
    Scalar borderValue = _borderValue;
    CV_Assert( kernel.type() == CV_32F || kernel.type() == CV_64F );
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
    if( borderType == IPL_BORDER_CONSTANT )
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    _dst.create( _src.size(), CV_MAKETYPE(CV_64F, src.channels()) );
788

789 790 791 792
    vector<int> ofs;
    vector<double> coeff(kernel.rows*kernel.cols);
    Mat cmat(kernel.rows, kernel.cols, CV_64F, &coeff[0]);
    convert(kernel, cmat, cmat.type());
793

794 795 796 797
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
                ofs.push_back(i*step + j*cn);
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    switch( src.depth() )
    {
    case CV_8U:
        filter2D_<uchar>(src, _dst, ofs, coeff);
        break;
    case CV_8S:
        filter2D_<schar>(src, _dst, ofs, coeff);
        break;
    case CV_16U:
        filter2D_<ushort>(src, _dst, ofs, coeff);
        break;
    case CV_16S:
        filter2D_<short>(src, _dst, ofs, coeff);
        break;
    case CV_32S:
        filter2D_<int>(src, _dst, ofs, coeff);
        break;
    case CV_32F:
        filter2D_<float>(src, _dst, ofs, coeff);
        break;
    case CV_64F:
        filter2D_<double>(src, _dst, ofs, coeff);
        break;
    default:
        CV_Assert(0);
    }
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    convert(_dst, dst, ddepth, 1, delta);
}


static int borderInterpolate( int p, int len, int borderType )
{
    if( (unsigned)p < (unsigned)len )
        ;
    else if( borderType == IPL_BORDER_REPLICATE )
        p = p < 0 ? 0 : len - 1;
    else if( borderType == IPL_BORDER_REFLECT || borderType == IPL_BORDER_REFLECT_101 )
    {
        int delta = borderType == IPL_BORDER_REFLECT_101;
        if( len == 1 )
            return 0;
        do
        {
            if( p < 0 )
                p = -p - 1 + delta;
            else
                p = len - 1 - (p - len) - delta;
        }
        while( (unsigned)p >= (unsigned)len );
    }
    else if( borderType == IPL_BORDER_WRAP )
    {
        if( p < 0 )
            p -= ((p-len+1)/len)*len;
        if( p >= len )
            p %= len;
    }
    else if( borderType == IPL_BORDER_CONSTANT )
        p = -1;
    else
        CV_Error( CV_StsBadArg, "Unknown/unsupported border type" );
    return p;
862 863
}

864 865 866 867 868 869 870

void copyMakeBorder(const Mat& src, Mat& dst, int top, int bottom, int left, int right,
                    int borderType, const Scalar& borderValue)
{
    dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
    int i, j, k, esz = (int)src.elemSize();
    int width = src.cols*esz, width1 = dst.cols*esz;
871

872 873 874 875 876
    if( borderType == IPL_BORDER_CONSTANT )
    {
        vector<uchar> valvec((src.cols + left + right)*esz);
        uchar* val = &valvec[0];
        scalarToRawData(borderValue, val, src.type(), (src.cols + left + right)*src.channels());
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top) + left;
            for( j = 0; j < left; j++ )
                dptr[j - left] = val[j];
            if( dptr != sptr )
                for( j = 0; j < width; j++ )
                    dptr[j] = sptr[j];
            for( j = 0; j < right; j++ )
                dptr[j + width] = val[j];
        }
892

893 894 895 896 897 898
        for( i = 0; i < top; i++ )
        {
            uchar* dptr = dst.ptr(i);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
899

900 901 902 903 904 905 906 907 908
        for( i = 0; i < bottom; i++ )
        {
            uchar* dptr = dst.ptr(i + top + src.rows);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
    }
    else
    {
909
        vector<int> tabvec((left + right)*esz + 1);
910 911 912 913 914 915 916 917 918 919 920 921 922 923
        int* ltab = &tabvec[0];
        int* rtab = &tabvec[left*esz];
        for( i = 0; i < left; i++ )
        {
            j = borderInterpolate(i - left, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                ltab[i*esz + k] = j + k;
        }
        for( i = 0; i < right; i++ )
        {
            j = borderInterpolate(src.cols + i, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                rtab[i*esz + k] = j + k;
        }
924

925 926 927 928 929 930
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top);
931

932 933 934 935 936 937 938 939 940 941
            for( j = 0; j < left; j++ )
                dptr[j] = sptr[ltab[j]];
            if( dptr + left != sptr )
            {
                for( j = 0; j < width; j++ )
                    dptr[j + left] = sptr[j];
            }
            for( j = 0; j < right; j++ )
                dptr[j + left + width] = sptr[rtab[j]];
        }
942

943 944 945 946 947
        for( i = 0; i < top; i++ )
        {
            j = borderInterpolate(i - top, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i);
948

949 950 951
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
952

953 954 955 956 957
        for( i = 0; i < bottom; i++ )
        {
            j = borderInterpolate(i + src.rows, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i + top + src.rows);
958

959 960 961 962 963
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
964

965 966 967 968 969 970 971 972 973

template<typename _Tp> static void
minMaxLoc_(const _Tp* src, size_t total, size_t startidx,
           double* _minval, double* _maxval,
           size_t* _minpos, size_t* _maxpos,
           const uchar* mask)
{
    _Tp maxval = saturate_cast<_Tp>(*_maxval), minval = saturate_cast<_Tp>(*_minval);
    size_t minpos = *_minpos, maxpos = *_maxpos;
974

975 976 977 978 979
    if( !mask )
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
980
            if( minval > val || !minpos )
981 982 983 984
            {
                minval = val;
                minpos = startidx + i;
            }
985
            if( maxval < val || !maxpos )
986 987 988 989 990 991 992 993 994 995 996
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
997
            if( (minval > val || !minpos) && mask[i] )
998 999 1000 1001
            {
                minval = val;
                minpos = startidx + i;
            }
1002
            if( (maxval < val || !maxpos) && mask[i] )
1003 1004 1005 1006 1007 1008
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    *_maxval = maxval;
    *_minval = minval;
    *_maxpos = maxpos;
    *_minpos = minpos;
}


static void setpos( const Mat& mtx, vector<int>& pos, size_t idx )
{
    pos.resize(mtx.dims);
    if( idx > 0 )
    {
        idx--;
        for( int i = mtx.dims-1; i >= 0; i-- )
        {
            int sz = mtx.size[i]*(i == mtx.dims-1 ? mtx.channels() : 1);
1026
            pos[i] = (int)(idx % sz);
1027 1028 1029 1030 1031 1032 1033 1034 1035
            idx /= sz;
        }
    }
    else
    {
        for( int i = mtx.dims-1; i >= 0; i-- )
            pos[i] = -1;
    }
}
1036

