ImathMatrixAlgo.h 38.5 KB
Newer Older
1 2 3 4
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
5
//
6
// All rights reserved.
7
//
8 9 10 11 12 13 14 15 16 17 18
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
19 20
// from this software without specific prior written permission.
//
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////


#ifndef INCLUDED_IMATHMATRIXALGO_H
#define INCLUDED_IMATHMATRIXALGO_H

//-------------------------------------------------------------------------
//
//      This file contains algorithms applied to or in conjunction with
//	transformation matrices (Imath::Matrix33 and Imath::Matrix44).
//	The assumption made is that these functions are called much less
//	often than the basic point functions or these functions require
//	more support classes.
//
//	This file also defines a few predefined constant matrices.
//
//-------------------------------------------------------------------------

#include "ImathMatrix.h"
#include "ImathQuat.h"
#include "ImathEuler.h"
#include "ImathExc.h"
#include "ImathVec.h"
#include "ImathLimits.h"
#include <math.h>


#ifdef OPENEXR_DLL
    #ifdef IMATH_EXPORTS
        #define IMATH_EXPORT_CONST extern __declspec(dllexport)
    #else
64
    #define IMATH_EXPORT_CONST extern __declspec(dllimport)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    #endif
#else
    #define IMATH_EXPORT_CONST extern const
#endif


namespace Imath {

//------------------
// Identity matrices
//------------------

IMATH_EXPORT_CONST M33f identity33f;
IMATH_EXPORT_CONST M44f identity44f;
IMATH_EXPORT_CONST M33d identity33d;
IMATH_EXPORT_CONST M44d identity44d;

//----------------------------------------------------------------------
// Extract scale, shear, rotation, and translation values from a matrix:
84
//
85 86 87
// Notes:
//
// This implementation follows the technique described in the paper by
88
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
// Matrix into Simple Transformations", p. 320.
//
// - Some of the functions below have an optional exc parameter
//   that determines the functions' behavior when the matrix'
//   scaling is very close to zero:
//
//   If exc is true, the functions throw an Imath::ZeroScale exception.
//
//   If exc is false:
//
//      extractScaling (m, s)            returns false, s is invalid
//	sansScaling (m)		         returns m
//	removeScaling (m)	         returns false, m is unchanged
//      sansScalingAndShear (m)          returns m
//      removeScalingAndShear (m)        returns false, m is unchanged
104 105
//      extractAndRemoveScalingAndShear (m, s, h)
//                                       returns false, m is unchanged,
106 107 108 109
//                                                      (sh) are invalid
//      checkForZeroScaleInRow ()        returns false
//	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
//
110 111 112 113 114
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
//   assume that the matrix does not include shear or non-uniform scaling,
//   but they do not examine the matrix to verify this assumption.
//   Matrices with shear or non-uniform scaling are likely to produce
//   meaningless results.  Therefore, you should use the
115 116 117 118
//   removeScalingAndShear() routine, if necessary, prior to calling
//   extractEuler...() .
//
// - All functions assume that the matrix does not include perspective
119 120
//   transformation(s), but they do not examine the matrix to verify
//   this assumption.  Matrices with perspective transformations are
121 122 123 124 125 126 127 128 129
//   likely to produce meaningless results.
//
//----------------------------------------------------------------------


//
// Declarations for 4x4 matrix.
//

130
template <class T>  bool        extractScaling
131
                                            (const Matrix44<T> &mat,
132 133
                         Vec3<T> &scl,
                         bool exc = true);
134

135 136 137 138 139 140 141 142 143 144 145 146
template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat,
                         bool exc = true);

template <class T>  bool        removeScaling
                                            (Matrix44<T> &mat,
                         bool exc = true);

template <class T>  bool        extractScalingAndShear
                                            (const Matrix44<T> &mat,
                         Vec3<T> &scl,
                         Vec3<T> &shr,
                         bool exc = true);
147

148
template <class T>  Matrix44<T> sansScalingAndShear
149
                                            (const Matrix44<T> &mat,
150 151 152
                         bool exc = true);

template <class T>  void        sansScalingAndShear
153
                                            (Matrix44<T> &result,
154 155
                                             const Matrix44<T> &mat,
                         bool exc = true);
156

