test_math.cpp 78.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
//////////////////////////////////////////////////////////////////////////////////////////
/////////////////// tests for matrix operations and math functions ///////////////////////
//////////////////////////////////////////////////////////////////////////////////////////

#include "test_precomp.hpp"
#include <float.h>
#include <math.h>

using namespace cv;
using namespace std;

/// !!! NOTE !!! These tests happily avoid overflow cases & out-of-range arguments
/// so that output arrays contain neigher Inf's nor Nan's.
/// Handling such cases would require special modification of check function
/// (validate_test_results) => TBD.
/// Also, need some logarithmic-scale generation of input data. Right now it is done (in some tests)
/// by generating min/max boundaries for random data in logarimithic scale, but
/// within the same test case all the input array elements are of the same order.

class Core_MathTest : public cvtest::ArrayTest
{
public:
    typedef cvtest::ArrayTest Base;
    Core_MathTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes,
                                        vector<vector<int> >& types);
    double get_success_error_level( int /*test_case_idx*/, int i, int j );
    bool test_nd;
};


Core_MathTest::Core_MathTest()
{
    optional_mask = false;
36

37 38 39
    test_array[INPUT].push_back(NULL);
    test_array[OUTPUT].push_back(NULL);
    test_array[REF_OUTPUT].push_back(NULL);
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    test_nd = false;
}


double Core_MathTest::get_success_error_level( int /*test_case_idx*/, int i, int j )
{
    return test_mat[i][j].depth() == CV_32F ? FLT_EPSILON*128 : DBL_EPSILON*1024;
}


void Core_MathTest::get_test_array_types_and_sizes( int test_case_idx,
                                                     vector<vector<Size> >& sizes,
                                                     vector<vector<int> >& types)
{
    RNG& rng = ts->get_rng();
    int depth = cvtest::randInt(rng)%2 + CV_32F;
    int cn = cvtest::randInt(rng) % 4 + 1, type = CV_MAKETYPE(depth, cn);
    size_t i, j;
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    for( i = 0; i < test_array.size(); i++ )
    {
        size_t count = test_array[i].size();
        for( j = 0; j < count; j++ )
            types[i][j] = type;
    }
    test_nd = cvtest::randInt(rng)%3 == 0;
}


////////// pow /////////////

class Core_PowTest : public Core_MathTest
{
public:
    typedef Core_MathTest Base;
    Core_PowTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx,
                                        vector<vector<Size> >& sizes,
                                        vector<vector<int> >& types );
    void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    double get_success_error_level( int test_case_idx, int i, int j );
    double power;
};


Core_PowTest::Core_PowTest()
{
    power = 0;
}


void Core_PowTest::get_test_array_types_and_sizes( int test_case_idx,
                                                    vector<vector<Size> >& sizes,
                                                    vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int depth = cvtest::randInt(rng) % (CV_64F+1);
    int cn = cvtest::randInt(rng) % 4 + 1;
    size_t i, j;
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    depth += depth == CV_8S;
106

107 108 109 110 111 112 113 114
    if( depth < CV_32F || cvtest::randInt(rng)%8 == 0 )
        // integer power
        power = (int)(cvtest::randInt(rng)%21 - 10);
    else
    {
        i = cvtest::randInt(rng)%17;
        power = i == 16 ? 1./3 : i == 15 ? 0.5 : i == 14 ? -0.5 : cvtest::randReal(rng)*10 - 5;
    }
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    for( i = 0; i < test_array.size(); i++ )
    {
        size_t count = test_array[i].size();
        int type = CV_MAKETYPE(depth, cn);
        for( j = 0; j < count; j++ )
            types[i][j] = type;
    }
    test_nd = cvtest::randInt(rng)%3 == 0;
}


double Core_PowTest::get_success_error_level( int test_case_idx, int i, int j )
{
    int depth = test_mat[i][j].depth();
    if( depth < CV_32F )
        return power == cvRound(power) && power >= 0 ? 0 : 1;
    else
        return Base::get_success_error_level( test_case_idx, i, j );
}


void Core_PowTest::get_minmax_bounds( int /*i*/, int /*j*/, int type, Scalar& low, Scalar& high )
{
    double l, u = cvtest::randInt(ts->get_rng())%1000 + 1;
    if( power > 0 )
    {
        double mval = cvtest::getMaxVal(type);
        double u1 = pow(mval,1./power)*2;
        u = MIN(u,u1);
    }
146

147 148 149 150 151 152 153 154 155 156 157 158 159
    l = power == cvRound(power) ? -u : FLT_EPSILON;
    low = Scalar::all(l);
    high = Scalar::all(u);
}


void Core_PowTest::run_func()
{
    if(!test_nd)
    {
        if( fabs(power-1./3) <= DBL_EPSILON && test_mat[INPUT][0].depth() == CV_32F )
        {
            Mat a = test_mat[INPUT][0], b = test_mat[OUTPUT][0];
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
            a = a.reshape(1);
            b = b.reshape(1);
            for( int i = 0; i < a.rows; i++ )
            {
                b.at<float>(i,0) = (float)fabs(cvCbrt(a.at<float>(i,0)));
                for( int j = 1; j < a.cols; j++ )
                    b.at<float>(i,j) = (float)fabs(cv::cubeRoot(a.at<float>(i,j)));
            }
        }
        else
            cvPow( test_array[INPUT][0], test_array[OUTPUT][0], power );
    }
    else
    {
        Mat& a = test_mat[INPUT][0];
        Mat& b = test_mat[OUTPUT][0];
        if(power == 0.5)
            cv::sqrt(a, b);
        else
            cv::pow(a, power, b);
    }
}


inline static int ipow( int a, int power )
{
    int b = 1;
    while( power > 0 )
    {
        if( power&1 )
            b *= a, power--;
        else
            a *= a, power >>= 1;
    }
    return b;
}


inline static double ipow( double a, int power )
{
    double b = 1.;
    while( power > 0 )
    {
        if( power&1 )
            b *= a, power--;
        else
            a *= a, power >>= 1;
    }
    return b;
}


void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ )
{
    const Mat& a = test_mat[INPUT][0];
    Mat& b = test_mat[REF_OUTPUT][0];
217

218 219 220 221
    int depth = a.depth();
    int ncols = a.cols*a.channels();
    int ipower = cvRound(power), apower = abs(ipower);
    int i, j;
222

223 224 225 226
    for( i = 0; i < a.rows; i++ )
    {
        const uchar* a_data = a.ptr(i);
        uchar* b_data = b.ptr(i);
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        switch( depth )
        {
            case CV_8U:
                if( ipower < 0 )
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((uchar*)a_data)[j];
                        ((uchar*)b_data)[j] = (uchar)(val <= 1 ? val :
                                                      val == 2 && ipower == -1 ? 1 : 0);
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((uchar*)a_data)[j];
                        val = ipow( val, ipower );
                        ((uchar*)b_data)[j] = saturate_cast<uchar>(val);
                    }
                break;
            case CV_8S:
                if( ipower < 0 )
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((char*)a_data)[j];
                        ((char*)b_data)[j] = (char)((val&~1)==0 ? val :
                                                    val ==-1 ? 1-2*(ipower&1) :
                                                    val == 2 && ipower == -1 ? 1 : 0);
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((char*)a_data)[j];
                        val = ipow( val, ipower );
                        ((char*)b_data)[j] = saturate_cast<schar>(val);
                    }
                break;
            case CV_16U:
                if( ipower < 0 )
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((ushort*)a_data)[j];
                        ((ushort*)b_data)[j] = (ushort)((val&~1)==0 ? val :
                                                        val ==-1 ? 1-2*(ipower&1) :
                                                        val == 2 && ipower == -1 ? 1 : 0);
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((ushort*)a_data)[j];
                        val = ipow( val, ipower );
                        ((ushort*)b_data)[j] = saturate_cast<ushort>(val);
                    }
                break;
            case CV_16S:
                if( ipower < 0 )
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((short*)a_data)[j];
                        ((short*)b_data)[j] = (short)((val&~1)==0 ? val :
                                                      val ==-1 ? 1-2*(ipower&1) :
                                                      val == 2 && ipower == -1 ? 1 : 0);
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((short*)a_data)[j];
                        val = ipow( val, ipower );
                        ((short*)b_data)[j] = saturate_cast<short>(val);
                    }
                break;
            case CV_32S:
                if( ipower < 0 )
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((int*)a_data)[j];
                        ((int*)b_data)[j] = (val&~1)==0 ? val :
                        val ==-1 ? 1-2*(ipower&1) :
                        val == 2 && ipower == -1 ? 1 : 0;
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        int val = ((int*)a_data)[j];
                        val = ipow( val, ipower );
                        ((int*)b_data)[j] = val;
                    }
                break;
            case CV_32F:
                if( power != ipower )
                    for( j = 0; j < ncols; j++ )
                    {
                        double val = ((float*)a_data)[j];
                        val = pow( fabs(val), power );
                        ((float*)b_data)[j] = (float)val;
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        double val = ((float*)a_data)[j];
                        if( ipower < 0 )
                            val = 1./val;
                        val = ipow( val, apower );
                        ((float*)b_data)[j] = (float)val;
                    }
                break;
            case CV_64F:
                if( power != ipower )
                    for( j = 0; j < ncols; j++ )
                    {
                        double val = ((double*)a_data)[j];
                        val = pow( fabs(val), power );
                        ((double*)b_data)[j] = (double)val;
                    }
                else
                    for( j = 0; j < ncols; j++ )
                    {
                        double val = ((double*)a_data)[j];
                        if( ipower < 0 )
                            val = 1./val;
                        val = ipow( val, apower );
                        ((double*)b_data)[j] = (double)val;
                    }
                break;
        }
    }
}



///////////////////////////////////////// matrix tests ////////////////////////////////////////////

class Core_MatrixTest : public cvtest::ArrayTest
{
public:
    typedef cvtest::ArrayTest Base;
    Core_MatrixTest( int in_count, int out_count,
                       bool allow_int, bool scalar_output, int max_cn );
protected:
    void get_test_array_types_and_sizes( int test_case_idx,
                                        vector<vector<Size> >& sizes,
                                        vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    bool allow_int;
    bool scalar_output;
    int max_cn;
};


Core_MatrixTest::Core_MatrixTest( int in_count, int out_count,
                                      bool _allow_int, bool _scalar_output, int _max_cn )
: allow_int(_allow_int), scalar_output(_scalar_output), max_cn(_max_cn)
{
    int i;
    for( i = 0; i < in_count; i++ )
        test_array[INPUT].push_back(NULL);
382