1037 1038 1039 1040 1041 1042 1043
void minMaxLoc(const Mat& src, double* _minval, double* _maxval,
               vector<int>* _minloc, vector<int>* _maxloc,
               const Mat& mask)
{
    CV_Assert( src.channels() == 1 );
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1044

1045 1046
    NAryMatIterator it(arrays, planes);
    size_t startidx = 1, total = planes[0].total();
1047
    size_t i, nplanes = it.nplanes;
1048
    int depth = src.depth();
1049 1050
    double minval = 0;
    double maxval = 0;
1051
    size_t maxidx = 0, minidx = 0;
1052

1053 1054 1055 1056
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        switch( depth )
        {
        case CV_8U:
            minMaxLoc_((const uchar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_8S:
            minMaxLoc_((const schar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16U:
            minMaxLoc_((const ushort*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16S:
            minMaxLoc_((const short*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32S:
            minMaxLoc_((const int*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32F:
            minMaxLoc_((const float*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_64F:
            minMaxLoc_((const double*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        default:
            CV_Assert(0);
        }
    }
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    if( _maxval )
        *_maxval = maxval;
    if( _minval )
        *_minval = minval;
    if( _maxloc )
        setpos( src, *_maxloc, maxidx );
    if( _minloc )
        setpos( src, *_minloc, minidx );
}

1103

1104 1105 1106 1107 1108 1109
static int
normHamming(const uchar* src, size_t total, int cellSize)
{
    int result = 0;
    int mask = cellSize == 1 ? 1 : cellSize == 2 ? 3 : cellSize == 4 ? 15 : -1;
    CV_Assert( mask >= 0 );
1110

1111 1112 1113 1114 1115 1116 1117 1118
    for( size_t i = 0; i < total; i++ )
    {
        unsigned a = src[i];
        for( ; a != 0; a >>= cellSize )
            result += (a & mask) != 0;
    }
    return result;
}
1119 1120


1121 1122 1123 1124 1125 1126 1127
template<typename _Tp> static double
norm_(const _Tp* src, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1128

1129 1130 1131 1132
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1133
                result = std::max(result, (double)std::abs(0+src[i]));// trick with 0 used to quiet gcc warning
1134 1135 1136 1137 1138
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1139
                        result = std::max(result, (double)std::abs(0+src[i*cn + c]));
1140 1141 1142 1143 1144 1145
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1146
                result += std::abs(0+src[i]);
1147 1148 1149 1150 1151
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1152
                        result += std::abs(0+src[i*cn + c]);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}


template<typename _Tp> static double
norm_(const _Tp* src1, const _Tp* src2, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result = std::max(result, (double)std::abs(src1[i] - src2[i]));
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result = std::max(result, (double)std::abs(src1[i*cn + c] - src2[i*cn + c]));
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result += std::abs(src1[i] - src2[i]);
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result += std::abs(src1[i*cn + c] - src2[i*cn + c]);
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src1[i] - src2[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src1[i*cn + c] - src2[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}
1233 1234


1235 1236
double norm(const Mat& src, int normType, const Mat& mask)
{
1237 1238 1239 1240 1241 1242 1243 1244
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        if( !mask.empty() )
        {
            Mat temp;
            bitwise_and(src, mask, temp);
            return norm(temp, normType, Mat());
        }
1245

1246
        CV_Assert( src.depth() == CV_8U );
1247

1248 1249
        const Mat *arrays[]={&src, 0};
        Mat planes[1];
1250

1251 1252 1253 1254 1255
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1256

1257 1258 1259 1260
        for( i = 0; i < nplanes; i++, ++it )
            result += normHamming(planes[0].data, total, cellSize);
        return result;
    }
1261 1262
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1263

1264 1265
    CV_Assert( mask.empty() || (src.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
1266

1267 1268
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1269

1270 1271
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1272 1273
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = planes[0].channels();
1274
    double result = 0;
1275

1276 1277 1278 1279
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr, total, cn, normType, result, mptr);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
1308
    if( normType0 == NORM_L2 )
1309 1310 1311 1312
        result = sqrt(result);
    return result;
}

1313

1314 1315
double norm(const Mat& src1, const Mat& src2, int normType, const Mat& mask)
{
1316 1317 1318 1319 1320 1321
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        Mat temp;
        bitwise_xor(src1, src2, temp);
        if( !mask.empty() )
            bitwise_and(temp, mask, temp);
1322

1323
        CV_Assert( temp.depth() == CV_8U );
1324

1325 1326
        const Mat *arrays[]={&temp, 0};
        Mat planes[1];
1327

1328 1329 1330 1331 1332
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1333

1334 1335 1336 1337
        for( i = 0; i < nplanes; i++, ++it )
            result += normHamming(planes[0].data, total, cellSize);
        return result;
    }
1338 1339
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1340

1341 1342 1343 1344 1345
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    CV_Assert( mask.empty() || (src1.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
    const Mat *arrays[]={&src1, &src2, &mask, 0};
    Mat planes[3];
1346

1347 1348
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1349
    size_t i, nplanes = it.nplanes;
1350
    int depth = src1.depth(), cn = planes[0].channels();
1351
    double result = 0;
1352

1353 1354 1355 1356 1357
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        const uchar* mptr = planes[2].data;
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr1, (const uchar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr1, (const schar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr1, (const ushort*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr1, (const short*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr1, (const int*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr1, (const float*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr1, (const double*)sptr2, total, cn, normType, result, mptr);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
1386
    if( normType0 == NORM_L2 )
1387 1388 1389 1390
        result = sqrt(result);
    return result;
}

1391

1392 1393 1394 1395 1396 1397 1398 1399
template<typename _Tp> static double
crossCorr_(const _Tp* src1, const _Tp* src2, size_t total)
{
    double result = 0;
    for( size_t i = 0; i < total; i++ )
        result += (double)src1[i]*src2[i];
    return result;
}
1400

1401 1402 1403 1404 1405
double crossCorr(const Mat& src1, const Mat& src2)
{
    CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
1406

1407 1408
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1409
    size_t i, nplanes = it.nplanes;
1410
    int depth = src1.depth();
1411
    double result = 0;
1412