157
template <class T>  bool        removeScalingAndShear
158
                                            (Matrix44<T> &mat,
159
                         bool exc = true);
160 161 162

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix44<T> &mat,
163 164 165
                         Vec3<T>     &scl,
                         Vec3<T>     &shr,
                         bool exc = true);
166

167
template <class T>  void	extractEulerXYZ
168
                                            (const Matrix44<T> &mat,
169
                         Vec3<T> &rot);
170

171
template <class T>  void	extractEulerZYX
172
                                            (const Matrix44<T> &mat,
173
                         Vec3<T> &rot);
174 175 176

template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);

177
template <class T>  bool	extractSHRT
178
                                    (const Matrix44<T> &mat,
179 180 181 182 183 184 185 186
                     Vec3<T> &s,
                     Vec3<T> &h,
                     Vec3<T> &r,
                     Vec3<T> &t,
                     bool exc /*= true*/,
                     typename Euler<T>::Order rOrder);

template <class T>  bool	extractSHRT
187
                                    (const Matrix44<T> &mat,
188 189 190 191 192
                     Vec3<T> &s,
                     Vec3<T> &h,
                     Vec3<T> &r,
                     Vec3<T> &t,
                     bool exc = true);
193

194
template <class T>  bool	extractSHRT
195
                                    (const Matrix44<T> &mat,
196 197 198 199 200
                     Vec3<T> &s,
                     Vec3<T> &h,
                     Euler<T> &r,
                     Vec3<T> &t,
                     bool exc = true);
201 202 203 204 205 206

//
// Internal utility function.
//

template <class T>  bool	checkForZeroScaleInRow
207 208 209
                                            (const T       &scl,
                         const Vec3<T> &row,
                         bool exc = true);
210 211 212 213 214 215 216 217 218 219 220 221

template <class T>  Matrix44<T> outerProduct
                                            ( const Vec4<T> &a,
                                              const Vec4<T> &b);


//
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
// vector.
//

template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
222
                        const Vec3<T> &toDirection);
223 224 225 226



//
227 228 229
// Returns a matrix that rotates the "fromDir" vector
// so that it points towards "toDir".  You may also
// specify that you want the up vector to be pointing
230 231 232
// in a certain direction "upDir".
//

233
template <class T> Matrix44<T>	rotationMatrixWithUpDir
234
                                            (const Vec3<T> &fromDir,
235 236
                         const Vec3<T> &toDir,
                         const Vec3<T> &upDir);
237 238 239


//
240 241 242
// Constructs a matrix that rotates the z-axis so that it
// points towards "targetDir".  You must also specify
// that you want the up vector to be pointing in a
243 244 245
// certain direction "upDir".
//
// Notes: The following degenerate cases are handled:
246
//        (a) when the directions given by "toDir" and "upDir"
247 248 249 250 251
//            are parallel or opposite;
//            (the direction vectors must have a non-zero cross product)
//        (b) when any of the given direction vectors have zero length
//

252
template <class T> void	alignZAxisWithTargetDir
253
                                            (Matrix44<T> &result,
254 255
                                             Vec3<T>      targetDir,
                         Vec3<T>      upDir);
256 257 258 259


// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
260
// Inputs are :
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
//     -the position of the frame
//     -the x axis direction of the frame
//     -a normal to the y axis of the frame
// Return is the orthonormal frame
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
                                                  const Vec3<T>& xDir,
                                                  const Vec3<T>& normal);

// Add a translate/rotate/scale offset to an input frame
// and put it in another frame of reference
// Inputs are :
//     - input frame
//     - translate offset
//     - rotate    offset in degrees
//     - scale     offset
//     - frame of reference
// Output is the offsetted frame
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
                                          const Vec3<T>&     tOffset,
                                          const Vec3<T>&     rOffset,
                                          const Vec3<T>&     sOffset,
                                          const Vec3<T>&     ref);

// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
// Inputs are :
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
//      -Matrix A
//      -Matrix B
// Return Matrix A with tweaked rotation/scale
template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
292
                                                bool               keepScaleA,
293 294 295 296 297 298 299
                                                const Matrix44<T>& A,
                                                const Matrix44<T>& B);


//----------------------------------------------------------------------


300
//
301 302 303
// Declarations for 3x3 matrix.
//

304 305

template <class T>  bool        extractScaling
306
                                            (const Matrix33<T> &mat,
307 308
                         Vec2<T> &scl,
                         bool exc = true);
309

310 311 312 313 314 315 316 317 318 319 320 321
template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat,
                         bool exc = true);

template <class T>  bool        removeScaling
                                            (Matrix33<T> &mat,
                         bool exc = true);

template <class T>  bool        extractScalingAndShear
                                            (const Matrix33<T> &mat,
                         Vec2<T> &scl,
                         T &h,
                         bool exc = true);
322

323
template <class T>  Matrix33<T> sansScalingAndShear
324
                                            (const Matrix33<T> &mat,
325 326 327
                         bool exc = true);

template <class T>  bool        removeScalingAndShear
328
                                            (Matrix33<T> &mat,
329
                         bool exc = true);
330 331 332

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix33<T> &mat,
333 334 335
                         Vec2<T>     &scl,
                         T           &shr,
                         bool exc = true);
336 337 338

template <class T>  void	extractEuler
                                            (const Matrix33<T> &mat,
339
                         T       &rot);
340 341

template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
342 343 344 345 346
                         Vec2<T> &s,
                         T       &h,
                         T       &r,
                         Vec2<T> &t,
                         bool exc = true);
347 348

template <class T>  bool	checkForZeroScaleInRow
349 350 351
                                            (const T       &scl,
                         const Vec2<T> &row,
                         bool exc = true);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

template <class T>  Matrix33<T> outerProduct
                                            ( const Vec3<T> &a,
                                              const Vec3<T> &b);


//-----------------------------------------------------------------------------
// Implementation for 4x4 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
{
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
371 372
    return false;

373 374 375 376 377 378 379 380 381 382 383 384 385 386
    return true;
}


template <class T>
Matrix44<T>
sansScaling (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
387
    return mat;
388 389

    Matrix44<T> M;
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
409
    return false;
410 411 412 413 414 415 416 417 418 419 420 421

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
422 423
extractScalingAndShear (const Matrix44<T> &mat,
            Vec3<T> &scl, Vec3<T> &shr, bool exc)
424 425 426 427
{
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
428 429
    return false;

430 431 432 433 434 435 436 437 438 439 440 441 442
    return true;
}


template <class T>
Matrix44<T>
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
443 444
    return mat;

445 446 447 448 449 450 451 452 453 454 455 456
    return M;
}


template <class T>
void
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;

    if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
457
    result = mat;
458 459 460 461 462 463 464 465 466 467 468
}


template <class T>
bool
removeScalingAndShear (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
469 470
    return false;

471 472 473 474 475 476
    return true;
}


template <class T>
bool
477 478
extractAndRemoveScalingAndShear (Matrix44<T> &mat,
                 Vec3<T> &scl, Vec3<T> &shr, bool exc)
479 480 481
{
    //
    // This implementation follows the technique described in the paper by
482
    // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
483 484 485 486 487 488 489 490
    // Matrix into Simple Transformations", p. 320.
    //

    Vec3<T> row[3];

    row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
    row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
    row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
491

492 493
    T maxVal = 0;
    for (int i=0; i < 3; i++)
494 495 496
    for (int j=0; j < 3; j++)
        if (Imath::abs (row[i][j]) > maxVal)
        maxVal = Imath::abs (row[i][j]);
497 498 499 500 501

    //
    // We normalize the 3x3 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 3x3 matrix's coefficients are very
502 503
    // close to zero; we correct for this step at the end by multiplying the
    // scaling factors by maxVal at the end (shear and rotation are not
504 505 506 507
    // affected by the normalization).

