dsytrs.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dsytrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15 16 17 18 19 20 21

/* Table of constant values */

static doublereal c_b7 = -1.;
static integer c__1 = 1;
static doublereal c_b19 = 1.;

22 23 24 25
/* Subroutine */ int dsytrs_(char *uplo, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
	ldb, integer *info)
{
26 27 28
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    doublereal d__1;
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    /* Local variables */
    integer j, k;
    doublereal ak, bk;
    integer kp;
    doublereal akm1, bkm1;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    doublereal akm1k;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern logical lsame_(char *, char *);
    doublereal denom;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dswap_(integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);
49 50


51 52 53
/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */
54

55 56 57 58
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */
59

60 61
/*  Purpose */
/*  ======= */
62

63 64 65
/*  DSYTRS solves a system of linear equations A*X = B with a real */
/*  symmetric matrix A using the factorization A = U*D*U**T or */
/*  A = L*D*L**T computed by DSYTRF. */
66

67 68
/*  Arguments */
/*  ========= */
69

70 71 72 73 74
/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the details of the factorization are stored */
/*          as an upper or lower triangular matrix. */
/*          = 'U':  Upper triangular, form is A = U*D*U**T; */
/*          = 'L':  Lower triangular, form is A = L*D*L**T. */
75

76 77
/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */
78

79 80 81
/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */
82

83 84 85
/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The block diagonal matrix D and the multipliers used to */
/*          obtain the factor U or L as computed by DSYTRF. */
86

87 88
/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */
89

90 91 92
/*  IPIV    (input) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D */
/*          as determined by DSYTRF. */
93

94 95 96
/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */
97

98 99
/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */
100

101 102 103 104 105
/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */
106

107 108 109 110 111 112 113 114 115 116 117
/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */
118

119
    /* Parameter adjustments */
120
    a_dim1 = *lda;
121
    a_offset = 1 + a_dim1;
122 123 124
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
125
    b_offset = 1 + b_dim1;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (upper) {

156
/*        Solve A*X = B, where A = U*D*U'. */
157

158
/*        First solve U*D*X = B, overwriting B with X. */
159

160 161
/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */
162 163 164 165 166 167 168 169 170 171 172 173

	k = *n;
L10:

/*        If K < 1, exit from loop. */

	if (k < 1) {
	    goto L30;
	}

	if (ipiv[k] > 0) {

174
/*           1 x 1 diagonal block */
175

176
/*           Interchange rows K and IPIV(K). */
177 178 179

	    kp = ipiv[k];
	    if (kp != k) {
180
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
181 182
	    }

183 184
/*           Multiply by inv(U(K)), where U(K) is the transformation */
/*           stored in column K of A. */
185 186

	    i__1 = k - 1;
187 188
	    dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + 
		    b_dim1], ldb, &b[b_dim1 + 1], ldb);
189 190 191

/*           Multiply by the inverse of the diagonal block. */

192 193
	    d__1 = 1. / a[k + k * a_dim1];
	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
194 195 196
	    --k;
	} else {

197
/*           2 x 2 diagonal block */
198

199
/*           Interchange rows K-1 and -IPIV(K). */
200 201 202

	    kp = -ipiv[k];
	    if (kp != k - 1) {
203
		dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
204 205
	    }

206 207
/*           Multiply by inv(U(K)), where U(K) is the transformation */
/*           stored in columns K-1 and K of A. */
208 209

	    i__1 = k - 2;
210 211
	    dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + 
		    b_dim1], ldb, &b[b_dim1 + 1], ldb);
212
	    i__1 = k - 2;
213 214
	    dger_(&i__1, nrhs, &c_b7, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k - 
		    1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
215 216 217

/*           Multiply by the inverse of the diagonal block. */

218 219 220
	    akm1k = a[k - 1 + k * a_dim1];
	    akm1 = a[k - 1 + (k - 1) * a_dim1] / akm1k;
	    ak = a[k + k * a_dim1] / akm1k;
221 222 223
	    denom = akm1 * ak - 1.;
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
224 225 226 227
		bkm1 = b[k - 1 + j * b_dim1] / akm1k;
		bk = b[k + j * b_dim1] / akm1k;
		b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
		b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
228 229 230 231 232 233 234 235
/* L20: */
	    }
	    k += -2;
	}

	goto L10;
L30:

236
/*        Next solve U'*X = B, overwriting B with X. */
237

238 239
/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */
240 241 242 243 244 245 246 247 248 249 250 251

	k = 1;
L40:

/*        If K > N, exit from loop. */

	if (k > *n) {
	    goto L50;
	}

	if (ipiv[k] > 0) {

252
/*           1 x 1 diagonal block */
253

254 255
/*           Multiply by inv(U'(K)), where U(K) is the transformation */
/*           stored in column K of A. */
256 257

	    i__1 = k - 1;
258 259
	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * 
		    a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
260 261 262 263 264