383 384 385 386 387
    for( i = 0; i < out_count; i++ )
    {
        test_array[OUTPUT].push_back(NULL);
        test_array[REF_OUTPUT].push_back(NULL);
    }
388

389 390 391 392 393 394 395 396 397 398 399 400
    element_wise_relative_error = false;
}


void Core_MatrixTest::get_test_array_types_and_sizes( int test_case_idx,
                                                       vector<vector<Size> >& sizes,
                                                       vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int depth = cvtest::randInt(rng) % (allow_int ? CV_64F+1 : 2);
    int cn = cvtest::randInt(rng) % max_cn + 1;
    size_t i, j;
401

402 403 404 405
    if( allow_int )
        depth += depth == CV_8S;
    else
        depth += CV_32F;
406

407
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
408

409 410 411 412 413
    for( i = 0; i < test_array.size(); i++ )
    {
        size_t count = test_array[i].size();
        int flag = (i == OUTPUT || i == REF_OUTPUT) && scalar_output;
        int type = !flag ? CV_MAKETYPE(depth, cn) : CV_64FC1;
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        for( j = 0; j < count; j++ )
        {
            types[i][j] = type;
            if( flag )
                sizes[i][j] = Size( 4, 1 );
        }
    }
}


double Core_MatrixTest::get_success_error_level( int test_case_idx, int i, int j )
{
    int input_depth = test_mat[INPUT][0].depth();
    double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 5e-5 : 5e-10;
    double output_precision = Base::get_success_error_level( test_case_idx, i, j );
    return MAX(input_precision, output_precision);
}


///////////////// Trace /////////////////////

class Core_TraceTest : public Core_MatrixTest
{
public:
    Core_TraceTest();
protected:
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_TraceTest::Core_TraceTest() : Core_MatrixTest( 1, 1, true, true, 4 )
{
}


void Core_TraceTest::run_func()
{
    test_mat[OUTPUT][0].at<Scalar>(0,0) = cvTrace(test_array[INPUT][0]);
}


void Core_TraceTest::prepare_to_validation( int )
{
    Mat& mat = test_mat[INPUT][0];
    int count = MIN( mat.rows, mat.cols );
    Mat diag(count, 1, mat.type(), mat.data, mat.step + mat.elemSize());
    Scalar r = cvtest::mean(diag);
    r *= (double)count;
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = r;
}


///////// dotproduct //////////

class Core_DotProductTest : public Core_MatrixTest
{
public:
    Core_DotProductTest();
protected:
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_DotProductTest::Core_DotProductTest() : Core_MatrixTest( 2, 1, true, true, 4 )
{
}


void Core_DotProductTest::run_func()
{
    test_mat[OUTPUT][0].at<Scalar>(0,0) = Scalar(cvDotProduct( test_array[INPUT][0], test_array[INPUT][1] ));
}


void Core_DotProductTest::prepare_to_validation( int )
{
    test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = Scalar(cvtest::crossCorr( test_mat[INPUT][0], test_mat[INPUT][1] ));
}


///////// crossproduct //////////

class Core_CrossProductTest : public Core_MatrixTest
{
public:
    Core_CrossProductTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx,
                                        vector<vector<Size> >& sizes,
507
                                        vector<vector<int> >& types );
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_CrossProductTest::Core_CrossProductTest() : Core_MatrixTest( 2, 1, false, false, 1 )
{
}


void Core_CrossProductTest::get_test_array_types_and_sizes( int,
                                                             vector<vector<Size> >& sizes,
                                                             vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int depth = cvtest::randInt(rng) % 2 + CV_32F;
    int cn = cvtest::randInt(rng) & 1 ? 3 : 1, type = CV_MAKETYPE(depth, cn);
    CvSize sz;
526

527
    types[INPUT][0] = types[INPUT][1] = types[OUTPUT][0] = types[REF_OUTPUT][0] = type;
528

529 530 531 532 533 534
    if( cn == 3 )
        sz = Size(1,1);
    else if( cvtest::randInt(rng) & 1 )
        sz = Size(3,1);
    else
        sz = Size(1,3);
535

536 537 538 539 540 541 542 543 544 545 546 547 548
    sizes[INPUT][0] = sizes[INPUT][1] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sz;
}


void Core_CrossProductTest::run_func()
{
    cvCrossProduct( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0] );
}


void Core_CrossProductTest::prepare_to_validation( int )
{
    CvScalar a = {{0,0,0,0}}, b = {{0,0,0,0}}, c = {{0,0,0,0}};
549

550 551 552 553 554
    if( test_mat[INPUT][0].rows > 1 )
    {
        a.val[0] = cvGetReal2D( test_array[INPUT][0], 0, 0 );
        a.val[1] = cvGetReal2D( test_array[INPUT][0], 1, 0 );
        a.val[2] = cvGetReal2D( test_array[INPUT][0], 2, 0 );
555

556 557 558 559 560 561 562 563 564
        b.val[0] = cvGetReal2D( test_array[INPUT][1], 0, 0 );
        b.val[1] = cvGetReal2D( test_array[INPUT][1], 1, 0 );
        b.val[2] = cvGetReal2D( test_array[INPUT][1], 2, 0 );
    }
    else if( test_mat[INPUT][0].cols > 1 )
    {
        a.val[0] = cvGetReal1D( test_array[INPUT][0], 0 );
        a.val[1] = cvGetReal1D( test_array[INPUT][0], 1 );
        a.val[2] = cvGetReal1D( test_array[INPUT][0], 2 );
565

566 567 568 569 570 571 572 573 574
        b.val[0] = cvGetReal1D( test_array[INPUT][1], 0 );
        b.val[1] = cvGetReal1D( test_array[INPUT][1], 1 );
        b.val[2] = cvGetReal1D( test_array[INPUT][1], 2 );
    }
    else
    {
        a = cvGet1D( test_array[INPUT][0], 0 );
        b = cvGet1D( test_array[INPUT][1], 0 );
    }
575

576 577 578
    c.val[2] = a.val[0]*b.val[1] - a.val[1]*b.val[0];
    c.val[1] = -a.val[0]*b.val[2] + a.val[2]*b.val[0];
    c.val[0] = a.val[1]*b.val[2] - a.val[2]*b.val[1];
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    if( test_mat[REF_OUTPUT][0].rows > 1 )
    {
        cvSetReal2D( test_array[REF_OUTPUT][0], 0, 0, c.val[0] );
        cvSetReal2D( test_array[REF_OUTPUT][0], 1, 0, c.val[1] );
        cvSetReal2D( test_array[REF_OUTPUT][0], 2, 0, c.val[2] );
    }
    else if( test_mat[REF_OUTPUT][0].cols > 1 )
    {
        cvSetReal1D( test_array[REF_OUTPUT][0], 0, c.val[0] );
        cvSetReal1D( test_array[REF_OUTPUT][0], 1, c.val[1] );
        cvSetReal1D( test_array[REF_OUTPUT][0], 2, c.val[2] );
    }
    else
    {
        cvSet1D( test_array[REF_OUTPUT][0], 0, c );
    }
}


///////////////// gemm /////////////////////

class Core_GEMMTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_GEMMTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int tabc_flag;
    double alpha, beta;
};

Core_GEMMTest::Core_GEMMTest() : Core_MatrixTest( 5, 1, false, false, 2 )
{
    test_case_count = 100;
    max_log_array_size = 10;
    alpha = beta = 0;
}


void Core_GEMMTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    Size sizeA;
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    sizeA = sizes[INPUT][0];
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    sizes[INPUT][0] = sizeA;
    sizes[INPUT][2] = sizes[INPUT][3] = Size(1,1);
    types[INPUT][2] = types[INPUT][3] &= ~CV_MAT_CN_MASK;
634

635
    tabc_flag = cvtest::randInt(rng) & 7;
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    switch( tabc_flag & (CV_GEMM_A_T|CV_GEMM_B_T) )
    {
        case 0:
            sizes[INPUT][1].height = sizes[INPUT][0].width;
            sizes[OUTPUT][0].height = sizes[INPUT][0].height;
            sizes[OUTPUT][0].width = sizes[INPUT][1].width;
            break;
        case CV_GEMM_B_T:
            sizes[INPUT][1].width = sizes[INPUT][0].width;
            sizes[OUTPUT][0].height = sizes[INPUT][0].height;
            sizes[OUTPUT][0].width = sizes[INPUT][1].height;
            break;
        case CV_GEMM_A_T:
            sizes[INPUT][1].height = sizes[INPUT][0].height;
            sizes[OUTPUT][0].height = sizes[INPUT][0].width;
            sizes[OUTPUT][0].width = sizes[INPUT][1].width;
            break;
        case CV_GEMM_A_T | CV_GEMM_B_T:
            sizes[INPUT][1].width = sizes[INPUT][0].height;
            sizes[OUTPUT][0].height = sizes[INPUT][0].width;
            sizes[OUTPUT][0].width = sizes[INPUT][1].height;
            break;
    }
660

661
    sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    if( cvtest::randInt(rng) & 1 )
        sizes[INPUT][4] = Size(0,0);
    else if( !(tabc_flag & CV_GEMM_C_T) )
        sizes[INPUT][4] = sizes[OUTPUT][0];
    else
    {
        sizes[INPUT][4].width = sizes[OUTPUT][0].height;
        sizes[INPUT][4].height = sizes[OUTPUT][0].width;
    }
}


int Core_GEMMTest::prepare_test_case( int test_case_idx )
{
    int code = Base::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        alpha = cvGetReal2D( test_array[INPUT][2], 0, 0 );
        beta = cvGetReal2D( test_array[INPUT][3], 0, 0 );
    }
    return code;
}


void Core_GEMMTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = Scalar::all(-10.);
    high = Scalar::all(10.);
}


void Core_GEMMTest::run_func()
{
    cvGEMM( test_array[INPUT][0], test_array[INPUT][1], alpha,
           test_array[INPUT][4], beta, test_array[OUTPUT][0], tabc_flag );
}


void Core_GEMMTest::prepare_to_validation( int )
{
    cvtest::gemm( test_mat[INPUT][0], test_mat[INPUT][1], alpha,
             test_array[INPUT][4] ? test_mat[INPUT][4] : Mat(),
             beta, test_mat[REF_OUTPUT][0], tabc_flag );
}


