linemod.cpp 21.4 KB
Newer Older
1 2
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
3
#include <opencv2/imgproc/imgproc_c.h> // cvFindContours
4 5 6
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/highgui.hpp>
7 8 9 10 11 12 13 14
#include <iterator>
#include <set>
#include <cstdio>
#include <iostream>

// Function prototypes
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);

15
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
16 17 18
                                      int num_modalities, cv::Point offset, cv::Size size,
                                      cv::Mat& mask, cv::Mat& dst);

19
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
20 21 22
                        int num_modalities, cv::Point offset, cv::Size size,
                        cv::Mat& dst);

23
void drawResponse(const std::vector<cv::linemod::Template>& templates,
24 25 26 27 28 29 30 31 32 33
                  int num_modalities, cv::Mat& dst, cv::Point offset, int T);

cv::Mat displayQuantized(const cv::Mat& quantized);

// Copy of cv_mouse from cv_utilities
class Mouse
{
public:
  static void start(const std::string& a_img_name)
  {
34
      cv::setMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  }
  static int event(void)
  {
    int l_event = m_event;
    m_event = -1;
    return l_event;
  }
  static int x(void)
  {
    return m_x;
  }
  static int y(void)
  {
    return m_y;
  }

private:
52
  static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
53 54 55 56 57
  {
    m_event = a_event;
    m_x = a_x;
    m_y = a_y;
  }
58

59 60 61 62 63 64 65 66
  static int m_event;
  static int m_x;
  static int m_y;
};
int Mouse::m_event;
int Mouse::m_x;
int Mouse::m_y;

67
static void help()
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
{
  printf("Usage: openni_demo [templates.yml]\n\n"
         "Place your object on a planar, featureless surface. With the mouse,\n"
         "frame it in the 'color' window and right click to learn a first template.\n"
         "Then press 'l' to enter online learning mode, and move the camera around.\n"
         "When the match score falls between 90-95%% the demo will add a new template.\n\n"
         "Keys:\n"
         "\t h   -- This help page\n"
         "\t l   -- Toggle online learning\n"
         "\t m   -- Toggle printing match result\n"
         "\t t   -- Toggle printing timings\n"
         "\t w   -- Write learned templates to disk\n"
         "\t [ ] -- Adjust matching threshold: '[' down,  ']' up\n"
         "\t q   -- Quit\n\n");
}

// Adapted from cv_timer in cv_utilities
class Timer
{
public:
  Timer() : start_(0), time_(0) {}

  void start()
  {
    start_ = cv::getTickCount();
  }

  void stop()
  {
    CV_Assert(start_ != 0);
    int64 end = cv::getTickCount();
    time_ += end - start_;
    start_ = 0;
  }

  double time()
  {
    double ret = time_ / cv::getTickFrequency();
    time_ = 0;
    return ret;
  }

private:
  int64 start_, time_;
};

// Functions to store detector and templates in single XML/YAML file
115
static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
116
{
117
  cv::Ptr<cv::linemod::Detector> detector = cv::makePtr<cv::linemod::Detector>();
118 119 120 121 122 123 124 125 126 127
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  detector->read(fs.root());

  cv::FileNode fn = fs["classes"];
  for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
    detector->readClass(*i);

  return detector;
}

128
static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
129 130 131 132
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  detector->write(fs);

133
  std::vector<cv::String> ids = detector->classIds();
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  fs << "classes" << "[";
  for (int i = 0; i < (int)ids.size(); ++i)
  {
    fs << "{";
    detector->writeClass(ids[i], fs);
    fs << "}"; // current class
  }
  fs << "]"; // classes
}


int main(int argc, char * argv[])
{
  // Various settings and flags
  bool show_match_result = true;
  bool show_timings = false;
  bool learn_online = false;
  int num_classes = 0;
  int matching_threshold = 80;
  /// @todo Keys for changing these?
  cv::Size roi_size(200, 200);
  int learning_lower_bound = 90;
  int learning_upper_bound = 95;