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
265
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
266 267 268 269
	    }
	    ++k;
	} else {

270
/*           2 x 2 diagonal block */
271

272 273
/*           Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
/*           stored in columns K and K+1 of A. */
274 275

	    i__1 = k - 1;
276 277
	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * 
		    a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
278
	    i__1 = k - 1;
279 280 281
	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[(k 
		    + 1) * a_dim1 + 1], &c__1, &c_b19, &b[k + 1 + b_dim1], 
		    ldb);
282 283 284 285 286

/*           Interchange rows K and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k) {
287
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
288 289 290 291 292 293 294 295 296 297
	    }
	    k += 2;
	}

	goto L40;
L50:

	;
    } else {

298
/*        Solve A*X = B, where A = L*D*L'. */
299

300
/*        First solve L*D*X = B, overwriting B with X. */
301

302 303
/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */
304 305 306 307 308 309 310 311 312 313 314 315

	k = 1;
L60:

/*        If K > N, exit from loop. */

	if (k > *n) {
	    goto L80;
	}

	if (ipiv[k] > 0) {

316
/*           1 x 1 diagonal block */
317

318
/*           Interchange rows K and IPIV(K). */
319 320 321

	    kp = ipiv[k];
	    if (kp != k) {
322
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
323 324
	    }

325 326
/*           Multiply by inv(L(K)), where L(K) is the transformation */
/*           stored in column K of A. */
327 328 329

	    if (k < *n) {
		i__1 = *n - k;
330 331
		dger_(&i__1, nrhs, &c_b7, &a[k + 1 + k * a_dim1], &c__1, &b[k 
			+ b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
332 333 334 335
	    }

/*           Multiply by the inverse of the diagonal block. */

336 337
	    d__1 = 1. / a[k + k * a_dim1];
	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
338 339 340
	    ++k;
	} else {

341
/*           2 x 2 diagonal block */
342

343
/*           Interchange rows K+1 and -IPIV(K). */
344 345 346

	    kp = -ipiv[k];
	    if (kp != k + 1) {
347
		dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
348 349
	    }

350 351
/*           Multiply by inv(L(K)), where L(K) is the transformation */
/*           stored in columns K and K+1 of A. */
352 353 354

	    if (k < *n - 1) {
		i__1 = *n - k - 1;
355 356
		dger_(&i__1, nrhs, &c_b7, &a[k + 2 + k * a_dim1], &c__1, &b[k 
			+ b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
357
		i__1 = *n - k - 1;
358 359
		dger_(&i__1, nrhs, &c_b7, &a[k + 2 + (k + 1) * a_dim1], &c__1, 
			 &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
360 361 362 363
	    }

/*           Multiply by the inverse of the diagonal block. */

364 365 366
	    akm1k = a[k + 1 + k * a_dim1];
	    akm1 = a[k + k * a_dim1] / akm1k;
	    ak = a[k + 1 + (k + 1) * a_dim1] / akm1k;
367 368 369
	    denom = akm1 * ak - 1.;
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
370 371 372 373
		bkm1 = b[k + j * b_dim1] / akm1k;
		bk = b[k + 1 + j * b_dim1] / akm1k;
		b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
		b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
374 375 376 377 378 379 380 381
/* L70: */
	    }
	    k += 2;
	}

	goto L60;
L80:

382
/*        Next solve L'*X = B, overwriting B with X. */
383

384 385
/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */
386 387 388 389 390 391 392 393 394 395 396 397

	k = *n;
L90:

/*        If K < 1, exit from loop. */

	if (k < 1) {
	    goto L100;
	}

	if (ipiv[k] > 0) {

398
/*           1 x 1 diagonal block */
399

400 401
/*           Multiply by inv(L'(K)), where L(K) is the transformation */
/*           stored in column K of A. */
402 403 404

	    if (k < *n) {
		i__1 = *n - k;
405 406 407
		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
			ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + 
			b_dim1], ldb);
408 409 410 411 412 413
	    }

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
414
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
415 416 417 418
	    }
	    --k;
	} else {

419
/*           2 x 2 diagonal block */
420

421 422
/*           Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
/*           stored in columns K-1 and K of A. */
423 424 425

	    if (k < *n) {
		i__1 = *n - k;
426 427 428
		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
			ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + 
			b_dim1], ldb);
429
		i__1 = *n - k;
430 431 432
		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
			ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &c_b19, &b[
			k - 1 + b_dim1], ldb);
433 434 435 436 437 438
	    }

/*           Interchange rows K and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k) {
439
		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
440 441 442 443 444 445 446 447 448 449 450 451 452 453
	    }
	    k += -2;
	}

	goto L90;
L100:
	;
    }

    return 0;

/*     End of DSYTRS */

} /* dsytrs_ */