    if (maxVal != 0)
    {
508 509 510 511 512
    for (int i=0; i < 3; i++)
        if (! checkForZeroScaleInRow (maxVal, row[i], exc))
        return false;
        else
        row[i] /= maxVal;
513 514
    }

515
    // Compute X scale factor.
516 517
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
518
    return false;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
    // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
    // extract the first 3 because we can effect the last 3 by shearing in
    // XY, XZ, YZ combined rotations and scales.
    //
    // shear matrix <   1,  YX,  ZX,  0,
    //                 XY,   1,  ZY,  0,
    //                 XZ,  YZ,   1,  0,
    //                  0,   0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr[0]  = row[0].dot (row[1]);
    row[1] -= shr[0] * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
540
    return false;
541 542

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
543
    row[1] /= scl.y;
544 545 546 547 548 549 550 551 552 553 554
    shr[0] /= scl.y;

    // Compute XZ and YZ shears, orthogonalize 3rd row.
    shr[1]  = row[0].dot (row[2]);
    row[2] -= shr[1] * row[0];
    shr[2]  = row[1].dot (row[2]);
    row[2] -= shr[2] * row[1];

    // Next, get Z scale.
    scl.z = row[2].length ();
    if (! checkForZeroScaleInRow (scl.z, row[2], exc))
555
    return false;
556 557 558 559 560 561 562 563 564 565

    // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
    row[2] /= scl.z;
    shr[1] /= scl.z;
    shr[2] /= scl.z;

    // At this point, the upper 3x3 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
    // is less than zero, then negate the matrix and the scaling factors.
    if (row[0].dot (row[1].cross (row[2])) < 0)
566 567 568 569 570
    for (int  i=0; i < 3; i++)
    {
        scl[i] *= -1;
        row[i] *= -1;
    }
571 572 573 574 575

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 3x3 matrix in mat is now a rotation matrix.
    for (int i=0; i < 3; i++)
    {
576 577 578
    mat[i][0] = row[i][0];
    mat[i][1] = row[i][1];
    mat[i][2] = row[i][2];
579 580
    }

581 582
    // Correct the scaling factors for the normalization step that we
    // performed above; shear and rotation are not affected by the
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    // normalization.
    scl *= maxVal;

    return true;
}


template <class T>
void
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

606 607 608 609
    Matrix44<T> M (i[0], i[1], i[2], 0,
           j[0], j[1], j[2], 0,
           k[0], k[1], k[2], 0,
           0,    0,    0,    1);
610 611 612

    //
    // Extract the first angle, rot.x.
613
    //
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    rot.x = Math<T>::atan2 (M[1][2], M[2][2]);

    //
    // Remove the rot.x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (-rot.x, 0, 0));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
    rot.y = Math<T>::atan2 (-N[0][2], cy);
    rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
}


template <class T>
void
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

653 654 655 656
    Matrix44<T> M (i[0], i[1], i[2], 0,
           j[0], j[1], j[2], 0,
           k[0], k[1], k[2], 0,
           0,    0,    0,    1);
657 658 659

    //
    // Extract the first angle, rot.x.
660
    //
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

    rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);

    //
    // Remove the x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (0, 0, -rot.x));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
    rot.y = -Math<T>::atan2 (-N[2][0], cy);
    rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
}


template <class T>
Quat<T>
extractQuat (const Matrix44<T> &mat)
{
  Matrix44<T> rot;

  T        tr, s;
  T         q[4];
  int    i, j, k;
  Quat<T>   quat;

  int nxt[3] = {1, 2, 0};
  tr = mat[0][0] + mat[1][1] + mat[2][2];

  // check the diagonal
  if (tr > 0.0) {
     s = Math<T>::sqrt (tr + T(1.0));
     quat.r = s / T(2.0);
     s = T(0.5) / s;

     quat.v.x = (mat[1][2] - mat[2][1]) * s;
     quat.v.y = (mat[2][0] - mat[0][2]) * s;
     quat.v.z = (mat[0][1] - mat[1][0]) * s;
707 708
  }
  else {
709 710
     // diagonal is negative
     i = 0;
711
     if (mat[1][1] > mat[0][0])
712
        i=1;
713
     if (mat[2][2] > mat[i][i])
714
        i=2;
715