1413 1414 1415 1416
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        switch( depth )
        {
        case CV_8U:
            result += crossCorr_((const uchar*)sptr1, (const uchar*)sptr2, total);
            break;
        case CV_8S:
            result += crossCorr_((const schar*)sptr1, (const schar*)sptr2, total);
            break;
        case CV_16U:
            result += crossCorr_((const ushort*)sptr1, (const ushort*)sptr2, total);
            break;
        case CV_16S:
            result += crossCorr_((const short*)sptr1, (const short*)sptr2, total);
            break;
        case CV_32S:
            result += crossCorr_((const int*)sptr1, (const int*)sptr2, total);
            break;
        case CV_32F:
            result += crossCorr_((const float*)sptr1, (const float*)sptr2, total);
            break;
        case CV_64F:
            result += crossCorr_((const double*)sptr1, (const double*)sptr2, total);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        };
    }
    return result;
}
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

static void
logicOp_(const uchar* src1, const uchar* src2, uchar* dst, size_t total, char c)
{
    size_t i;
    if( c == '&' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] & src2[i];
    else if( c == '|' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] | src2[i];
    else
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] ^ src2[i];
}

static void
logicOpS_(const uchar* src, const uchar* scalar, uchar* dst, size_t total, char c)
{
    const size_t blockSize = 96;
    size_t i, j;
    if( c == '&' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1472
            size_t sz = MIN(total - i, blockSize);
1473 1474 1475 1476 1477 1478
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] & scalar[j];
        }
    else if( c == '|' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1479
            size_t sz = MIN(total - i, blockSize);
1480 1481 1482 1483 1484 1485 1486
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] | scalar[j];
        }
    else if( c == '^' )
    {
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1487
            size_t sz = MIN(total - i, blockSize);
1488 1489 1490 1491 1492 1493 1494
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] ^ scalar[j];
        }
    }
    else
        for( i = 0; i < total; i++ )
            dst[i] = ~src[i];
1495 1496 1497
}


1498 1499 1500 1501 1502 1503 1504
void logicOp( const Mat& src1, const Mat& src2, Mat& dst, char op )
{
    CV_Assert( op == '&' || op == '|' || op == '^' );
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], src1.type() );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1505

1506 1507
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1508
    size_t i, nplanes = it.nplanes;
1509

1510 1511 1512 1513 1514
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
1515

1516 1517 1518
        logicOp_(sptr1, sptr2, dptr, total, op);
    }
}
1519 1520


1521 1522 1523 1524 1525 1526
void logicOp(const Mat& src, const Scalar& s, Mat& dst, char op)
{
    CV_Assert( op == '&' || op == '|' || op == '^' || op == '~' );
    dst.create( src.dims, &src.size[0], src.type() );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1527

1528 1529
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1530
    size_t i, nplanes = it.nplanes;
1531
    double buf[12];
1532
    scalarToRawData(s, buf, src.type(), (int)(96/planes[0].elemSize1()));
1533

1534 1535 1536 1537
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        logicOpS_(sptr, (uchar*)&buf[0], dptr, total, op);
    }
}


template<typename _Tp> static void
compare_(const _Tp* src1, const _Tp* src2, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < src2[i] ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= src2[i] ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == src2[i] ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != src2[i] ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= src2[i] ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > src2[i] ? 255 : 0;
        break;
    default:
        CV_Error(CV_StsBadArg, "Unknown comparison operation");
    }
}


template<typename _Tp, typename _WTp> static void
compareS_(const _Tp* src1, _WTp value, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < value ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= value ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == value ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != value ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= value ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > value ? 255 : 0;
        break;
    default:
        CV_Error(CV_StsBadArg, "Unknown comparison operation");
    }
1613 1614 1615
}


1616 1617 1618 1619 1620 1621
void compare(const Mat& src1, const Mat& src2, Mat& dst, int cmpop)
{
    CV_Assert( src1.type() == src2.type() && src1.channels() == 1 && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], CV_8U );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1622

1623 1624
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1625
    size_t i, nplanes = it.nplanes;
1626 1627
    int depth = src1.depth();

1628 1629 1630 1631 1632
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        switch( depth )
        {
        case CV_8U:
            compare_((const uchar*)sptr1, (const uchar*)sptr2, dptr, total, cmpop);
            break;
        case CV_8S:
            compare_((const schar*)sptr1, (const schar*)sptr2, dptr, total, cmpop);
            break;
        case CV_16U:
            compare_((const ushort*)sptr1, (const ushort*)sptr2, dptr, total, cmpop);
            break;
        case CV_16S:
            compare_((const short*)sptr1, (const short*)sptr2, dptr, total, cmpop);
            break;
        case CV_32S:
            compare_((const int*)sptr1, (const int*)sptr2, dptr, total, cmpop);
            break;
        case CV_32F:
            compare_((const float*)sptr1, (const float*)sptr2, dptr, total, cmpop);
            break;
        case CV_64F:
            compare_((const double*)sptr1, (const double*)sptr2, dptr, total, cmpop);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
1662

1663 1664 1665 1666 1667 1668
void compare(const Mat& src, double value, Mat& dst, int cmpop)
{
    CV_Assert( src.channels() == 1 );
    dst.create( src.dims, &src.size[0], CV_8U );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1669

1670 1671
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1672
    size_t i, nplanes = it.nplanes;
1673
    int depth = src.depth();
1674
    int ivalue = saturate_cast<int>(value);
1675

1676 1677 1678 1679
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        switch( depth )
        {
        case CV_8U:
            compareS_((const uchar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_8S:
            compareS_((const schar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16U:
            compareS_((const ushort*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16S:
            compareS_((const short*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32S:
            compareS_((const int*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32F:
            compareS_((const float*)sptr, value, dptr, total, cmpop);
            break;
        case CV_64F:
            compareS_((const double*)sptr, value, dptr, total, cmpop);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

1710

1711
template<typename _Tp> double
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
cmpUlpsInt_(const _Tp* src1, const _Tp* src2, size_t total, int imaxdiff,
           size_t startidx, size_t& idx)
{
    size_t i;
    int realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        int diff = std::abs(src1[i] - src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}

1730

1731
template<> double cmpUlpsInt_<int>(const int* src1, const int* src2,
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                                          size_t total, int imaxdiff,
                                          size_t startidx, size_t& idx)
{
    size_t i;
    double realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        double diff = fabs((double)src1[i] - (double)src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
1748 1749
}

1750

1751 1752
static double
cmpUlpsFlt_(const int* src1, const int* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
1753
{
1754 1755
    const int C = 0x7fffffff;
    int realmaxdiff = 0;
1756 1757 1758
    size_t i;
    for( i = 0; i < total; i++ )
    {
1759
        int a = src1[i], b = src2[i];
1760
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
1761
        int diff = std::abs(a - b);
1762 1763 1764 1765 1766 1767 1768 1769 1770
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

static double
cmpUlpsFlt_(const int64* src1, const int64* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
{
    const int64 C = CV_BIG_INT(0x7fffffffffffffff);
    double realmaxdiff = 0;
    size_t i;
    for( i = 0; i < total; i++ )
    {
        int64 a = src1[i], b = src2[i];
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
        double diff = fabs((double)a - (double)b);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1793