///////////////// multransposed /////////////////////

class Core_MulTransposedTest : public Core_MatrixTest
{
public:
    Core_MulTransposedTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int order;
};


Core_MulTransposedTest::Core_MulTransposedTest() : Core_MatrixTest( 2, 1, false, false, 1 )
{
    test_case_count = 100;
    order = 0;
    test_array[TEMP].push_back(NULL);
}


void Core_MulTransposedTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    int src_type = cvtest::randInt(rng) % 5;
    int dst_type = cvtest::randInt(rng) % 2;
738

739 740 741 742
    src_type = src_type == 0 ? CV_8U : src_type == 1 ? CV_16U : src_type == 2 ? CV_16S :
    src_type == 3 ? CV_32F : CV_64F;
    dst_type = dst_type == 0 ? CV_32F : CV_64F;
    dst_type = MAX( dst_type, src_type );
743

744
    Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
745

746 747 748 749 750 751 752 753 754 755
    if( bits & 1 )
        sizes[INPUT][1] = Size(0,0);
    else
    {
        sizes[INPUT][1] = sizes[INPUT][0];
        if( bits & 2 )
            sizes[INPUT][1].height = 1;
        if( bits & 4 )
            sizes[INPUT][1].width = 1;
    }
756

757 758 759
    sizes[TEMP][0] = sizes[INPUT][0];
    types[INPUT][0] = src_type;
    types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][1] = types[TEMP][0] = dst_type;
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    order = (bits & 8) != 0;
    sizes[OUTPUT][0].width = sizes[OUTPUT][0].height = order == 0 ?
    sizes[INPUT][0].height : sizes[INPUT][0].width;
    sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
}


void Core_MulTransposedTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-10.);
    high = cvScalarAll(10.);
}


void Core_MulTransposedTest::run_func()
{
    cvMulTransposed( test_array[INPUT][0], test_array[OUTPUT][0],
                    order, test_array[INPUT][1] );
}


void Core_MulTransposedTest::prepare_to_validation( int )
{
    const Mat& src = test_mat[INPUT][0];
    Mat delta = test_mat[INPUT][1];
    Mat& temp = test_mat[TEMP][0];
    if( !delta.empty() )
    {
        if( delta.rows < src.rows || delta.cols < src.cols )
        {
            cv::repeat( delta, src.rows/delta.rows, src.cols/delta.cols, temp);
            delta = temp;
        }
        cvtest::add( src, 1, delta, -1, Scalar::all(0), temp, temp.type());
    }
    else
        src.convertTo(temp, temp.type());
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    cvtest::gemm( temp, temp, 1., Mat(), 0, test_mat[REF_OUTPUT][0], order == 0 ? GEMM_2_T : GEMM_1_T );
}


///////////////// Transform /////////////////////

class Core_TransformTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_TransformTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    double scale;
    bool diagMtx;
};


Core_TransformTest::Core_TransformTest() : Core_MatrixTest( 3, 1, true, false, 4 )
{
}


void Core_TransformTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    int depth, dst_cn, mat_cols, mattype;
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
833

834 835 836 837
    mat_cols = CV_MAT_CN(types[INPUT][0]);
    depth = CV_MAT_DEPTH(types[INPUT][0]);
    dst_cn = cvtest::randInt(rng) % 4 + 1;
    types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, dst_cn);
838

839 840 841
    mattype = depth < CV_32S ? CV_32F : depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F;
    types[INPUT][1] = mattype;
    types[INPUT][2] = CV_MAKETYPE(mattype, dst_cn);
842

843
    scale = 1./((cvtest::randInt(rng)%4)*50+1);
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
    if( bits & 2 )
    {
        sizes[INPUT][2] = Size(0,0);
        mat_cols += (bits & 4) != 0;
    }
    else if( bits & 4 )
        sizes[INPUT][2] = Size(1,1);
    else
    {
        if( bits & 8 )
            sizes[INPUT][2] = Size(dst_cn,1);
        else
            sizes[INPUT][2] = Size(1,dst_cn);
        types[INPUT][2] &= ~CV_MAT_CN_MASK;
    }
    diagMtx = (bits & 16) != 0;
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    sizes[INPUT][1] = Size(mat_cols,dst_cn);
}


int Core_TransformTest::prepare_test_case( int test_case_idx )
{
    int code = Base::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        Mat& m = test_mat[INPUT][1];
        cvtest::add(m, scale, m, 0, Scalar::all(0), m, m.type() );
        if(diagMtx)
        {
            Mat mask = Mat::eye(m.rows, m.cols, CV_8U)*255;
            mask = ~mask;
            m.setTo(Scalar::all(0), mask);
        }
    }
    return code;
}


double Core_TransformTest::get_success_error_level( int test_case_idx, int i, int j )
{
    int depth = test_mat[INPUT][0].depth();
    return depth <= CV_8S ? 1 : depth <= CV_32S ? 9 : Base::get_success_error_level( test_case_idx, i, j );
}

void Core_TransformTest::run_func()
{
    CvMat _m = test_mat[INPUT][1], _shift = test_mat[INPUT][2];
    cvTransform( test_array[INPUT][0], test_array[OUTPUT][0], &_m, _shift.data.ptr ? &_shift : 0);
}


void Core_TransformTest::prepare_to_validation( int )
{
    Mat transmat = test_mat[INPUT][1];
    Mat shift = test_mat[INPUT][2];
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
    cvtest::transform( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], transmat, shift );
}


///////////////// PerspectiveTransform /////////////////////

class Core_PerspectiveTransformTest : public Core_MatrixTest
{
public:
    Core_PerspectiveTransformTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_PerspectiveTransformTest::Core_PerspectiveTransformTest() : Core_MatrixTest( 2, 1, false, false, 2 )
{
}


void Core_PerspectiveTransformTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    int depth, cn, mattype;
    Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
931

932 933 934
    cn = CV_MAT_CN(types[INPUT][0]) + 1;
    depth = CV_MAT_DEPTH(types[INPUT][0]);
    types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn);
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    mattype = depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F;
    types[INPUT][1] = mattype;
    sizes[INPUT][1] = Size(cn + 1, cn + 1);
}


double Core_PerspectiveTransformTest::get_success_error_level( int test_case_idx, int i, int j )
{
    int depth = test_mat[INPUT][0].depth();
    return depth == CV_32F ? 1e-4 : depth == CV_64F ? 1e-8 :
    Core_MatrixTest::get_success_error_level(test_case_idx, i, j);
}


void Core_PerspectiveTransformTest::run_func()
{
    CvMat _m = test_mat[INPUT][1];
    cvPerspectiveTransform( test_array[INPUT][0], test_array[OUTPUT][0], &_m );
}


static void cvTsPerspectiveTransform( const CvArr* _src, CvArr* _dst, const CvMat* transmat )
{
    int i, j, cols;
    int cn, depth, mat_depth;
    CvMat astub, bstub, *a, *b;
    double mat[16];
963

964 965
    a = cvGetMat( _src, &astub, 0, 0 );
    b = cvGetMat( _dst, &bstub, 0, 0 );
966

967 968 969 970
    cn = CV_MAT_CN(a->type);
    depth = CV_MAT_DEPTH(a->type);
    mat_depth = CV_MAT_DEPTH(transmat->type);
    cols = transmat->cols;
971

972 973 974 975 976 977 978 979 980 981 982 983 984 985
    // prepare cn x (cn + 1) transform matrix
    if( mat_depth == CV_32F )
    {
        for( i = 0; i < transmat->rows; i++ )
            for( j = 0; j < cols; j++ )
                mat[i*cols + j] = ((float*)(transmat->data.ptr + transmat->step*i))[j];
    }
    else
    {
        assert( mat_depth == CV_64F );
        for( i = 0; i < transmat->rows; i++ )
            for( j = 0; j < cols; j++ )
                mat[i*cols + j] = ((double*)(transmat->data.ptr + transmat->step*i))[j];
    }
986

987 988 989
    // transform data
    cols = a->cols * cn;
    vector<double> buf(cols);
990

991 992 993 994
    for( i = 0; i < a->rows; i++ )
    {
        uchar* src = a->data.ptr + i*a->step;
        uchar* dst = b->data.ptr + i*b->step;
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        switch( depth )
        {
            case CV_32F:
                for( j = 0; j < cols; j++ )
                    buf[j] = ((float*)src)[j];
                break;
            case CV_64F:
                for( j = 0; j < cols; j++ )
                    buf[j] = ((double*)src)[j];
                break;
            default:
                assert(0);
        }
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        switch( cn )
        {
            case 2:
                for( j = 0; j < cols; j += 2 )
                {
                    double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + mat[2];
                    double t1 = buf[j]*mat[3] + buf[j+1]*mat[4] + mat[5];
                    double w = buf[j]*mat[6] + buf[j+1]*mat[7] + mat[8];
                    w = w ? 1./w : 0;
                    buf[j] = t0*w;
                    buf[j+1] = t1*w;
                }
                break;
            case 3:
                for( j = 0; j < cols; j += 3 )
                {
                    double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + buf[j+2]*mat[2] + mat[3];
                    double t1 = buf[j]*mat[4] + buf[j+1]*mat[5] + buf[j+2]*mat[6] + mat[7];
                    double t2 = buf[j]*mat[8] + buf[j+1]*mat[9] + buf[j+2]*mat[10] + mat[11];
                    double w = buf[j]*mat[12] + buf[j+1]*mat[13] + buf[j+2]*mat[14] + mat[15];
                    w = w ? 1./w : 0;
                    buf[j] = t0*w;
                    buf[j+1] = t1*w;
                    buf[j+2] = t2*w;
                }
                break;
            default:
                assert(0);
        }
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        switch( depth )
        {
            case CV_32F:
                for( j = 0; j < cols; j++ )
                    ((float*)dst)[j] = (float)buf[j];
                break;
            case CV_64F:
                for( j = 0; j < cols; j++ )
                    ((double*)dst)[j] = buf[j];
                break;
            default:
                assert(0);
        }
    }
}


void Core_PerspectiveTransformTest::prepare_to_validation( int )
{
    CvMat transmat = test_mat[INPUT][1];
    cvTsPerspectiveTransform( test_array[INPUT][0], test_array[REF_OUTPUT][0], &transmat );
}