716 717 718
     j = nxt[i];
     k = nxt[j];
     s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
719

720
     q[i] = s * T(0.5);
721
     if (s != T(0.0))
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        s = T(0.5) / s;

     q[3] = (mat[j][k] - mat[k][j]) * s;
     q[j] = (mat[i][j] + mat[j][i]) * s;
     q[k] = (mat[i][k] + mat[k][i]) * s;

     quat.v.x = q[0];
     quat.v.y = q[1];
     quat.v.z = q[2];
     quat.r = q[3];
 }

  return quat;
}

template <class T>
738
bool
739
extractSHRT (const Matrix44<T> &mat,
740 741 742 743 744 745
         Vec3<T> &s,
         Vec3<T> &h,
         Vec3<T> &r,
         Vec3<T> &t,
         bool exc /* = true */ ,
         typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
746 747 748 749 750
{
    Matrix44<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
751
    return false;
752 753 754 755 756 757 758 759 760

    extractEulerXYZ (rot, r);

    t.x = mat[3][0];
    t.y = mat[3][1];
    t.z = mat[3][2];

    if (rOrder != Euler<T>::XYZ)
    {
761 762 763
    Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
    Imath::Euler<T> e (eXYZ, rOrder);
    r = e.toXYZVector ();
764 765 766 767 768 769
    }

    return true;
}

template <class T>
770
bool
771
extractSHRT (const Matrix44<T> &mat,
772 773 774 775 776
         Vec3<T> &s,
         Vec3<T> &h,
         Vec3<T> &r,
         Vec3<T> &t,
         bool exc)
777 778 779 780 781
{
    return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
}

template <class T>
782
bool
783
extractSHRT (const Matrix44<T> &mat,
784 785 786 787 788
         Vec3<T> &s,
         Vec3<T> &h,
         Euler<T> &r,
         Vec3<T> &t,
         bool exc /* = true */)
789 790 791 792 793
{
    return extractSHRT (mat, s, h, r, t, exc, r.order ());
}


794 795 796 797 798
template <class T>
bool
checkForZeroScaleInRow (const T& scl,
            const Vec3<T> &row,
            bool exc /* = true */ )
799 800 801
{
    for (int i = 0; i < 3; i++)
    {
802 803 804 805 806 807 808 809
    if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
    {
        if (exc)
        throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
                       "from matrix.");
        else
        return false;
    }
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    }

    return true;
}

template <class T>
Matrix44<T>
outerProduct (const Vec4<T> &a, const Vec4<T> &b )
{
    return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
                        a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
                        a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
                        a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
}

template <class T>
Matrix44<T>
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
{
    Quat<T> q;
    q.setRotation(from, to);
    return q.toMatrix44();
}


template <class T>
836
Matrix44<T>
837
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
838 839
             const Vec3<T> &toDir,
             const Vec3<T> &upDir)
840 841
{
    //
842 843 844
    // The goal is to obtain a rotation matrix that takes
    // "fromDir" to "toDir".  We do this in two steps and
    // compose the resulting rotation matrices;
845 846 847 848 849 850
    //    (a) rotate "fromDir" into the z-axis
    //    (b) rotate the z-axis into "toDir"
    //

    // The from direction must be non-zero; but we allow zero to and up dirs.
    if (fromDir.length () == 0)
851
    return Matrix44<T> ();
852 853 854

    else
    {
855 856
    Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED );
    alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
857

858
    Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
859

860 861 862 863
    Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED );
    alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);

    return fromDir2zAxis * zAxis2ToDir;
864 865 866 867 868 869 870 871 872 873 874 875 876
    }
}


template <class T>
void
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
{
    //
    // Ensure that the target direction is non-zero.
    //

    if ( targetDir.length () == 0 )
877
    targetDir = Vec3<T> (0, 0, 1);
878 879 880 881 882 883