1794 1795 1796 1797 1798 1799 1800
bool cmpUlps(const Mat& src1, const Mat& src2, int imaxDiff, double* _realmaxdiff, vector<int>* loc)
{
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1801
    size_t i, nplanes = it.nplanes;
1802
    int depth = src1.depth();
1803 1804 1805
    size_t startidx = 1, idx = 0;
    if(_realmaxdiff)
        *_realmaxdiff = 0;
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        double realmaxdiff = 0;

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32F:
            realmaxdiff = cmpUlpsFlt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_64F:
            realmaxdiff = cmpUlpsFlt_((const int64*)sptr1, (const int64*)sptr2, total, imaxDiff, startidx, idx);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
1839

1840 1841 1842 1843 1844 1845 1846 1847
        if(_realmaxdiff)
            *_realmaxdiff = std::max(*_realmaxdiff, realmaxdiff);
    }
    if(idx > 0 && loc)
        setpos(src1, *loc, idx);
    return idx == 0;
}

1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
template<typename _Tp> static void
checkInt_(const _Tp* a, size_t total, int imin, int imax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        int val = a[i];
        if( val < imin || val > imax )
        {
            idx = i + startidx;
            break;
        }
    }
}

1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
template<typename _Tp> static void
checkFlt_(const _Tp* a, size_t total, double fmin, double fmax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        double val = a[i];
        if( cvIsNaN(val) || cvIsInf(val) || val < fmin || val > fmax )
        {
            idx = i + startidx;
            break;
        }
    }
}
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886

// checks that the array does not have NaNs and/or Infs and all the elements are
// within [min_val,max_val). idx is the index of the first "bad" element.
int check( const Mat& a, double fmin, double fmax, vector<int>* _idx )
{
    const Mat *arrays[]={&a, 0};
    Mat plane;
    NAryMatIterator it(arrays, &plane);
    size_t total = plane.total()*plane.channels();
1887
    size_t i, nplanes = it.nplanes;
1888
    int depth = a.depth();
1889 1890
    size_t startidx = 1, idx = 0;
    int imin = 0, imax = 0;
1891

1892 1893 1894 1895
    if( depth <= CV_32S )
    {
        imin = cvCeil(fmin);
        imax = cvFloor(fmax);
1896 1897
    }

1898 1899 1900
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* aptr = plane.data;
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        switch( depth )
        {
            case CV_8U:
                checkInt_((const uchar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_8S:
                checkInt_((const schar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16U:
                checkInt_((const ushort*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16S:
                checkInt_((const short*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32S:
                checkInt_((const int*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32F:
                checkFlt_((const float*)aptr, total, fmin, fmax, startidx, idx);
                break;
            case CV_64F:
                checkFlt_((const double*)aptr, total, fmin, fmax, startidx, idx);
                break;
            default:
                CV_Error(CV_StsUnsupportedFormat, "");
        }
1928

1929 1930 1931
        if( idx != 0 )
            break;
    }
1932

1933 1934 1935 1936 1937
    if(idx != 0 && _idx)
        setpos(a, *_idx, idx);
    return idx == 0 ? 0 : -1;
}

1938 1939 1940 1941
#define CMP_EPS_OK 0
#define CMP_EPS_BIG_DIFF -1
#define CMP_EPS_INVALID_TEST_DATA -2 // there is NaN or Inf value in test data
#define CMP_EPS_INVALID_REF_DATA -3 // there is NaN or Inf value in reference data
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

// compares two arrays. max_diff is the maximum actual difference,
// success_err_level is maximum allowed difference, idx is the index of the first
// element for which difference is >success_err_level
// (or index of element with the maximum difference)
int cmpEps( const Mat& arr, const Mat& refarr, double* _realmaxdiff,
            double success_err_level, vector<int>* _idx,
            bool element_wise_relative_error )
{
    CV_Assert( arr.type() == refarr.type() && arr.size == refarr.size );
1952

1953
    int ilevel = refarr.depth() <= CV_32S ? cvFloor(success_err_level) : 0;
1954
    int result = CMP_EPS_OK;
1955 1956 1957 1958 1959

    const Mat *arrays[]={&arr, &refarr, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels(), j = total;
1960
    size_t i, nplanes = it.nplanes;
1961
    int depth = arr.depth();
1962 1963
    size_t startidx = 1, idx = 0;
    double realmaxdiff = 0, maxval = 0;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    if(_realmaxdiff)
        *_realmaxdiff = 0;

    if( refarr.depth() >= CV_32F && !element_wise_relative_error )
    {
        maxval = cvtest::norm( refarr, NORM_INF );
        maxval = MAX(maxval, 1.);
    }

    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((float*)sptr1)[j];
                double b_val = ((float*)sptr2)[j];
                double threshold;
                if( ((int*)sptr1)[j] == ((int*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2006
                    result = CMP_EPS_INVALID_TEST_DATA;
2007 2008 2009 2010 2011
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2012
                    result = CMP_EPS_INVALID_REF_DATA;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    if( idx == 0 )
                        idx = startidx + j;
                    break;
                }
            }
            break;
        case CV_64F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((double*)sptr1)[j];
                double b_val = ((double*)sptr2)[j];
                double threshold;
                if( ((int64*)sptr1)[j] == ((int64*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2037
                    result = CMP_EPS_INVALID_TEST_DATA;
2038 2039 2040 2041 2042
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2043
                    result = CMP_EPS_INVALID_REF_DATA;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    idx = startidx + j;
                    break;
                }
            }
            break;
        default:
            assert(0);
2059
            return CMP_EPS_BIG_DIFF;
2060 2061 2062 2063 2064 2065 2066 2067
        }
        if(_realmaxdiff)
            *_realmaxdiff = MAX(*_realmaxdiff, realmaxdiff);
        if( idx != 0 )
            break;
    }

    if( result == 0 && idx != 0 )
2068
        result = CMP_EPS_BIG_DIFF;
2069 2070 2071 2072 2073

    if( result < -1 && _realmaxdiff )
        *_realmaxdiff = exp(1000.);
    if(idx > 0 && _idx)
        setpos(arr, *_idx, idx);
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    return result;
}


int cmpEps2( TS* ts, const Mat& a, const Mat& b, double success_err_level,
             bool element_wise_relative_error, const char* desc )
{
    char msg[100];
    double diff = 0;
    vector<int> idx;
    int code = cmpEps( a, b, &diff, success_err_level, &idx, element_wise_relative_error );