  // Timers
  Timer extract_timer;
  Timer match_timer;

  // Initialize HighGUI
  help();
  cv::namedWindow("color");
  cv::namedWindow("normals");
  Mouse::start("color");

  // Initialize LINEMOD data structures
  cv::Ptr<cv::linemod::Detector> detector;
  std::string filename;
  if (argc == 1)
  {
    filename = "linemod_templates.yml";
    detector = cv::linemod::getDefaultLINEMOD();
  }
  else
  {
    detector = readLinemod(argv[1]);

180
    std::vector<cv::String> ids = detector->classIds();
181 182 183 184 185 186 187 188 189
    num_classes = detector->numClasses();
    printf("Loaded %s with %d classes and %d templates\n",
           argv[1], num_classes, detector->numTemplates());
    if (!ids.empty())
    {
      printf("Class ids:\n");
      std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
    }
  }
190
  int num_modalities = (int)detector->getModalities().size();
191 192

  // Open Kinect sensor
193
  cv::VideoCapture capture( cv::CAP_OPENNI );
194 195 196 197 198
  if (!capture.isOpened())
  {
    printf("Could not open OpenNI-capable sensor\n");
    return -1;
  }
199 200
  capture.set(cv::CAP_PROP_OPENNI_REGISTRATION, 1);
  double focal_length = capture.get(cv::CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
201 202 203 204
  //printf("Focal length = %f\n", focal_length);

  // Main loop
  cv::Mat color, depth;
205
  for(;;)
206 207 208
  {
    // Capture next color/depth pair
    capture.grab();
209 210
    capture.retrieve(depth, cv::CAP_OPENNI_DEPTH_MAP);
    capture.retrieve(color, cv::CAP_OPENNI_BGR_IMAGE);
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    std::vector<cv::Mat> sources;
    sources.push_back(color);
    sources.push_back(depth);
    cv::Mat display = color.clone();

    if (!learn_online)
    {
      cv::Point mouse(Mouse::x(), Mouse::y());
      int event = Mouse::event();

      // Compute ROI centered on current mouse location
      cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
      cv::Point pt1 = mouse - roi_offset; // top left
      cv::Point pt2 = mouse + roi_offset; // bottom right

227
      if (event == cv::EVENT_RBUTTONDOWN)
228 229 230 231 232 233 234 235 236 237 238
      {
        // Compute object mask by subtracting the plane within the ROI
        std::vector<CvPoint> chain(4);
        chain[0] = pt1;
        chain[1] = cv::Point(pt2.x, pt1.y);
        chain[2] = pt2;
        chain[3] = cv::Point(pt1.x, pt2.y);
        cv::Mat mask;
        subtractPlane(depth, mask, chain, focal_length);

        cv::imshow("mask", mask);
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        // Extract template
        std::string class_id = cv::format("class%d", num_classes);
        cv::Rect bb;
        extract_timer.start();
        int template_id = detector->addTemplate(sources, class_id, mask, &bb);
        extract_timer.stop();
        if (template_id != -1)
        {
          printf("*** Added template (id %d) for new object class %d***\n",
                 template_id, num_classes);
          //printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
        }

        ++num_classes;
      }

      // Draw ROI for display
      cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
      cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
    }

    // Perform matching
    std::vector<cv::linemod::Match> matches;
263
    std::vector<cv::String> class_ids;
264 265
    std::vector<cv::Mat> quantized_images;
    match_timer.start();
266
    detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
267 268 269 270
    match_timer.stop();

    int classes_visited = 0;
    std::set<std::string> visited;
271

272 273 274 275 276 277 278 279 280 281 282 283 284
    for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
    {
      cv::linemod::Match m = matches[i];

      if (visited.insert(m.class_id).second)
      {
        ++classes_visited;

        if (show_match_result)
        {
          printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
                 m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
        }
285