///////////////// Mahalanobis /////////////////////

class Core_MahalanobisTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_MahalanobisTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_MahalanobisTest::Core_MahalanobisTest() : Core_MatrixTest( 3, 1, false, true, 1 )
{
    test_case_count = 100;
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


void Core_MahalanobisTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1091

1092 1093 1094 1095
    if( cvtest::randInt(rng) & 1 )
        sizes[INPUT][0].width = sizes[INPUT][1].width = 1;
    else
        sizes[INPUT][0].height = sizes[INPUT][1].height = 1;
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    sizes[TEMP][0] = sizes[TEMP][1] = sizes[INPUT][0];
    sizes[INPUT][2].width = sizes[INPUT][2].height = sizes[INPUT][0].width + sizes[INPUT][0].height - 1;
    sizes[TEMP][2] = sizes[INPUT][2];
    types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0];
}

int Core_MahalanobisTest::prepare_test_case( int test_case_idx )
{
    int code = Base::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        // make sure that the inverted "covariation" matrix is symmetrix and positively defined.
        cvtest::gemm( test_mat[INPUT][2], test_mat[INPUT][2], 1., Mat(), 0., test_mat[TEMP][2], GEMM_2_T );
        cvtest::copy( test_mat[TEMP][2], test_mat[INPUT][2] );
    }
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    return code;
}


void Core_MahalanobisTest::run_func()
{
    test_mat[OUTPUT][0].at<Scalar>(0,0) =
    cvRealScalar(cvMahalanobis(test_array[INPUT][0], test_array[INPUT][1], test_array[INPUT][2]));
}

void Core_MahalanobisTest::prepare_to_validation( int )
{
    cvtest::add( test_mat[INPUT][0], 1., test_mat[INPUT][1], -1.,
                Scalar::all(0), test_mat[TEMP][0], test_mat[TEMP][0].type() );
    if( test_mat[INPUT][0].rows == 1 )
        cvtest::gemm( test_mat[TEMP][0], test_mat[INPUT][2], 1.,
                 Mat(), 0., test_mat[TEMP][1], 0 );
    else
        cvtest::gemm( test_mat[INPUT][2], test_mat[TEMP][0], 1.,
                 Mat(), 0., test_mat[TEMP][1], 0 );
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(sqrt(cvtest::crossCorr(test_mat[TEMP][0], test_mat[TEMP][1])));
}


///////////////// covarmatrix /////////////////////

class Core_CovarMatrixTest : public Core_MatrixTest
{
public:
    Core_CovarMatrixTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    vector<void*> temp_hdrs;
    vector<uchar> hdr_data;
    int flags, t_flag, len, count;
    bool are_images;
};


Core_CovarMatrixTest::Core_CovarMatrixTest() : Core_MatrixTest( 1, 1, true, false, 1 ),
flags(0), t_flag(0), are_images(false)
{
    test_case_count = 100;
    test_array[INPUT_OUTPUT].push_back(NULL);
    test_array[REF_INPUT_OUTPUT].push_back(NULL);
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


void Core_CovarMatrixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    int i, single_matrix;
    Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1173

1174 1175 1176
    flags = bits & (CV_COVAR_NORMAL | CV_COVAR_USE_AVG | CV_COVAR_SCALE | CV_COVAR_ROWS );
    single_matrix = flags & CV_COVAR_ROWS;
    t_flag = (bits & 256) != 0;
1177

1178
    const int min_count = 2;
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    if( !t_flag )
    {
        len = sizes[INPUT][0].width;
        count = sizes[INPUT][0].height;
        count = MAX(count, min_count);
        sizes[INPUT][0] = Size(len, count);
    }
    else
    {
        len = sizes[INPUT][0].height;
        count = sizes[INPUT][0].width;
        count = MAX(count, min_count);
        sizes[INPUT][0] = Size(count, len);
    }
1194

1195 1196
    if( single_matrix && t_flag )
        flags = (flags & ~CV_COVAR_ROWS) | CV_COVAR_COLS;
1197

1198 1199
    if( CV_MAT_DEPTH(types[INPUT][0]) == CV_32S )
        types[INPUT][0] = (types[INPUT][0] & ~CV_MAT_DEPTH_MASK) | CV_32F;
1200

1201 1202 1203
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = flags & CV_COVAR_NORMAL ? Size(len,len) : Size(count,count);
    sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = !t_flag ? Size(len,1) : Size(1,len);
    sizes[TEMP][0] = sizes[INPUT][0];
1204

1205 1206 1207
    types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] =
    types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0] =
    CV_MAT_DEPTH(types[INPUT][0]) == CV_64F || (bits & 512) ? CV_64F : CV_32F;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    are_images = (bits & 1024) != 0;
    for( i = 0; i < (single_matrix ? 1 : count); i++ )
        temp_hdrs.push_back(NULL);
}


int Core_CovarMatrixTest::prepare_test_case( int test_case_idx )
{
    int code = Core_MatrixTest::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        int i;
        int single_matrix = flags & (CV_COVAR_ROWS|CV_COVAR_COLS);
        int hdr_size = are_images ? sizeof(IplImage) : sizeof(CvMat);
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        hdr_data.resize(count*hdr_size);
        uchar* _hdr_data = &hdr_data[0];
        if( single_matrix )
        {
            if( !are_images )
                *((CvMat*)_hdr_data) = test_mat[INPUT][0];
            else
                *((IplImage*)_hdr_data) = test_mat[INPUT][0];
            temp_hdrs[0] = _hdr_data;
        }
        else
            for( i = 0; i < count; i++ )
            {
                Mat part;
                void* ptr = _hdr_data + i*hdr_size;
1239

1240 1241 1242 1243
                if( !t_flag )
                    part = test_mat[INPUT][0].row(i);
                else
                    part = test_mat[INPUT][0].col(i);
1244

1245 1246 1247 1248
                if( !are_images )
                    *((CvMat*)ptr) = part;
                else
                    *((IplImage*)ptr) = part;
1249

1250 1251 1252
                temp_hdrs[i] = ptr;
            }
    }
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    return code;
}


void Core_CovarMatrixTest::run_func()
{
    cvCalcCovarMatrix( (const void**)&temp_hdrs[0], count,
                      test_array[OUTPUT][0], test_array[INPUT_OUTPUT][0], flags );
}


void Core_CovarMatrixTest::prepare_to_validation( int )
{
    Mat& avg = test_mat[REF_INPUT_OUTPUT][0];
    double scale = 1.;
1269

1270 1271 1272
    if( !(flags & CV_COVAR_USE_AVG) )
    {
        Mat hdrs0 = cvarrToMat(temp_hdrs[0]);
1273

1274 1275
        int i;
        avg = Scalar::all(0);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285
        for( i = 0; i < count; i++ )
        {
            Mat vec;
            if( flags & CV_COVAR_ROWS )
                vec = hdrs0.row(i);
            else if( flags & CV_COVAR_COLS )
                vec = hdrs0.col(i);
            else
                vec = cvarrToMat(temp_hdrs[i]);
1286

1287 1288
            cvtest::add(avg, 1, vec, 1, Scalar::all(0), avg, avg.type());
        }
1289

1290 1291
        cvtest::add(avg, 1./count, avg, 0., Scalar::all(0), avg, avg.type());
    }
1292

1293 1294 1295 1296
    if( flags & CV_COVAR_SCALE )
    {
        scale = 1./count;
    }
1297

1298 1299 1300
    Mat& temp0 = test_mat[TEMP][0];
    cv::repeat( avg, temp0.rows/avg.rows, temp0.cols/avg.cols, temp0 );
    cvtest::add( test_mat[INPUT][0], 1, temp0, -1, Scalar::all(0), temp0, temp0.type());
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    cvtest::gemm( temp0, temp0, scale, Mat(), 0., test_mat[REF_OUTPUT][0],
             t_flag ^ ((flags & CV_COVAR_NORMAL) != 0) ? CV_GEMM_A_T : CV_GEMM_B_T );
    temp_hdrs.clear();
}


static void cvTsFloodWithZeros( Mat& mat, RNG& rng )
{
    int k, total = mat.rows*mat.cols, type = mat.type();
    int zero_total = cvtest::randInt(rng) % total;
    CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
1313

1314 1315 1316 1317
    for( k = 0; k < zero_total; k++ )
    {
        int i = cvtest::randInt(rng) % mat.rows;
        int j = cvtest::randInt(rng) % mat.cols;
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        if( type == CV_32FC1 )
            mat.at<float>(i,j) = 0.f;
        else
            mat.at<double>(i,j) = 0.;
    }
}


///////////////// determinant /////////////////////

class Core_DetTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_DetTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
};


Core_DetTest::Core_DetTest() : Core_MatrixTest( 1, 1, false, true, 1 )
{
    test_case_count = 100;
    max_log_array_size = 7;
    test_array[TEMP].push_back(NULL);
}


void Core_DetTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    sizes[INPUT][0].width = sizes[INPUT][0].height = sizes[INPUT][0].height;
    sizes[TEMP][0] = sizes[INPUT][0];
    types[TEMP][0] = CV_64FC1;
}


void Core_DetTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-2.);
    high = cvScalarAll(2.);
}


double Core_DetTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
    return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-2 : 1e-5;
}


int Core_DetTest::prepare_test_case( int test_case_idx )
{
    int code = Core_MatrixTest::prepare_test_case( test_case_idx );
    if( code > 0 )
        cvTsFloodWithZeros( test_mat[INPUT][0], ts->get_rng() );
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    return code;
}


void Core_DetTest::run_func()
{
    test_mat[OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(cvDet(test_array[INPUT][0]));
}


// LU method that chooses the optimal in a column pivot element
static double cvTsLU( CvMat* a, CvMat* b=NULL, CvMat* x=NULL, int* rank=0 )
{
    int i, j, k, N = a->rows, N1 = a->cols, Nm = MIN(N, N1), step = a->step/sizeof(double);
    int M = b ? b->cols : 0, b_step = b ? b->step/sizeof(double) : 0;
    int x_step = x ? x->step/sizeof(double) : 0;
    double *a0 = a->data.db, *b0 = b ? b->data.db : 0;
    double *x0 = x ? x->data.db : 0;
    double t, det = 1.;
    assert( CV_MAT_TYPE(a->type) == CV_64FC1 &&
           (!b || CV_ARE_TYPES_EQ(a,b)) && (!x || CV_ARE_TYPES_EQ(a,x)));
1402

1403 1404 1405 1406 1407
    for( i = 0; i < Nm; i++ )
    {
        double max_val = fabs(a0[i*step + i]);
        double *a1, *a2, *b1 = 0, *b2 = 0;
        k = i;
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417
        for( j = i+1; j < N; j++ )
        {
            t = fabs(a0[j*step + i]);
            if( max_val < t )
            {
                max_val = t;
                k = j;
            }
        }
1418