    switch( code )
    {
2089
    case CMP_EPS_BIG_DIFF:
2090 2091 2092
        sprintf( msg, "%s: Too big difference (=%g)", desc, diff );
        code = TS::FAIL_BAD_ACCURACY;
        break;
2093
    case CMP_EPS_INVALID_TEST_DATA:
2094 2095 2096
        sprintf( msg, "%s: Invalid output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
2097
    case CMP_EPS_INVALID_REF_DATA:
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        sprintf( msg, "%s: Invalid reference output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
    default:
        ;
    }

    if( code < 0 )
    {
        if( a.total() == 1 )
        {
            ts->printf( TS::LOG, "%s\n", msg );
        }
        else if( a.dims == 2 && (a.rows == 1 || a.cols == 1) )
        {
            ts->printf( TS::LOG, "%s at element %d\n", msg, idx[0] + idx[1] );
        }
        else
        {
            string idxstr = vec2str(", ", &idx[0], idx.size());
            ts->printf( TS::LOG, "%s at (%s)\n", msg, idxstr.c_str() );
        }
    }

    return code;
}


int cmpEps2_64f( TS* ts, const double* val, const double* refval, int len,
             double eps, const char* param_name )
{
    Mat _val(1, len, CV_64F, (void*)val);
    Mat _refval(1, len, CV_64F, (void*)refval);

    return cmpEps2( ts, _val, _refval, eps, true, param_name );
}

2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
template<typename _Tp> static void
GEMM_(const _Tp* a_data0, int a_step, int a_delta,
      const _Tp* b_data0, int b_step, int b_delta,
      const _Tp* c_data0, int c_step, int c_delta,
      _Tp* d_data, int d_step,
      int d_rows, int d_cols, int a_cols, int cn,
      double alpha, double beta)
{
    for( int i = 0; i < d_rows; i++, d_data += d_step, c_data0 += c_step, a_data0 += a_step )
    {
        for( int j = 0; j < d_cols; j++ )
        {
            const _Tp* a_data = a_data0;
            const _Tp* b_data = b_data0 + j*b_delta;
            const _Tp* c_data = c_data0 + j*c_delta;
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
            if( cn == 1 )
            {
                double s = 0;
                for( int k = 0; k < a_cols; k++ )
                {
                    s += ((double)a_data[0])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
                d_data[j] = (_Tp)(s*alpha + (c_data ? c_data[0]*beta : 0));
            }
            else
            {
                double s_re = 0, s_im = 0;
2166

2167 2168 2169 2170 2171 2172 2173
                for( int k = 0; k < a_cols; k++ )
                {
                    s_re += ((double)a_data[0])*b_data[0] - ((double)a_data[1])*b_data[1];
                    s_im += ((double)a_data[0])*b_data[1] + ((double)a_data[1])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
2174

2175 2176
                s_re *= alpha;
                s_im *= alpha;
2177

2178 2179 2180 2181 2182
                if( c_data )
                {
                    s_re += c_data[0]*beta;
                    s_im += c_data[1]*beta;
                }
2183

2184 2185 2186 2187 2188 2189
                d_data[j*2] = (_Tp)s_re;
                d_data[j*2+1] = (_Tp)s_im;
            }
        }
    }
}
2190 2191


2192 2193 2194 2195
void gemm( const Mat& _a, const Mat& _b, double alpha,
           const Mat& _c, double beta, Mat& d, int flags )
{
    Mat a = _a, b = _b, c = _c;
2196 2197

    if( a.data == d.data )
2198
        a = a.clone();
2199 2200

    if( b.data == d.data )
2201
        b = b.clone();
2202

2203 2204
    if( !c.empty() && c.data == d.data && (flags & cv::GEMM_3_T) )
        c = c.clone();
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    int a_rows = a.rows, a_cols = a.cols, b_rows = b.rows, b_cols = b.cols;
    int cn = a.channels();
    int a_step = (int)a.step1(), a_delta = cn;
    int b_step = (int)b.step1(), b_delta = cn;
    int c_rows = 0, c_cols = 0, c_step = 0, c_delta = 0;

    CV_Assert( a.type() == b.type() && a.dims == 2 && b.dims == 2 && cn <= 2 );

    if( flags & cv::GEMM_1_T )
    {
        std::swap( a_rows, a_cols );
        std::swap( a_step, a_delta );
    }
2219

2220 2221 2222 2223 2224
    if( flags & cv::GEMM_2_T )
    {
        std::swap( b_rows, b_cols );
        std::swap( b_step, b_delta );
    }
2225

2226 2227 2228 2229 2230 2231
    if( !c.empty() )
    {
        c_rows = c.rows;
        c_cols = c.cols;
        c_step = (int)c.step1();
        c_delta = cn;
2232

2233 2234 2235 2236 2237
        if( flags & cv::GEMM_3_T )
        {
            std::swap( c_rows, c_cols );
            std::swap( c_step, c_delta );
        }
2238

2239 2240 2241 2242
        CV_Assert( c.dims == 2 && c.type() == a.type() && c_rows == a_rows && c_cols == b_cols );
    }

    d.create(a_rows, b_cols, a.type());
2243

2244 2245 2246
    if( a.depth() == CV_32F )
        GEMM_(a.ptr<float>(), a_step, a_delta, b.ptr<float>(), b_step, b_delta,
              !c.empty() ? c.ptr<float>() : 0, c_step, c_delta, d.ptr<float>(),
2247
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2248 2249 2250
    else
        GEMM_(a.ptr<double>(), a_step, a_delta, b.ptr<double>(), b_step, b_delta,
              !c.empty() ? c.ptr<double>() : 0, c_step, c_delta, d.ptr<double>(),
2251
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
}


template<typename _Tp> static void
transform_(const _Tp* sptr, _Tp* dptr, size_t total, int scn, int dcn, const double* mat)
{
    for( size_t i = 0; i < total; i++, sptr += scn, dptr += dcn )
    {
        for( int j = 0; j < dcn; j++ )
        {
            double s = mat[j*(scn + 1) + scn];
            for( int k = 0; k < scn; k++ )
                s += mat[j*(scn + 1) + k]*sptr[k];
            dptr[j] = saturate_cast<_Tp>(s);
        }
    }
}
2269 2270


2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
void transform( const Mat& src, Mat& dst, const Mat& transmat, const Mat& _shift )
{
    double mat[20];

    int scn = src.channels();
    int dcn = dst.channels();
    int depth = src.depth();
    int mattype = transmat.depth();
    Mat shift = _shift.reshape(1, 0);
    bool haveShift = !shift.empty();
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    CV_Assert( scn <= 4 && dcn <= 4 &&
              (mattype == CV_32F || mattype == CV_64F) &&
              (!haveShift || (shift.type() == mattype && (shift.rows == 1 || shift.cols == 1))) );