286 287 288 289 290 291 292 293
        // Draw matching template
        const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
        drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));

        if (learn_online == true)
        {
          /// @todo Online learning possibly broken by new gradient feature extraction,
          /// which assumes an accurate object outline.
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
          // Compute masks based on convex hull of matched template
          cv::Mat color_mask, depth_mask;
          std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
                                                        cv::Point(m.x, m.y), color.size(),
                                                        color_mask, display);
          subtractPlane(depth, depth_mask, chain, focal_length);

          cv::imshow("mask", depth_mask);

          // If pretty sure (but not TOO sure), add new template
          if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
          {
            extract_timer.start();
            int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
            extract_timer.stop();
            if (template_id != -1)
            {
              printf("*** Added template (id %d) for existing object class %s***\n",
                     template_id, m.class_id.c_str());
            }
          }
        }
      }
    }

    if (show_match_result && matches.empty())
      printf("No matches found...\n");
    if (show_timings)
    {
      printf("Training: %.2fs\n", extract_timer.time());
      printf("Matching: %.2fs\n", match_timer.time());
    }
    if (show_match_result || show_timings)
      printf("------------------------------------------------------------\n");

    cv::imshow("color", display);
    cv::imshow("normals", quantized_images[1]);

    cv::FileStorage fs;
334
    char key = (char)cv::waitKey(10);
335 336 337
    if( key == 'q' )
        break;

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    switch (key)
    {
      case 'h':
        help();
        break;
      case 'm':
        // toggle printing match result
        show_match_result = !show_match_result;
        printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
        break;
      case 't':
        // toggle printing timings
        show_timings = !show_timings;
        printf("Show timings %s\n", show_timings ? "ON" : "OFF");
        break;
      case 'l':
        // toggle online learning
        learn_online = !learn_online;
        printf("Online learning %s\n", learn_online ? "ON" : "OFF");
        break;
      case '[':
        // decrement threshold
        matching_threshold = std::max(matching_threshold - 1, -100);
        printf("New threshold: %d\n", matching_threshold);
        break;
      case ']':
        // increment threshold
        matching_threshold = std::min(matching_threshold + 1, +100);
        printf("New threshold: %d\n", matching_threshold);
        break;
      case 'w':
        // write model to disk
        writeLinemod(detector, filename);
        printf("Wrote detector and templates to %s\n", filename.c_str());
        break;
373 374
      default:
        ;
375 376 377 378 379
    }
  }
  return 0;
}

380
static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
381 382 383
{
  real.resize(proj.size());
  double f_inv = 1.0 / f;
384

385 386 387 388 389 390 391 392 393
  for (int i = 0; i < (int)proj.size(); ++i)
  {
    double Z = proj[i].z;
    real[i].x = (proj[i].x - 320.) * (f_inv * Z);
    real[i].y = (proj[i].y - 240.) * (f_inv * Z);
    real[i].z = Z;
  }
}

394
static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
{
  const int l_num_cost_pts = 200;

  float l_thres = 4;

  IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
  cvSet(lp_mask, cvRealScalar(0));

  std::vector<CvPoint> l_chain_vector;

  float l_chain_length = 0;
  float * lp_seg_length = new float[a_chain.size()];

  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
410 411
    float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
    float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
412 413 414 415 416 417 418
    lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
    l_chain_length += lp_seg_length[l_i];
  }
  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
    if (lp_seg_length[l_i] > 0)
    {
419
      int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
420 421 422 423 424 425 426 427
      float l_cur_len = lp_seg_length[l_i] / l_cur_num;

      for (int l_j = 0; l_j < l_cur_num; ++l_j)
      {
        float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);

        CvPoint l_pts;

428 429
        l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
        l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

        l_chain_vector.push_back(l_pts);
      }
    }
  }
  std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
    lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
    lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
    lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
    //CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
  }
  //cv_show_image(lp_mask,"hallo2");

  reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);

