mosse.py 6.17 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
'''
MOSSE tracking sample

This sample implements correlation-based tracking approach, described in [1].

Usage:
  mosse.py [--pause] [<video source>]

  --pause  -  Start with playback paused at the first video frame.
              Useful for tracking target selection.

  Draw rectangles around objects with a mouse to track them.

Keys:
  SPACE    - pause video
  c        - clear targets

[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
    http://www.cs.colostate.edu/~bolme/publications/Bolme2010Tracking.pdf
'''

import numpy as np
import cv2
from common import draw_str, RectSelector
import video

def rnd_warp(a):
    h, w = a.shape[:2]
    T = np.zeros((2, 3))
    coef = 0.2
    ang = (np.random.rand()-0.5)*coef
    c, s = np.cos(ang), np.sin(ang)
    T[:2, :2] = [[c,-s], [s, c]]
    T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
    c = (w/2, h/2)
    T[:,2] = c - np.dot(T[:2, :2], c)
    return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT)

def divSpec(A, B):
    Ar, Ai = A[...,0], A[...,1]
    Br, Bi = B[...,0], B[...,1]
    C = (Ar+1j*Ai)/(Br+1j*Bi)
    C = np.dstack([np.real(C), np.imag(C)]).copy()
    return C

eps = 1e-5

class MOSSE:
    def __init__(self, frame, rect):
        x1, y1, x2, y2 = rect
        w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1])
        x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
        self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
        self.size = w, h
        img = cv2.getRectSubPix(frame, (w, h), (x, y))
        
        self.win = cv2.createHanningWindow((w, h), cv2.CV_32F)   
        g = np.zeros((h, w), np.float32)
        g[h//2, w//2] = 1
        g = cv2.GaussianBlur(g, (-1, -1), 2.0)
        g /= g.max()
        
        self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT)
        self.H1 = np.zeros_like(self.G)
        self.H2 = np.zeros_like(self.G)
        for i in xrange(128):
            a = self.preprocess(rnd_warp(img))
            A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT)
            self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True)
            self.H2 += cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.update_kernel()
        self.update(frame)

    def update(self, frame, rate = 0.125):
        (x, y), (w, h) = self.pos, self.size
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), (x, y))
        img = self.preprocess(img)
        self.last_resp, (dx, dy), self.psr = self.correlate(img)
        self.good = self.psr > 8.0
        if not self.good:
            return
        
        self.pos = x+dx, y+dy
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), self.pos)
        img = self.preprocess(img)

        A = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
        H1 = cv2.mulSpectrums(self.G, A, 0, conjB=True)
        H2 = cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.H1 = self.H1 * (1.0-rate) + H1 * rate
        self.H2 = self.H2 * (1.0-rate) + H2 * rate
        self.update_kernel()

    @property
    def state_vis(self):
        f = cv2.idft(self.H, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
        h, w = f.shape
        f = np.roll(f, -h//2, 0)
        f = np.roll(f, -w//2, 1)
        kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
        resp = self.last_resp
        resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
        vis = np.hstack([self.last_img, kernel, resp])
        return vis

    def draw_state(self, vis):
        (x, y), (w, h) = self.pos, self.size
        x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h)
        cv2.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255))
        if self.good:
            cv2.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1)
        else:
            cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255))
            cv2.line(vis, (x2, y1), (x1, y2), (0, 0, 255))
        draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr)

    def preprocess(self, img):
        img = np.log(np.float32(img)+1.0)
        img = (img-img.mean()) / (img.std()+eps)
        return img*self.win

    def correlate(self, img):
        C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval-smean) / (sstd+eps)
        return resp, (mx-w//2, my-h//2), psr

    def update_kernel(self):
        self.H = divSpec(self.H1, self.H2)
        self.H[...,1] *= -1

class App:
    def __init__(self, video_src, paused = False):
        self.cap = video.create_capture(video_src)
        _, self.frame = self.cap.read()
        cv2.imshow('frame', self.frame)
        self.rect_sel = RectSelector('frame', self.onrect)
        self.trackers = []
        self.paused = paused

    def onrect(self, rect):
        frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
        tracker = MOSSE(frame_gray, rect)
        self.trackers.append(tracker)
    
    def run(self):
        while True:
            if not self.paused:
                ret, self.frame = self.cap.read()
                if not ret:
                    break
                frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
                for tracker in self.trackers:
                    tracker.update(frame_gray)
            
            vis = self.frame.copy()
            for tracker in self.trackers:
                tracker.draw_state(vis)
            if len(self.trackers) > 0:
                cv2.imshow('tracker state', self.trackers[-1].state_vis)
            self.rect_sel.draw(vis)
            
            cv2.imshow('frame', vis)
            ch = cv2.waitKey(10)
            if ch == 27:
                break
            if ch == ord(' '):
                self.paused = not self.paused
            if ch == ord('c'):
                self.trackers = []

        
if __name__ == '__main__':
179
    print __doc__
180 181 182 183 184 185 186
    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
    opts = dict(opts)
    try: video_src = args[0]
    except: video_src = '0'

    App(video_src, paused = '--pause' in opts).run()