    // prepare cn x (cn + 1) transform matrix
    if( mattype == CV_32F )
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<float>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<float>(i);
        }
    }
    else
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<double>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<double>(i);
        }
    }

    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2314
    size_t i, nplanes = it.nplanes;
2315

2316 2317 2318 2319
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        uchar* dptr = planes[1].data;
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
        switch( depth )
        {
        case CV_8U:
            transform_((const uchar*)sptr, (uchar*)dptr, total, scn, dcn, mat);
            break;
        case CV_8S:
            transform_((const schar*)sptr, (schar*)dptr, total, scn, dcn, mat);
            break;
        case CV_16U:
            transform_((const ushort*)sptr, (ushort*)dptr, total, scn, dcn, mat);
            break;
        case CV_16S:
            transform_((const short*)sptr, (short*)dptr, total, scn, dcn, mat);
            break;
        case CV_32S:
            transform_((const int*)sptr, (int*)dptr, total, scn, dcn, mat);
            break;
        case CV_32F:
            transform_((const float*)sptr, (float*)dptr, total, scn, dcn, mat);
            break;
        case CV_64F:
            transform_((const double*)sptr, (double*)dptr, total, scn, dcn, mat);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
template<typename _Tp> static void
minmax_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], src2[i]);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], src2[i]);
}

static void minmax(const Mat& src1, const Mat& src2, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2367

2368 2369
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2370
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2371

2372 2373 2374 2375 2376
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
2377

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
void min(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'm' );
}

void max(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'M' );
}


template<typename _Tp> static void
minmax_(const _Tp* src1, _Tp val, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], val);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], val);
}

static void minmax(const Mat& src1, double val, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    const Mat *arrays[]={&src1, &dst, 0};
    Mat planes[2];
2435

2436 2437
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2438
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2439
    int ival = saturate_cast<int>(val);
2440

2441 2442 2443 2444
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        uchar* dptr = planes[1].data;
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, saturate_cast<uchar>(ival), (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, saturate_cast<schar>(ival), (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, saturate_cast<ushort>(ival), (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, saturate_cast<short>(ival), (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, saturate_cast<int>(ival), (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, saturate_cast<float>(val), (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, saturate_cast<double>(val), (double*)dptr, total, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}

2475

2476 2477 2478 2479 2480 2481 2482 2483 2484
void min(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'm' );
}

void max(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'M' );
}
2485 2486


2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
template<typename _Tp> static void
muldiv_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, double scale, char op)
{
    if( op == '*' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp>((scale*src1[i])*src2[i]);
    else if( src1 )
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>((scale*src1[i])/src2[i]) : 0;
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>(scale/src2[i]) : 0;
}

static void muldiv(const Mat& src1, const Mat& src2, Mat& dst, double scale, char op)
{
    dst.create(src2.dims, src2.size, src2.type());
    CV_Assert( src1.empty() || (src1.type() == src2.type() && src1.size == src2.size) );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2507

2508 2509
    NAryMatIterator it(arrays, planes);
    size_t total = planes[1].total()*planes[1].channels();
2510
    size_t i, nplanes = it.nplanes, depth = src2.depth();
2511

2512 2513 2514 2515 2516
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr1 = planes[0].data;
        const uchar* sptr2 = planes[1].data;
        uchar* dptr = planes[2].data;
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
        switch( depth )
        {
        case CV_8U:
            muldiv_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, scale, op);
            break;
        case CV_8S:
            muldiv_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, scale, op);
            break;
        case CV_16U:
            muldiv_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, scale, op);
            break;
        case CV_16S:
            muldiv_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, scale, op);
            break;
        case CV_32S:
            muldiv_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, scale, op);
            break;
        case CV_32F:
            muldiv_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, scale, op);
            break;
        case CV_64F:
            muldiv_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, scale, op);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
}
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555

void multiply(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '*' );
}

void divide(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '/' );
2556 2557 2558
}


2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
template<typename _Tp> static void
mean_(const _Tp* src, const uchar* mask, size_t total, int cn, Scalar& sum, int& nz)
{
    if( !mask )
    {
        nz += (int)total;
        total *= cn;
        for( size_t i = 0; i < total; i += cn )
        {
            for( int c = 0; c < cn; c++ )
                sum[c] += src[i + c];
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
            if( mask[i] )
            {
                nz++;
                for( int c = 0; c < cn; c++ )
                    sum[c] += src[i*cn + c];
            }
    }
}
2583

2584 2585 2586 2587 2588
Scalar mean(const Mat& src, const Mat& mask)
{
    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.size == src.size));
    Scalar sum;
    int nz = 0;
2589

2590 2591
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
2592

2593 2594
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2595 2596
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = src.channels();
2597

2598 2599 2600 2601
    for( i = 0; i < nplanes; i++, ++it )
    {
        const uchar* sptr = planes[0].data;
        const uchar* mptr = planes[1].data;
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
        switch( depth )
        {
        case CV_8U:
            mean_((const uchar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_8S:
            mean_((const schar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16U:
            mean_((const ushort*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16S:
            mean_((const short*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32S:
            mean_((const int*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32F:
            mean_((const float*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_64F:
            mean_((const double*)sptr, mptr, total, cn, sum, nz);
            break;
        default:
            CV_Error(CV_StsUnsupportedFormat, "");
        }
    }
2630

2631 2632 2633
    return sum * (1./std::max(nz, 1));
}

2634

2635 2636 2637 2638 2639
void  patchZeros( Mat& mat, double level )
{
    int j, ncols = mat.cols * mat.channels();
    int depth = mat.depth();
    CV_Assert( depth == CV_32F || depth == CV_64F );
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    for( int i = 0; i < mat.rows; i++ )
    {
        if( depth == CV_32F )
        {
            float* data = mat.ptr<float>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
        else
        {
            double* data = mat.ptr<double>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
    }
}

2660

2661 2662 2663 2664
static void calcSobelKernel1D( int order, int _aperture_size, int size, vector<int>& kernel )
{
    int i, j, oldval, newval;
    kernel.resize(size + 1);
2665

2666 2667 2668 2669 2670 2671 2672 2673
    if( _aperture_size < 0 )
    {
        static const int scharr[] = { 3, 10, 3, -1, 0, 1 };
        assert( size == 3 );
        for( i = 0; i < size; i++ )
            kernel[i] = scharr[order*3 + i];
        return;
    }
2674

2675 2676 2677
    for( i = 1; i <= size; i++ )
        kernel[i] = 0;
    kernel[0] = 1;
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
    for( i = 0; i < size - order - 1; i++ )
    {
        oldval = kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j] + kernel[j-1];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    for( i = 0; i < order; i++ )
    {
        oldval = -kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j-1] - kernel[j];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
}