1419 1420 1421 1422
        if( k != i )
        {
            for( j = i; j < N1; j++ )
                CV_SWAP( a0[i*step + j], a0[k*step + j], t );
1423

1424 1425 1426 1427
            for( j = 0; j < M; j++ )
                CV_SWAP( b0[i*b_step + j], b0[k*b_step + j], t );
            det = -det;
        }
1428

1429 1430 1431 1432 1433 1434
        if( max_val == 0 )
        {
            if( rank )
                *rank = i;
            return 0.;
        }
1435

1436 1437 1438 1439
        a1 = a0 + i*step;
        a2 = a1 + step;
        b1 = b0 + i*b_step;
        b2 = b1 + b_step;
1440

1441 1442 1443 1444 1445
        for( j = i+1; j < N; j++, a2 += step, b2 += b_step )
        {
            t = a2[i]/a1[i];
            for( k = i+1; k < N1; k++ )
                a2[k] -= t*a1[k];
1446

1447 1448 1449
            for( k = 0; k < M; k++ )
                b2[k] -= t*b1[k];
        }
1450

1451 1452
        det *= a1[i];
    }
1453

1454 1455 1456
    if( x )
    {
        assert( b );
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        for( i = N-1; i >= 0; i-- )
        {
            double* a1 = a0 + i*step;
            double* b1 = b0 + i*b_step;
            for( j = 0; j < M; j++ )
            {
                t = b1[j];
                for( k = i+1; k < N1; k++ )
                    t -= a1[k]*x0[k*x_step + j];
                x0[i*x_step + j] = t/a1[i];
            }
        }
    }
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    if( rank )
        *rank = i;
    return det;
}


void Core_DetTest::prepare_to_validation( int )
{
    test_mat[INPUT][0].convertTo(test_mat[TEMP][0], test_mat[TEMP][0].type());
    CvMat temp0 = test_mat[TEMP][0];
    test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(cvTsLU(&temp0, 0, 0));
}


///////////////// invert /////////////////////

class Core_InvertTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_InvertTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    double get_success_error_level( int test_case_idx, int i, int j );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int method, rank;
    double result;
};


Core_InvertTest::Core_InvertTest()
: Core_MatrixTest( 1, 1, false, false, 1 ), method(0), rank(0), result(0.)
{
    test_case_count = 100;
    max_log_array_size = 7;
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


void Core_InvertTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height );
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    if( (bits & 3) == 0 )
    {
        method = CV_SVD;
        if( bits & 4 )
        {
            sizes[INPUT][0] = Size(min_size, min_size);
            if( bits & 16 )
                method = CV_CHOLESKY;
        }
    }
    else
    {
        method = CV_LU;
        sizes[INPUT][0] = Size(min_size, min_size);
    }
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    sizes[TEMP][0].width = sizes[INPUT][0].height;
    sizes[TEMP][0].height = sizes[INPUT][0].width;
    sizes[TEMP][1] = sizes[INPUT][0];
    types[TEMP][0] = types[INPUT][0];
    types[TEMP][1] = CV_64FC1;
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(min_size, min_size);
}


double Core_InvertTest::get_success_error_level( int /*test_case_idx*/, int, int )
{
    return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 1e-2 : 1e-6;
}

int Core_InvertTest::prepare_test_case( int test_case_idx )
{
    int code = Core_MatrixTest::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        cvTsFloodWithZeros( test_mat[INPUT][0], ts->get_rng() );
1558

1559 1560 1561 1562 1563 1564 1565
        if( method == CV_CHOLESKY )
        {
            cvtest::gemm( test_mat[INPUT][0], test_mat[INPUT][0], 1.,
                     Mat(), 0., test_mat[TEMP][0], CV_GEMM_B_T );
            cvtest::copy( test_mat[TEMP][0], test_mat[INPUT][0] );
        }
    }
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    return code;
}



void Core_InvertTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-1.);
    high = cvScalarAll(1.);
}


void Core_InvertTest::run_func()
{
    result = cvInvert(test_array[INPUT][0], test_array[TEMP][0], method);
}


static double cvTsSVDet( CvMat* mat, double* ratio )
{
    int type = CV_MAT_TYPE(mat->type);
    int i, nm = MIN( mat->rows, mat->cols );
    CvMat* w = cvCreateMat( nm, 1, type );
    double det = 1.;
1591

1592
    cvSVD( mat, w, 0, 0, 0 );
1593

1594 1595 1596 1597
    if( type == CV_32FC1 )
    {
        for( i = 0; i < nm; i++ )
            det *= w->data.fl[i];
1598
        *ratio = w->data.fl[nm-1] < FLT_EPSILON ? 0 : w->data.fl[nm-1]/w->data.fl[0];
1599 1600 1601 1602 1603
    }
    else
    {
        for( i = 0; i < nm; i++ )
            det *= w->data.db[i];
1604
        *ratio = w->data.db[nm-1] < FLT_EPSILON ? 0 : w->data.db[nm-1]/w->data.db[0];
1605
    }
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    cvReleaseMat( &w );
    return det;
}

void Core_InvertTest::prepare_to_validation( int )
{
    Mat& input = test_mat[INPUT][0];
    Mat& temp0 = test_mat[TEMP][0];
    Mat& temp1 = test_mat[TEMP][1];
    Mat& dst0 = test_mat[REF_OUTPUT][0];
    Mat& dst = test_mat[OUTPUT][0];
    CvMat _input = input;
    double ratio = 0, det = cvTsSVDet( &_input, &ratio );
    double threshold = (input.depth() == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000;
1621

1622
    cvtest::convert( input, temp1, temp1.type() );
1623

1624 1625 1626 1627 1628 1629 1630 1631
    if( det < threshold ||
       ((method == CV_LU || method == CV_CHOLESKY) && (result == 0 || ratio < threshold)) ||
       ((method == CV_SVD || method == CV_SVD_SYM) && result < threshold) )
    {
        dst = Scalar::all(0);
        dst0 = Scalar::all(0);
        return;
    }
1632

1633 1634 1635 1636
    if( input.rows >= input.cols )
        cvtest::gemm( temp0, input, 1., Mat(), 0., dst, 0 );
    else
        cvtest::gemm( input, temp0, 1., Mat(), 0., dst, 0 );
1637

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    cv::setIdentity( dst0, Scalar::all(1) );
}


///////////////// solve /////////////////////

class Core_SolveTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_SolveTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    double get_success_error_level( int test_case_idx, int i, int j );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int method, rank;
    double result;
};


Core_SolveTest::Core_SolveTest() : Core_MatrixTest( 2, 1, false, false, 1 ), method(0), rank(0), result(0.)
{
    test_case_count = 100;
    max_log_array_size = 7;
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


void Core_SolveTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    CvSize in_sz = sizes[INPUT][0];
1676 1677
    if( in_sz.width > in_sz.height )
        in_sz = cvSize(in_sz.height, in_sz.width);
1678 1679 1680
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    sizes[INPUT][0] = in_sz;
    int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height );
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    if( (bits & 3) == 0 )
    {
        method = CV_SVD;
        if( bits & 4 )
        {
            sizes[INPUT][0] = Size(min_size, min_size);
            /*if( bits & 8 )
             method = CV_SVD_SYM;*/
        }
    }
    else
    {
        method = CV_LU;
        sizes[INPUT][0] = Size(min_size, min_size);
    }
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    sizes[INPUT][1].height = sizes[INPUT][0].height;
    sizes[TEMP][0].width = sizes[INPUT][1].width;
    sizes[TEMP][0].height = sizes[INPUT][0].width;
    sizes[TEMP][1] = sizes[INPUT][0];
    types[TEMP][0] = types[INPUT][0];
    types[TEMP][1] = CV_64FC1;
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(sizes[INPUT][1].width, min_size);
}


int Core_SolveTest::prepare_test_case( int test_case_idx )
{
    int code = Core_MatrixTest::prepare_test_case( test_case_idx );
1711

1712 1713 1714 1715 1716 1717
    /*if( method == CV_SVD_SYM )
     {
     cvTsGEMM( test_array[INPUT][0], test_array[INPUT][0], 1.,
     0, 0., test_array[TEMP][0], CV_GEMM_B_T );
     cvTsCopy( test_array[TEMP][0], test_array[INPUT][0] );
     }*/
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    return code;
}


void Core_SolveTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-1.);
    high = cvScalarAll(1.);
}


double Core_SolveTest::get_success_error_level( int /*test_case_idx*/, int, int )
{
    return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 5e-2 : 1e-8;
}


void Core_SolveTest::run_func()
{
    result = cvSolve(test_array[INPUT][0], test_array[INPUT][1], test_array[TEMP][0], method);
}

void Core_SolveTest::prepare_to_validation( int )
{
    //int rank = test_mat[REF_OUTPUT][0].rows;
    Mat& input = test_mat[INPUT][0];
    Mat& dst = test_mat[OUTPUT][0];
    Mat& dst0 = test_mat[REF_OUTPUT][0];
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    if( method == CV_LU )
    {
        if( result == 0 )
        {
            Mat& temp1 = test_mat[TEMP][1];
            cvtest::convert(input, temp1, temp1.type());
            dst = Scalar::all(0);
            CvMat _temp1 = temp1;
            double det = cvTsLU( &_temp1, 0, 0 );
            dst0 = Scalar::all(det != 0);
            return;
        }
1760

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
        double threshold = (input.type() == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000;
        CvMat _input = input;
        double ratio = 0, det = cvTsSVDet( &_input, &ratio );
        if( det < threshold || ratio < threshold )
        {
            dst = Scalar::all(0);
            dst0 = Scalar::all(0);
            return;
        }
    }
1771

1772
    Mat* pdst = input.rows <= input.cols ? &test_mat[OUTPUT][0] : &test_mat[INPUT][1];
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    cvtest::gemm( input, test_mat[TEMP][0], 1., test_mat[INPUT][1], -1., *pdst, 0 );
    if( pdst != &dst )
        cvtest::gemm( input, *pdst, 1., Mat(), 0., dst, CV_GEMM_A_T );
    dst0 = Scalar::all(0);
}


///////////////// SVD /////////////////////

class Core_SVDTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_SVDTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int flags;
    bool have_u, have_v, symmetric, compact, vector_w;
};