448
  CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
449 450 451 452 453
  CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
  CvMat * lp_w = cvCreateMat(4, 1, CV_32F);

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
454 455 456 457
    CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
    CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
    CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
    CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  }
  cvSVD(lp_pts, lp_w, 0, lp_v);

  float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
                  CV_MAT_ELEM(*lp_v, float, 1, 3),
                  CV_MAT_ELEM(*lp_v, float, 2, 3),
                  CV_MAT_ELEM(*lp_v, float, 3, 3)};

  float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);

  l_n[0] /= l_norm;
  l_n[1] /= l_norm;
  l_n[2] /= l_norm;
  l_n[3] /= l_norm;

  float l_max_dist = 0;

  for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
  {
    float l_dist =  l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
                    l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
                    l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
                    l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);

    if (fabs(l_dist) > l_max_dist)
      l_max_dist = l_dist;
  }
  //std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
  int l_minx = ap_depth->width;
  int l_miny = ap_depth->height;
  int l_maxx = 0;
  int l_maxy = 0;

  for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
  {
    l_minx = std::min(l_minx, a_chain[l_i].x);
    l_miny = std::min(l_miny, a_chain[l_i].y);
    l_maxx = std::max(l_maxx, a_chain[l_i].x);
    l_maxy = std::max(l_maxy, a_chain[l_i].y);
  }
  int l_w = l_maxx - l_minx + 1;
  int l_h = l_maxy - l_miny + 1;
500
  int l_nn = (int)a_chain.size();
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

  CvPoint * lp_chain = new CvPoint[l_nn];

  for (int l_i = 0; l_i < l_nn; ++l_i)
    lp_chain[l_i] = a_chain[l_i];

  cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));

  delete[] lp_chain;

  //cv_show_image(lp_mask,"hallo1");

  std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);

  int l_ind = 0;

  for (int l_r = 0; l_r < l_h; ++l_r)
  {
    for (int l_c = 0; l_c < l_w; ++l_c)
    {
      lp_dst_3Dpts[l_ind].x = l_c + l_minx;
      lp_dst_3Dpts[l_ind].y = l_r + l_miny;
      lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
      ++l_ind;
    }
  }
  reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);

  l_ind = 0;

  for (int l_r = 0; l_r < l_h; ++l_r)
  {
    for (int l_c = 0; l_c < l_w; ++l_c)
    {
535
      float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
536 537 538 539 540 541 542 543 544

      ++l_ind;

      if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
      {
        if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
        {
          for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
          {
545 546
            int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
            int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
547 548 549 550 551 552 553 554

            CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
          }
        }
        else
        {
          for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
          {
555 556
            int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
            int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

            CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
          }
        }
      }
    }
  }
  cvReleaseImage(&lp_mask);
  cvReleaseMat(&lp_pts);
  cvReleaseMat(&lp_w);
  cvReleaseMat(&lp_v);
}

void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
{
  mask = cv::Mat::zeros(depth.size(), CV_8U);
  std::vector<IplImage*> tmp;
  IplImage mask_ipl = mask;
  tmp.push_back(&mask_ipl);
  IplImage depth_ipl = depth;
  filterPlane(&depth_ipl, tmp, chain, f);
}

580
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                                      int num_modalities, cv::Point offset, cv::Size size,
                                      cv::Mat& mask, cv::Mat& dst)
{
  templateConvexHull(templates, num_modalities, offset, size, mask);

  const int OFFSET = 30;
  cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);