Mat calcSobelKernel2D( int dx, int dy, int _aperture_size, int origin )
{
    CV_Assert( (_aperture_size == -1 || (_aperture_size >= 1 && _aperture_size % 2 == 1)) &&
              dx >= 0 && dy >= 0 && dx + dy <= 3 );
    Size ksize = _aperture_size == -1 ? Size(3,3) : _aperture_size > 1 ?
        Size(_aperture_size, _aperture_size) : dx > 0 ? Size(3, 1) : Size(1, 3);
2709

2710 2711
    Mat kernel(ksize, CV_32F);
    vector<int> kx, ky;
2712

2713 2714
    calcSobelKernel1D( dx, _aperture_size, ksize.width, kx );
    calcSobelKernel1D( dy, _aperture_size, ksize.height, ky );
2715

2716 2717 2718 2719 2720 2721
    for( int i = 0; i < kernel.rows; i++ )
    {
        float ay = (float)ky[i]*(origin && (dy & 1) ? -1 : 1);
        for( int j = 0; j < kernel.cols; j++ )
            kernel.at<float>(i, j) = kx[j]*ay;
    }
2722

2723 2724 2725
    return kernel;
}

2726

2727 2728 2729 2730
Mat calcLaplaceKernel2D( int aperture_size )
{
    int ksize = aperture_size == 1 ? 3 : aperture_size;
    Mat kernel(ksize, ksize, CV_32F);
2731

2732
    vector<int> kx, ky;
2733

2734 2735 2736 2737 2738 2739 2740 2741
    calcSobelKernel1D( 2, aperture_size, ksize, kx );
    if( aperture_size > 1 )
        calcSobelKernel1D( 0, aperture_size, ksize, ky );
    else
    {
        ky.resize(3);
        ky[0] = ky[2] = 0; ky[1] = 1;
    }
2742

2743 2744
    for( int i = 0; i < ksize; i++ )
        for( int j = 0; j < ksize; j++ )
2745
            kernel.at<float>(i, j) = (float)(kx[j]*ky[i] + kx[i]*ky[j]);
2746

2747 2748 2749
    return kernel;
}

2750

2751 2752 2753 2754
void initUndistortMap( const Mat& _a0, const Mat& _k0, Size sz, Mat& _mapx, Mat& _mapy )
{
    _mapx.create(sz, CV_32F);
    _mapy.create(sz, CV_32F);
2755

2756 2757 2758 2759
    double a[9], k[5]={0,0,0,0,0};
    Mat _a(3, 3, CV_64F, a);
    Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
    double fx, fy, cx, cy, ifx, ify, cxn, cyn;
2760

2761 2762 2763 2764 2765 2766
    _a0.convertTo(_a, CV_64F);
    _k0.convertTo(_k, CV_64F);
    fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5];
    ifx = 1./fx; ify = 1./fy;
    cxn = cx;
    cyn = cy;
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    for( int v = 0; v < sz.height; v++ )
    {
        for( int u = 0; u < sz.width; u++ )
        {
            double x = (u - cxn)*ifx;
            double y = (v - cyn)*ify;
            double x2 = x*x, y2 = y*y;
            double r2 = x2 + y2;
            double cdist = 1 + (k[0] + (k[1] + k[4]*r2)*r2)*r2;
            double x1 = x*cdist + k[2]*2*x*y + k[3]*(r2 + 2*x2);
            double y1 = y*cdist + k[3]*2*x*y + k[2]*(r2 + 2*y2);
2779

2780 2781 2782 2783 2784
            _mapy.at<float>(v, u) = (float)(y1*fy + cy);
            _mapx.at<float>(v, u) = (float)(x1*fx + cx);
        }
    }
}
2785 2786


2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
std::ostream& operator << (std::ostream& out, const MatInfo& m)
{
    if( !m.m || m.m->empty() )
        out << "<Empty>";
    else
    {
        static const char* depthstr[] = {"8u", "8s", "16u", "16s", "32s", "32f", "64f", "?"};
        out << depthstr[m.m->depth()] << "C" << m.m->channels() << " " << m.m->dims << "-dim (";
        for( int i = 0; i < m.m->dims; i++ )
            out << m.m->size[i] << (i < m.m->dims-1 ? " x " : ")");
    }
    return out;
}


static Mat getSubArray(const Mat& m, int border, vector<int>& ofs0, vector<int>& ofs)
{
    ofs.resize(ofs0.size());
    if( border < 0 )
    {
        std::copy(ofs0.begin(), ofs0.end(), ofs.begin());
        return m;
    }
    int i, d = m.dims;
    CV_Assert(d == (int)ofs.size());
    vector<Range> r(d);
    for( i = 0; i < d; i++ )
    {
        r[i].start = std::max(0, ofs0[i] - border);
        r[i].end = std::min(ofs0[i] + 1 + border, m.size[i]);
        ofs[i] = std::min(ofs0[i], border);
    }
    return m(&r[0]);
}

template<typename _Tp, typename _WTp> static void
writeElems(std::ostream& out, const void* data, int nelems, int starpos)
{
    for(int i = 0; i < nelems; i++)
    {
        if( i == starpos )
            out << "*";
        out << (_WTp)((_Tp*)data)[i];
        if( i == starpos )
            out << "*";
        out << (i+1 < nelems ? ", " : "");
    }
}


static void writeElems(std::ostream& out, const void* data, int nelems, int depth, int starpos)
{
    if(depth == CV_8U)
        writeElems<uchar, int>(out, data, nelems, starpos);
    else if(depth == CV_8S)
        writeElems<schar, int>(out, data, nelems, starpos);
    else if(depth == CV_16U)
        writeElems<ushort, int>(out, data, nelems, starpos);
    else if(depth == CV_16S)
        writeElems<short, int>(out, data, nelems, starpos);
    else if(depth == CV_32S)
        writeElems<int, int>(out, data, nelems, starpos);
    else if(depth == CV_32F)
    {
        std::streamsize pp = out.precision();
        out.precision(8);
        writeElems<float, float>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else if(depth == CV_64F)
    {
        std::streamsize pp = out.precision();
        out.precision(16);
        writeElems<double, double>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else
        CV_Error(CV_StsUnsupportedFormat, "");
}


struct MatPart
{
    MatPart(const Mat& _m, const vector<int>* _loc)
    : m(&_m), loc(_loc) {}
    const Mat* m;
    const vector<int>* loc;
};

static std::ostream& operator << (std::ostream& out, const MatPart& m)
{
    CV_Assert( !m.loc || ((int)m.loc->size() == m.m->dims && m.m->dims <= 2) );
    if( !m.loc )
        out << *m.m;
    else
    {
        int i, depth = m.m->depth(), cn = m.m->channels(), width = m.m->cols*cn;
        for( i = 0; i < m.m->rows; i++ )
        {
            writeElems(out, m.m->ptr(i), width, depth, i == (*m.loc)[0] ? (*m.loc)[1] : -1);
            out << (i < m.m->rows-1 ? ";\n" : "");
        }
    }
    return out;
2891 2892
}