Core_SVDTest::Core_SVDTest() :
Core_MatrixTest( 1, 4, false, false, 1 ),
flags(0), have_u(false), have_v(false), symmetric(false), compact(false), vector_w(false)
{
    test_case_count = 100;
1805
    max_log_array_size = 8;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


void Core_SVDTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    int min_size, i, m, n;
1819

1820
    min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height );
1821

1822 1823 1824 1825 1826 1827
    flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T);
    have_u = (bits & 8) != 0;
    have_v = (bits & 16) != 0;
    symmetric = (bits & 32) != 0;
    compact = (bits & 64) != 0;
    vector_w = (bits & 128) != 0;
1828

1829 1830
    if( symmetric )
        sizes[INPUT][0] = Size(min_size, min_size);
1831

1832 1833
    m = sizes[INPUT][0].height;
    n = sizes[INPUT][0].width;
1834

1835 1836 1837 1838 1839
    if( compact )
        sizes[TEMP][0] = Size(min_size, min_size);
    else
        sizes[TEMP][0] = sizes[INPUT][0];
    sizes[TEMP][3] = Size(0,0);
1840

1841 1842 1843 1844 1845 1846 1847 1848
    if( vector_w )
    {
        sizes[TEMP][3] = sizes[TEMP][0];
        if( bits & 256 )
            sizes[TEMP][0] = Size(1, min_size);
        else
            sizes[TEMP][0] = Size(min_size, 1);
    }
1849

1850 1851 1852
    if( have_u )
    {
        sizes[TEMP][1] = compact ? Size(min_size, m) : Size(m, m);
1853

1854 1855 1856 1857 1858
        if( flags & CV_SVD_U_T )
            CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i );
    }
    else
        sizes[TEMP][1] = Size(0,0);
1859

1860 1861 1862
    if( have_v )
    {
        sizes[TEMP][2] = compact ? Size(n, min_size) : Size(n, n);
1863

1864 1865 1866 1867 1868
        if( !(flags & CV_SVD_V_T) )
            CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i );
    }
    else
        sizes[TEMP][2] = Size(0,0);
1869

1870 1871 1872 1873 1874 1875 1876
    types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[TEMP][3] = types[INPUT][0];
    types[OUTPUT][0] = types[OUTPUT][1] = types[OUTPUT][2] = types[INPUT][0];
    types[OUTPUT][3] = CV_8UC1;
    sizes[OUTPUT][0] = !have_u || !have_v ? Size(0,0) : sizes[INPUT][0];
    sizes[OUTPUT][1] = !have_u ? Size(0,0) : compact ? Size(min_size,min_size) : Size(m,m);
    sizes[OUTPUT][2] = !have_v ? Size(0,0) : compact ? Size(min_size,min_size) : Size(n,n);
    sizes[OUTPUT][3] = Size(min_size,1);
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    for( i = 0; i < 4; i++ )
    {
        sizes[REF_OUTPUT][i] = sizes[OUTPUT][i];
        types[REF_OUTPUT][i] = types[OUTPUT][i];
    }
}


int Core_SVDTest::prepare_test_case( int test_case_idx )
{
    int code = Core_MatrixTest::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        Mat& input = test_mat[INPUT][0];
        cvTsFloodWithZeros( input, ts->get_rng() );
1893

1894 1895 1896 1897 1898 1899
        if( symmetric && (have_u || have_v) )
        {
            Mat& temp = test_mat[TEMP][have_u ? 1 : 2];
            cvtest::gemm( input, input, 1., Mat(), 0., temp, CV_GEMM_B_T );
            cvtest::copy( temp, input );
        }
1900

1901 1902 1903
        if( (flags & CV_SVD_MODIFY_A) && test_array[OUTPUT][0] )
            cvtest::copy( input, test_mat[OUTPUT][0] );
    }
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
    return code;
}


void Core_SVDTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-2.);
    high = cvScalarAll(2.);
}

double Core_SVDTest::get_success_error_level( int test_case_idx, int i, int j )
{
    int input_depth = CV_MAT_DEPTH(cvGetElemType( test_array[INPUT][0] ));
1918
    double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 1e-5 : 5e-11;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    double output_precision = Base::get_success_error_level( test_case_idx, i, j );
    return MAX(input_precision, output_precision);
}

void Core_SVDTest::run_func()
{
    CvArr* src = test_array[!(flags & CV_SVD_MODIFY_A) ? INPUT : OUTPUT][0];
    if( !src )
        src = test_array[INPUT][0];
    cvSVD( src, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags );
}


1932
void Core_SVDTest::prepare_to_validation( int /*test_case_idx*/ )
1933 1934 1935
{
    Mat& input = test_mat[INPUT][0];
    int depth = input.depth();
1936
    int i, m = input.rows, n = input.cols, min_size = MIN(m, n);
1937 1938
    Mat *src, *dst, *w;
    double prev = 0, threshold = depth == CV_32F ? FLT_EPSILON : DBL_EPSILON;
1939

1940 1941 1942 1943 1944 1945 1946
    if( have_u )
    {
        src = &test_mat[TEMP][1];
        dst = &test_mat[OUTPUT][1];
        cvtest::gemm( *src, *src, 1., Mat(), 0., *dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T );
        cv::setIdentity( test_mat[REF_OUTPUT][1], Scalar::all(1.) );
    }
1947

1948 1949 1950 1951 1952 1953 1954
    if( have_v )
    {
        src = &test_mat[TEMP][2];
        dst = &test_mat[OUTPUT][2];
        cvtest::gemm( *src, *src, 1., Mat(), 0., *dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T );
        cv::setIdentity( test_mat[REF_OUTPUT][2], Scalar::all(1.) );
    }
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    w = &test_mat[TEMP][0];
    for( i = 0; i < min_size; i++ )
    {
        double normval = 0, aii;
        if( w->rows > 1 && w->cols > 1 )
        {
            normval = cvtest::norm( w->row(i), NORM_L1 );
            aii = depth == CV_32F ? w->at<float>(i,i) : w->at<double>(i,i);
        }
        else
        {
            normval = aii = depth == CV_32F ? w->at<float>(i) : w->at<double>(i);
        }
1969

1970 1971 1972 1973
        normval = fabs(normval - aii);
        test_mat[OUTPUT][3].at<uchar>(i) = aii >= 0 && normval < threshold && (i == 0 || aii <= prev);
        prev = aii;
    }
1974

1975
    test_mat[REF_OUTPUT][3] = Scalar::all(1);
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    if( have_u && have_v )
    {
        if( vector_w )
        {
            test_mat[TEMP][3] = Scalar::all(0);
            for( i = 0; i < min_size; i++ )
            {
                double val = depth == CV_32F ? w->at<float>(i) : w->at<double>(i);
                cvSetReal2D( test_array[TEMP][3], i, i, val );
            }
            w = &test_mat[TEMP][3];
        }
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        if( m >= n )
        {
            cvtest::gemm( test_mat[TEMP][1], *w, 1., Mat(), 0., test_mat[REF_OUTPUT][0],
                     flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 );
            cvtest::gemm( test_mat[REF_OUTPUT][0], test_mat[TEMP][2], 1., Mat(), 0.,
                     test_mat[OUTPUT][0], flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T );
        }
        else
        {
            cvtest::gemm( *w, test_mat[TEMP][2], 1., Mat(), 0., test_mat[REF_OUTPUT][0],
                     flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T );
            cvtest::gemm( test_mat[TEMP][1], test_mat[REF_OUTPUT][0], 1., Mat(), 0.,
                     test_mat[OUTPUT][0], flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 );
        }
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        cvtest::copy( test_mat[INPUT][0], test_mat[REF_OUTPUT][0] );
    }
}



///////////////// SVBkSb /////////////////////

class Core_SVBkSbTest : public Core_MatrixTest
{
public:
    typedef Core_MatrixTest Base;
    Core_SVBkSbTest();
protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high );
    int prepare_test_case( int test_case_idx );
    void run_func();
    void prepare_to_validation( int test_case_idx );
    int flags;
    bool have_b, symmetric, compact, vector_w;
};


Core_SVBkSbTest::Core_SVBkSbTest() : Core_MatrixTest( 2, 1, false, false, 1 ),
flags(0), have_b(false), symmetric(false), compact(false), vector_w(false)
{
    test_case_count = 100;
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
    test_array[TEMP].push_back(NULL);
}


2040 2041
void Core_SVBkSbTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes,
                                                      vector<vector<int> >& types )
2042 2043 2044 2045 2046 2047
{
    RNG& rng = ts->get_rng();
    int bits = cvtest::randInt(rng);
    Base::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    int min_size, i, m, n;
    CvSize b_size;
2048

2049
    min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height );
2050

2051 2052 2053 2054 2055
    flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T);
    have_b = (bits & 16) != 0;
    symmetric = (bits & 32) != 0;
    compact = (bits & 64) != 0;
    vector_w = (bits & 128) != 0;
2056

2057 2058
    if( symmetric )
        sizes[INPUT][0] = Size(min_size, min_size);
2059

2060 2061
    m = sizes[INPUT][0].height;
    n = sizes[INPUT][0].width;
2062

2063 2064 2065 2066 2067 2068 2069 2070
    sizes[INPUT][1] = Size(0,0);
    b_size = Size(m,m);
    if( have_b )
    {
        sizes[INPUT][1].height = sizes[INPUT][0].height;
        sizes[INPUT][1].width = cvtest::randInt(rng) % 100 + 1;
        b_size = sizes[INPUT][1];
    }
2071

2072 2073 2074 2075
    if( compact )
        sizes[TEMP][0] = Size(min_size, min_size);
    else
        sizes[TEMP][0] = sizes[INPUT][0];
2076

2077 2078 2079 2080 2081 2082 2083
    if( vector_w )
    {
        if( bits & 256 )
            sizes[TEMP][0] = Size(1, min_size);
        else
            sizes[TEMP][0] = Size(min_size, 1);
    }
2084

2085
    sizes[TEMP][1] = compact ? Size(min_size, m) : Size(m, m);
2086

2087 2088
    if( flags & CV_SVD_U_T )
        CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i );
2089

2090
    sizes[TEMP][2] = compact ? Size(n, min_size) : Size(n, n);
2091

2092 2093
    if( !(flags & CV_SVD_V_T) )
        CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i );
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0];
    types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][0];
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size( b_size.width, n );
}


int Core_SVBkSbTest::prepare_test_case( int test_case_idx )
{
    int code = Base::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        Mat& input = test_mat[INPUT][0];
        cvTsFloodWithZeros( input, ts->get_rng() );
2108