  CvMemStorage * lp_storage = cvCreateMemStorage(0);
  CvTreeNodeIterator l_iterator;
  CvSeqReader l_reader;
  CvSeq * lp_contour = 0;

  cv::Mat mask_copy = mask.clone();
  IplImage mask_copy_ipl = mask_copy;
  cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
                 CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

  std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane

  cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
  while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
  {
    CvPoint l_pt0;
    cvStartReadSeq(lp_contour, &l_reader, 0);
    CV_READ_SEQ_ELEM(l_pt0, l_reader);
    l_pts1.push_back(l_pt0);

    for (int i = 0; i < lp_contour->total; ++i)
    {
      CvPoint l_pt1;
      CV_READ_SEQ_ELEM(l_pt1, l_reader);
      /// @todo Really need dst at all? Can just as well do this outside
      cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);

      l_pt0 = l_pt1;
      l_pts1.push_back(l_pt0);
    }
  }
  cvReleaseMemStorage(&lp_storage);

  return l_pts1;
}

// Adapted from cv_show_angles
cv::Mat displayQuantized(const cv::Mat& quantized)
{
  cv::Mat color(quantized.size(), CV_8UC3);
  for (int r = 0; r < quantized.rows; ++r)
  {
    const uchar* quant_r = quantized.ptr(r);
    cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    for (int c = 0; c < quantized.cols; ++c)
    {
      cv::Vec3b& bgr = color_r[c];
      switch (quant_r[c])
      {
        case 0:   bgr[0]=  0; bgr[1]=  0; bgr[2]=  0;    break;
        case 1:   bgr[0]= 55; bgr[1]= 55; bgr[2]= 55;    break;
        case 2:   bgr[0]= 80; bgr[1]= 80; bgr[2]= 80;    break;
        case 4:   bgr[0]=105; bgr[1]=105; bgr[2]=105;    break;
        case 8:   bgr[0]=130; bgr[1]=130; bgr[2]=130;    break;
        case 16:  bgr[0]=155; bgr[1]=155; bgr[2]=155;    break;
        case 32:  bgr[0]=180; bgr[1]=180; bgr[2]=180;    break;
        case 64:  bgr[0]=205; bgr[1]=205; bgr[2]=205;    break;
        case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230;    break;
        case 255: bgr[0]=  0; bgr[1]=  0; bgr[2]=255;    break;
        default:  bgr[0]=  0; bgr[1]=255; bgr[2]=  0;    break;
      }
    }
  }
653

654 655 656 657
  return color;
}

// Adapted from cv_line_template::convex_hull
658
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
659 660 661 662 663 664 665 666 667 668 669 670
                        int num_modalities, cv::Point offset, cv::Size size,
                        cv::Mat& dst)
{
  std::vector<cv::Point> points;
  for (int m = 0; m < num_modalities; ++m)
  {
    for (int i = 0; i < (int)templates[m].features.size(); ++i)
    {
      cv::linemod::Feature f = templates[m].features[i];
      points.push_back(cv::Point(f.x, f.y) + offset);
    }
  }
671

672 673 674 675
  std::vector<cv::Point> hull;
  cv::convexHull(points, hull);

  dst = cv::Mat::zeros(size, CV_8U);
676
  const int hull_count = (int)hull.size();
677 678 679 680
  const cv::Point* hull_pts = &hull[0];
  cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
}

681
void drawResponse(const std::vector<cv::linemod::Template>& templates,
682 683 684 685 686 687 688 689 690 691 692 693 694 695
                  int num_modalities, cv::Mat& dst, cv::Point offset, int T)
{
  static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
                                        CV_RGB(0, 255, 0),
                                        CV_RGB(255, 255, 0),
                                        CV_RGB(255, 140, 0),
                                        CV_RGB(255, 0, 0) };

  for (int m = 0; m < num_modalities; ++m)
  {
    // NOTE: Original demo recalculated max response for each feature in the TxT
    // box around it and chose the display color based on that response. Here
    // the display color just depends on the modality.
    cv::Scalar color = COLORS[m];
696

697 698 699 700 701 702 703 704
    for (int i = 0; i < (int)templates[m].features.size(); ++i)
    {
      cv::linemod::Feature f = templates[m].features[i];
      cv::Point pt(f.x + offset.x, f.y + offset.y);
      cv::circle(dst, pt, T / 2, color);
    }
  }
}