2893 2894
MatComparator::MatComparator(double _maxdiff, int _context)
    : maxdiff(_maxdiff), context(_context) {}
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
::testing::AssertionResult
MatComparator::operator()(const char* expr1, const char* expr2,
                          const Mat& m1, const Mat& m2)
{
    if( m1.type() != m2.type() || m1.size != m2.size )
        return ::testing::AssertionFailure()
        << "The reference and the actual output arrays have different type or size:\n"
        << expr1 << " ~ " << MatInfo(m1) << "\n"
        << expr2 << " ~ " << MatInfo(m2) << "\n";
2905

2906 2907
    //bool ok = cvtest::cmpUlps(m1, m2, maxdiff, &realmaxdiff, &loc0);
    int code = cmpEps( m1, m2, &realmaxdiff, maxdiff, &loc0, true);
2908

2909 2910
    if(code >= 0)
        return ::testing::AssertionSuccess();
2911

2912 2913 2914 2915
    Mat m[] = {m1.reshape(1,0), m2.reshape(1,0)};
    int dims = m[0].dims;
    vector<int> loc;
    int border = dims <= 2 ? context : 0;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
    Mat m1part, m2part;
    if( border == 0 )
    {
        loc = loc0;
        m1part = Mat(1, 1, m[0].depth(), m[0].ptr(&loc[0]));
        m2part = Mat(1, 1, m[1].depth(), m[1].ptr(&loc[0]));
    }
    else
    {
        m1part = getSubArray(m[0], border, loc0, loc);
        m2part = getSubArray(m[1], border, loc0, loc);
    }
2929

2930 2931 2932 2933 2934 2935 2936 2937
    return ::testing::AssertionFailure()
    << "too big relative difference (" << realmaxdiff << " > "
    << maxdiff << ") between "
    << MatInfo(m1) << " '" << expr1 << "' and '" << expr2 << "' at " << Mat(loc0) << ".\n\n"
    << "'" << expr1 << "': " << MatPart(m1part, border > 0 ? &loc : 0) << ".\n\n"
    << "'" << expr2 << "': " << MatPart(m2part, border > 0 ? &loc : 0) << ".\n";
}

2938 2939
void printVersionInfo(bool useStdOut)
{
2940
    ::testing::Test::RecordProperty("cv_version", CV_VERSION);
2941 2942 2943 2944 2945
    if(useStdOut) std::cout << "OpenCV version: " << CV_VERSION << std::endl;

    std::string buildInfo( cv::getBuildInformation() );

    size_t pos1 = buildInfo.find("Version control");
2946
    size_t pos2 = buildInfo.find('\n', pos1);
2947 2948
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
2949 2950 2951 2952
        size_t value_start = buildInfo.rfind(' ', pos2) + 1;
        std::string ver( buildInfo.substr(value_start, pos2 - value_start) );
        ::testing::Test::RecordProperty("cv_vcs_version", ver);
        if (useStdOut) std::cout << "OpenCV VCS version: " << ver << std::endl;
2953 2954 2955
    }

    pos1 = buildInfo.find("inner version");
2956
    pos2 = buildInfo.find('\n', pos1);
2957 2958
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
2959 2960 2961 2962
        size_t value_start = buildInfo.rfind(' ', pos2) + 1;
        std::string ver( buildInfo.substr(value_start, pos2 - value_start) );
        ::testing::Test::RecordProperty("cv_inner_vcs_version", ver);
        if(useStdOut) std::cout << "Inner VCS version: " << ver << std::endl;
2963
    }
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
    const char * build_type =
#ifdef _DEBUG
        "debug";
#else
        "release";
#endif

    ::testing::Test::RecordProperty("cv_build_type", build_type);
    if (useStdOut) std::cout << "Build type: " << build_type << std::endl;

2975 2976 2977 2978 2979
    const char* parallel_framework = currentParallelFramework();

    if (parallel_framework) {
        ::testing::Test::RecordProperty("cv_parallel_framework", parallel_framework);
        if (useStdOut) std::cout << "Parallel framework: " << parallel_framework << std::endl;
2980
    }
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

    std::string cpu_features;

#if CV_SSE
    if (checkHardwareSupport(CV_CPU_SSE)) cpu_features += " sse";
#endif
#if CV_SSE2
    if (checkHardwareSupport(CV_CPU_SSE2)) cpu_features += " sse2";
#endif
#if CV_SSE3
    if (checkHardwareSupport(CV_CPU_SSE3)) cpu_features += " sse3";
#endif
#if CV_SSSE3
    if (checkHardwareSupport(CV_CPU_SSSE3)) cpu_features += " ssse3";
#endif
#if CV_SSE4_1
    if (checkHardwareSupport(CV_CPU_SSE4_1)) cpu_features += " sse4.1";
#endif
#if CV_SSE4_2
    if (checkHardwareSupport(CV_CPU_SSE4_2)) cpu_features += " sse4.2";
#endif
3002
#if CV_AVX
3003
    if (checkHardwareSupport(CV_CPU_AVX)) cpu_features += " avx";
3004 3005
#endif
#if CV_AVX2
3006
    if (checkHardwareSupport(CV_CPU_AVX2)) cpu_features += " avx2";
3007
#endif
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
#if CV_NEON
    cpu_features += " neon"; // NEON is currently not checked at runtime
#endif

    cpu_features.erase(0, 1); // erase initial space

    ::testing::Test::RecordProperty("cv_cpu_features", cpu_features);
    if (useStdOut) std::cout << "CPU features: " << cpu_features << std::endl;

#ifdef HAVE_TEGRA_OPTIMIZATION
    const char * tegra_optimization = tegra::isDeviceSupported() ? "enabled" : "disabled";
    ::testing::Test::RecordProperty("cv_tegra_optimization", tegra_optimization);
    if (useStdOut) std::cout << "Tegra optimization: " << tegra_optimization << std::endl;
#endif
3022 3023
}

3024 3025
} //namespace cvtest

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
void cvTsConvert( const CvMat* src, CvMat* dst )
{
    Mat _src = cvarrToMat(src), _dst = cvarrToMat(dst);
    cvtest::convert(_src, _dst, _dst.depth());
}

void cvTsZero( CvMat* dst, const CvMat* mask )
{
    Mat _dst = cvarrToMat(dst), _mask = mask ? cvarrToMat(mask) : Mat();
    cvtest::set(_dst, Scalar::all(0), _mask);
}