2109 2110 2111 2112 2113 2114
        if( symmetric )
        {
            Mat& temp = test_mat[TEMP][1];
            cvtest::gemm( input, input, 1., Mat(), 0., temp, CV_GEMM_B_T );
            cvtest::copy( temp, input );
        }
2115

2116 2117 2118
        CvMat _input = input;
        cvSVD( &_input, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags );
    }
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    return code;
}


void Core_SVBkSbTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high )
{
    low = cvScalarAll(-2.);
    high = cvScalarAll(2.);
}


double Core_SVBkSbTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
    return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-3 : 1e-7;
}


void Core_SVBkSbTest::run_func()
{
    cvSVBkSb( test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2],
             test_array[INPUT][1], test_array[OUTPUT][0], flags );
}


void Core_SVBkSbTest::prepare_to_validation( int )
{
    Mat& input = test_mat[INPUT][0];
    int i, m = input.rows, n = input.cols, min_size = MIN(m, n);
    bool is_float = input.type() == CV_32F;
    Size w_size = compact ? Size(min_size,min_size) : Size(m,n);
    Mat& w = test_mat[TEMP][0];
    Mat wdb( w_size.height, w_size.width, CV_64FC1 );
    CvMat _w = w, _wdb = wdb;
    // use exactly the same threshold as in icvSVD... ,
    // so the changes in the library and here should be synchronized.
2155
    double threshold = cv::sum(w)[0]*(DBL_EPSILON*2);//(is_float ? FLT_EPSILON*10 : DBL_EPSILON*2);
2156

2157 2158 2159 2160 2161 2162
    wdb = Scalar::all(0);
    for( i = 0; i < min_size; i++ )
    {
        double wii = vector_w ? cvGetReal1D(&_w,i) : cvGetReal2D(&_w,i,i);
        cvSetReal2D( &_wdb, i, i, wii > threshold ? 1./wii : 0. );
    }
2163

2164 2165 2166
    Mat u = test_mat[TEMP][1];
    Mat v = test_mat[TEMP][2];
    Mat b = test_mat[INPUT][1];
2167

2168 2169 2170 2171 2172 2173 2174
    if( is_float )
    {
        test_mat[TEMP][1].convertTo(u, CV_64F);
        test_mat[TEMP][2].convertTo(v, CV_64F);
        if( !b.empty() )
            test_mat[INPUT][1].convertTo(b, CV_64F);
    }
2175

2176
    Mat t0, t1;
2177

2178 2179 2180 2181 2182 2183
    if( !b.empty() )
        cvtest::gemm( u, b, 1., Mat(), 0., t0, !(flags & CV_SVD_U_T) ? CV_GEMM_A_T : 0 );
    else if( flags & CV_SVD_U_T )
        cvtest::copy( u, t0 );
    else
        cvtest::transpose( u, t0 );
2184

2185
    cvtest::gemm( wdb, t0, 1, Mat(), 0, t1, 0 );
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    cvtest::gemm( v, t1, 1, Mat(), 0, t0, flags & CV_SVD_V_T ? CV_GEMM_A_T : 0 );
    Mat& dst0 = test_mat[REF_OUTPUT][0];
    t0.convertTo(dst0, dst0.type() );
}


typedef std::complex<double> complex_type;

struct pred_complex
{
    bool operator() (const complex_type& lhs, const complex_type& rhs) const
    {
        return fabs(lhs.real() - rhs.real()) > fabs(rhs.real())*FLT_EPSILON ? lhs.real() < rhs.real() : lhs.imag() < rhs.imag();
    }
};

struct pred_double
{
    bool operator() (const double& lhs, const double& rhs) const
    {
        return lhs < rhs;
    }
};

class Core_SolvePolyTest : public cvtest::BaseTest
{
public:
    Core_SolvePolyTest();
    ~Core_SolvePolyTest();
protected:
    virtual void run( int start_from );
};

Core_SolvePolyTest::Core_SolvePolyTest() {}

Core_SolvePolyTest::~Core_SolvePolyTest() {}

void Core_SolvePolyTest::run( int )
{
    RNG& rng = ts->get_rng();
    int fig = 100;
    double range = 50;
    double err_eps = 1e-4;
2230

2231 2232 2233 2234 2235 2236
    for (int idx = 0, max_idx = 1000, progress = 0; idx < max_idx; ++idx)
    {
        progress = update_progress(progress, idx-1, max_idx, 0);
        int n = cvtest::randInt(rng) % 13 + 1;
        std::vector<complex_type> r(n), ar(n), c(n + 1, 0);
        std::vector<double> a(n + 1), u(n * 2), ar1(n), ar2(n);
2237

2238 2239 2240 2241
        int rr_odds = 3; // odds that we get a real root
        for (int j = 0; j < n;)
        {
            if (cvtest::randInt(rng) % rr_odds == 0 || j == n - 1)
2242
                r[j++] = cvtest::randReal(rng) * range;
2243 2244
            else
            {
2245
                r[j] = complex_type(cvtest::randReal(rng) * range,
2246
                                    cvtest::randReal(rng) * range + 1);
2247 2248
                r[j + 1] = std::conj(r[j]);
                j += 2;
2249 2250
            }
        }
2251

2252 2253 2254 2255 2256 2257 2258 2259
        for (int j = 0, k = 1 << n, jj, kk; j < k; ++j)
        {
            int p = 0;
            complex_type v(1);
            for (jj = 0, kk = 1; jj < n && !(j & kk); ++jj, ++p, kk <<= 1)
                ;
            for (; jj < n; ++jj, kk <<= 1)
            {
2260 2261 2262 2263
                if (j & kk)
                    v *= -r[jj];
                else
                    ++p;
2264 2265 2266
            }
            c[p] += v;
        }
2267

2268 2269 2270 2271 2272 2273
        bool pass = false;
        double div = 0, s = 0;
        int cubic_case = idx & 1;
        for (int maxiter = 100; !pass && maxiter < 10000; maxiter *= 2, cubic_case = (cubic_case + 1) % 2)
        {
            for (int j = 0; j < n + 1; ++j)
2274 2275
                a[j] = c[j].real();

2276 2277 2278 2279
            CvMat amat, umat;
            cvInitMatHeader(&amat, n + 1, 1, CV_64FC1, &a[0]);
            cvInitMatHeader(&umat, n, 1, CV_64FC2, &u[0]);
            cvSolvePoly(&amat, &umat, maxiter, fig);
2280

2281
            for (int j = 0; j < n; ++j)
2282 2283
                ar[j] = complex_type(u[j * 2], u[j * 2 + 1]);

2284 2285
            std::sort(r.begin(), r.end(), pred_complex());
            std::sort(ar.begin(), ar.end(), pred_complex());
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
            pass = true;
            if( n == 3 )
            {
                ar2.resize(n);
                cv::Mat _umat2(3, 1, CV_64F, &ar2[0]), umat2 = _umat2;
                cvFlip(&amat, &amat, 0);
                int nr2;
                if( cubic_case == 0 )
                    nr2 = cv::solveCubic(cv::Mat(&amat),umat2);
                else
                    nr2 = cv::solveCubic(cv::Mat_<float>(cv::Mat(&amat)), umat2);
                cvFlip(&amat, &amat, 0);
                if(nr2 > 0)
                    std::sort(ar2.begin(), ar2.begin()+nr2, pred_double());
                ar2.resize(nr2);
2302

2303 2304 2305 2306
                int nr1 = 0;
                for(int j = 0; j < n; j++)
                    if( fabs(r[j].imag()) < DBL_EPSILON )
                        ar1[nr1++] = r[j].real();
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
                pass = pass && nr1 == nr2;
                if( nr2 > 0 )
                {
                    div = s = 0;
                    for(int j = 0; j < nr1; j++)
                    {
                        s += fabs(ar1[j]);
                        div += fabs(ar1[j] - ar2[j]);
                    }
                    div /= s;
                    pass = pass && div < err_eps;
                }
            }
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330
            div = s = 0;
            for (int j = 0; j < n; ++j)
            {
                s += fabs(r[j].real()) + fabs(r[j].imag());
                div += sqrt(pow(r[j].real() - ar[j].real(), 2) + pow(r[j].imag() - ar[j].imag(), 2));
            }
            div /= s;
            pass = pass && div < err_eps;
        }
2331

2332 2333 2334 2335
        if (!pass)
        {
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            ts->printf( cvtest::TS::LOG, "too big diff = %g\n", div );
2336

2337 2338 2339
            for (size_t j=0;j<ar2.size();++j)
                ts->printf( cvtest::TS::LOG, "ar2[%d]=%g\n", j, ar2[j]);
            ts->printf(cvtest::TS::LOG, "\n");
2340

2341
            for (size_t j=0;j<r.size();++j)
2342
                ts->printf( cvtest::TS::LOG, "r[%d]=(%g, %g)\n", j, r[j].real(), r[j].imag());
2343 2344
            ts->printf( cvtest::TS::LOG, "\n" );
            for (size_t j=0;j<ar.size();++j)
2345
                ts->printf( cvtest::TS::LOG, "ar[%d]=(%g, %g)\n", j, ar[j].real(), ar[j].imag());
2346 2347 2348 2349 2350
            break;
        }
    }
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
class Core_CheckRange_Empty : public cvtest::BaseTest
{
public:
    Core_CheckRange_Empty(){}
    ~Core_CheckRange_Empty(){}
protected:
    virtual void run( int start_from );
};

void Core_CheckRange_Empty::run( int )
{
    cv::Mat m;
    ASSERT_TRUE( cv::checkRange(m) );
}

TEST(Core_CheckRange_Empty, accuracy) { Core_CheckRange_Empty test; test.safe_run(); }

class Core_CheckRange_INT_MAX : public cvtest::BaseTest
{
public:
    Core_CheckRange_INT_MAX(){}
    ~Core_CheckRange_INT_MAX(){}
protected:
    virtual void run( int start_from );
};

void Core_CheckRange_INT_MAX::run( int )
{
    cv::Mat m(3, 3, CV_32SC1, cv::Scalar(INT_MAX));
    ASSERT_FALSE( cv::checkRange(m, true, 0, 0, INT_MAX) );
    ASSERT_TRUE( cv::checkRange(m) );
}

TEST(Core_CheckRange_INT_MAX, accuracy) { Core_CheckRange_INT_MAX test; test.safe_run(); }

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
template <typename T> class Core_CheckRange : public testing::Test {};

TYPED_TEST_CASE_P(Core_CheckRange);

TYPED_TEST_P(Core_CheckRange, Negative)
{
    double min_bound = 4.5;
    double max_bound = 16.0;

    TypeParam data[] = {5, 10, 15, 4, 10 ,2, 8, 12, 14};
Marina Kolpakova's avatar
Marina Kolpakova committed
2396
    cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data);
2397

2398
    cv::Point* bad_pt = new cv::Point(0, 0);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

    ASSERT_FALSE(checkRange(src, true, bad_pt, min_bound, max_bound));
    ASSERT_EQ(bad_pt->x,0);
    ASSERT_EQ(bad_pt->y,1);

    delete bad_pt;
}

TYPED_TEST_P(Core_CheckRange, Positive)
{
    double min_bound = -1;
    double max_bound = 16.0;

    TypeParam data[] = {5, 10, 15, 4, 10 ,2, 8, 12, 14};
Marina Kolpakova's avatar
Marina Kolpakova committed
2413
    cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data);
2414

2415
    cv::Point* bad_pt = new cv::Point(0, 0);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

    ASSERT_TRUE(checkRange(src, true, bad_pt, min_bound, max_bound));
    ASSERT_EQ(bad_pt->x,0);
    ASSERT_EQ(bad_pt->y,0);

    delete bad_pt;
}

TYPED_TEST_P(Core_CheckRange, Bounds)
{
    double min_bound = 24.5;
    double max_bound = 1.0;

    TypeParam data[] = {5, 10, 15, 4, 10 ,2, 8, 12, 14};
Marina Kolpakova's avatar
Marina Kolpakova committed
2430
    cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data);
2431

2432
    cv::Point* bad_pt = new cv::Point(0, 0);
2433 2434 2435 2436 2437 2438 2439 2440

    ASSERT_FALSE(checkRange(src, true, bad_pt, min_bound, max_bound));
    ASSERT_EQ(bad_pt->x,0);
    ASSERT_EQ(bad_pt->y,0);

    delete bad_pt;
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
TYPED_TEST_P(Core_CheckRange, Zero)
{
    double min_bound = 0.0;
    double max_bound = 0.1;

    cv::Mat src = cv::Mat::zeros(3,3, cv::DataDepth<TypeParam>::value);

    ASSERT_TRUE( checkRange(src, true, NULL, min_bound, max_bound) );
}

REGISTER_TYPED_TEST_CASE_P(Core_CheckRange, Negative, Positive, Bounds, Zero);
2452 2453 2454

typedef ::testing::Types<signed char,unsigned char, signed short, unsigned short, signed int> mat_data_types;
INSTANTIATE_TYPED_TEST_CASE_P(Negative_Test, Core_CheckRange, mat_data_types);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
TEST(Core_Invert, small)
{
    cv::Mat a = (cv::Mat_<float>(3,3) << 2.42104644730331, 1.81444796521479, -3.98072565304758, 0, 7.08389214348967e-3, 5.55326770986007e-3, 0,0, 7.44556154284261e-3);
    //cv::randu(a, -1, 1);
    
    cv::Mat b = a.t()*a;
    cv::Mat c, i = Mat_<float>::eye(3, 3);
    cv::invert(b, c, cv::DECOMP_LU); //std::cout << b*c << std::endl;
    ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
    cv::invert(b, c, cv::DECOMP_SVD); //std::cout << b*c << std::endl;
    ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
    cv::invert(b, c, cv::DECOMP_CHOLESKY); //std::cout << b*c << std::endl;
    ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 );
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/////////////////////////////////////////////////////////////////////////////////////////////////////

TEST(Core_CovarMatrix, accuracy) { Core_CovarMatrixTest test; test.safe_run(); }
TEST(Core_CrossProduct, accuracy) { Core_CrossProductTest test; test.safe_run(); }
TEST(Core_Determinant, accuracy) { Core_DetTest test; test.safe_run(); }
TEST(Core_DotProduct, accuracy) { Core_DotProductTest test; test.safe_run(); }
TEST(Core_GEMM, accuracy) { Core_GEMMTest test; test.safe_run(); }
TEST(Core_Invert, accuracy) { Core_InvertTest test; test.safe_run(); }
TEST(Core_Mahalanobis, accuracy) { Core_MahalanobisTest test; test.safe_run(); }
TEST(Core_MulTransposed, accuracy) { Core_MulTransposedTest test; test.safe_run(); }
TEST(Core_Transform, accuracy) { Core_TransformTest test; test.safe_run(); }
TEST(Core_PerspectiveTransform, accuracy) { Core_PerspectiveTransformTest test; test.safe_run(); }
TEST(Core_Pow, accuracy) { Core_PowTest test; test.safe_run(); }
TEST(Core_SolveLinearSystem, accuracy) { Core_SolveTest test; test.safe_run(); }
TEST(Core_SVD, accuracy) { Core_SVDTest test; test.safe_run(); }
TEST(Core_SVBkSb, accuracy) { Core_SVBkSbTest test; test.safe_run(); }
TEST(Core_Trace, accuracy) { Core_TraceTest test; test.safe_run(); }
TEST(Core_SolvePoly, accuracy) { Core_SolvePolyTest test; test.safe_run(); }

// TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)),

2492 2493 2494 2495 2496

class CV_KMeansSingularTest : public cvtest::BaseTest
{
public:
    CV_KMeansSingularTest() {}
2497
    ~CV_KMeansSingularTest() {}
2498 2499 2500
protected:
    void run(int)
    {
2501 2502
        int i, iter = 0, N = 0, N0 = 0, K = 0, dims = 0;
        Mat labels;
2503 2504 2505 2506
        try
        {
            RNG& rng = theRNG();
            const int MAX_DIM=5;
2507 2508
            int MAX_POINTS = 100, maxIter = 100;
            for( iter = 0; iter < maxIter; iter++ )
2509 2510
            {
                ts->update_context(this, iter, true);
2511 2512 2513 2514
                dims = rng.uniform(1, MAX_DIM+1);
                N = rng.uniform(1, MAX_POINTS+1);
                N0 = rng.uniform(1, MAX(N/10, 2));
                K = rng.uniform(1, N+1);
2515

2516
                Mat data0(N0, dims, CV_32F);
2517
                rng.fill(data0, RNG::UNIFORM, -1, 1);
2518

2519
                Mat data(N, dims, CV_32F);
2520
                for( i = 0; i < N; i++ )
2521
                    data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
2522

2523 2524
                kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
                       5, KMEANS_PP_CENTERS);
2525

2526
                Mat hist(K, 1, CV_32S, Scalar(0));
2527
                for( i = 0; i < N; i++ )
2528 2529
                {
                    int l = labels.at<int>(i);
2530
                    CV_Assert(0 <= l && l < K);
2531 2532
                    hist.at<int>(l)++;
                }
2533
                for( i = 0; i < K; i++ )
2534 2535 2536 2537 2538
                    CV_Assert( hist.at<int>(i) != 0 );
            }
        }
        catch(...)
        {
2539 2540 2541 2542
            ts->printf(cvtest::TS::LOG,
                       "context: iteration=%d, N=%d, N0=%d, K=%d\n",
                       iter, N, N0, K);
            std::cout << labels << std::endl;
2543 2544 2545 2546 2547 2548 2549
            ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
        }
    }
};

TEST(Core_KMeans, singular) { CV_KMeansSingularTest test; test.safe_run(); }

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
TEST(CovariationMatrixVectorOfMat, accuracy)
{
    unsigned int col_problem_size = 8, row_problem_size = 8, vector_size = 16;
    cv::Mat src(vector_size, col_problem_size * row_problem_size, CV_32F);
    int singleMatFlags = CV_COVAR_ROWS;

    cv::Mat gold;
    cv::Mat goldMean;
    cv::randu(src,cv::Scalar(-128), cv::Scalar(128));
    cv::calcCovarMatrix(src,gold,goldMean,singleMatFlags,CV_32F);
    std::vector<cv::Mat> srcVec;
    for(size_t i = 0; i < vector_size; i++)
    {
2563
        srcVec.push_back(src.row(static_cast<int>(i)).reshape(0,col_problem_size));
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    }

    cv::Mat actual;
    cv::Mat actualMean;
    cv::calcCovarMatrix(srcVec, actual, actualMean,singleMatFlags,CV_32F);

    cv::Mat diff;
    cv::absdiff(gold, actual, diff);
    cv::Scalar s = cv::sum(diff);
    ASSERT_EQ(s.dot(s), 0.0);

    cv::Mat meanDiff;
    cv::absdiff(goldMean, actualMean.reshape(0,1), meanDiff);
    cv::Scalar sDiff = cv::sum(meanDiff);
    ASSERT_EQ(sDiff.dot(sDiff), 0.0);
}

TEST(CovariationMatrixVectorOfMatWithMean, accuracy)
{
    unsigned int col_problem_size = 8, row_problem_size = 8, vector_size = 16;
    cv::Mat src(vector_size, col_problem_size * row_problem_size, CV_32F);
    int singleMatFlags = CV_COVAR_ROWS | CV_COVAR_USE_AVG;

    cv::Mat gold;
    cv::randu(src,cv::Scalar(-128), cv::Scalar(128));
    cv::Mat goldMean;

    cv::reduce(src,goldMean,0 ,CV_REDUCE_AVG, CV_32F);

    cv::calcCovarMatrix(src,gold,goldMean,singleMatFlags,CV_32F);

    std::vector<cv::Mat> srcVec;
    for(size_t i = 0; i < vector_size; i++)
    {
2598
        srcVec.push_back(src.row(static_cast<int>(i)).reshape(0,col_problem_size));
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    }

    cv::Mat actual;
    cv::Mat actualMean = goldMean.reshape(0, row_problem_size);
    cv::calcCovarMatrix(srcVec, actual, actualMean,singleMatFlags,CV_32F);

    cv::Mat diff;
    cv::absdiff(gold, actual, diff);
    cv::Scalar s = cv::sum(diff);
    ASSERT_EQ(s.dot(s), 0.0);

    cv::Mat meanDiff;
    cv::absdiff(goldMean, actualMean.reshape(0,1), meanDiff);
    cv::Scalar sDiff = cv::sum(meanDiff);
    ASSERT_EQ(sDiff.dot(sDiff), 0.0);
}

2616 2617
/* End of file. */