    //
    // Ensure that the up direction is non-zero.
    //

    if ( upDir.length () == 0 )
884
    upDir = Vec3<T> (0, 1, 0);
885 886

    //
887
    // Check for degeneracies.  If the upDir and targetDir are parallel
888 889 890 891 892 893
    // or opposite, then compute a new, arbitrary up direction that is
    // not parallel or opposite to the targetDir.
    //

    if (upDir.cross (targetDir).length () == 0)
    {
894 895 896
    upDir = targetDir.cross (Vec3<T> (1, 0, 0));
    if (upDir.length() == 0)
        upDir = targetDir.cross(Vec3<T> (0, 0, 1));
897 898 899 900 901 902
    }

    //
    // Compute the x-, y-, and z-axis vectors of the new coordinate system.
    //

903
    Vec3<T> targetPerpDir = upDir.cross (targetDir);
904
    Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
905

906 907 908 909 910
    //
    // Rotate the x-axis into targetPerpDir (row 0),
    // rotate the y-axis into targetUpDir   (row 1),
    // rotate the z-axis into targetDir     (row 2).
    //
911

912 913 914 915
    Vec3<T> row[3];
    row[0] = targetPerpDir.normalized ();
    row[1] = targetUpDir  .normalized ();
    row[2] = targetDir    .normalized ();
916

917 918 919 920
    result.x[0][0] = row[0][0];
    result.x[0][1] = row[0][1];
    result.x[0][2] = row[0][2];
    result.x[0][3] = (T)0;
921

922 923 924 925
    result.x[1][0] = row[1][0];
    result.x[1][1] = row[1][1];
    result.x[1][2] = row[1][2];
    result.x[1][3] = (T)0;
926

927 928 929 930
    result.x[2][0] = row[2][0];
    result.x[2][1] = row[2][1];
    result.x[2][2] = row[2][2];
    result.x[2][3] = (T)0;
931

932 933 934 935 936 937 938 939 940
    result.x[3][0] = (T)0;
    result.x[3][1] = (T)0;
    result.x[3][2] = (T)0;
    result.x[3][3] = (T)1;
}


// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
941
// Inputs are :
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
//     -the position of the frame
//     -the x axis direction of the frame
//     -a normal to the y axis of the frame
// Return is the orthonormal frame
template <class T>
Matrix44<T>
computeLocalFrame( const Vec3<T>& p,
                   const Vec3<T>& xDir,
                   const Vec3<T>& normal)
{
    Vec3<T> _xDir(xDir);
    Vec3<T> x = _xDir.normalize();
    Vec3<T> y = (normal % x).normalize();
    Vec3<T> z = (x % y).normalize();

    Matrix44<T> L;
    L[0][0] = x[0];
    L[0][1] = x[1];
    L[0][2] = x[2];
    L[0][3] = 0.0;

    L[1][0] = y[0];
    L[1][1] = y[1];
    L[1][2] = y[2];
    L[1][3] = 0.0;

    L[2][0] = z[0];
    L[2][1] = z[1];
    L[2][2] = z[2];
    L[2][3] = 0.0;

    L[3][0] = p[0];
    L[3][1] = p[1];
    L[3][2] = p[2];
    L[3][3] = 1.0;
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    return L;
}

// Add a translate/rotate/scale offset to an input frame
// and put it in another frame of reference
// Inputs are :
//     - input frame
//     - translate offset
//     - rotate    offset in degrees
//     - scale     offset
//     - frame of reference
// Output is the offsetted frame
template <class T>
Matrix44<T>
addOffset( const Matrix44<T>& inMat,
           const Vec3<T>&     tOffset,
           const Vec3<T>&     rOffset,
           const Vec3<T>&     sOffset,
           const Matrix44<T>& ref)
{
    Matrix44<T> O;

    Vec3<T> _rOffset(rOffset);
    _rOffset *= M_PI / 180.0;
    O.rotate (_rOffset);

    O[3][0] = tOffset[0];
    O[3][1] = tOffset[1];
    O[3][2] = tOffset[2];

    Matrix44<T> S;
    S.scale (sOffset);

    Matrix44<T> X = S * O * inMat * ref;

    return X;
}

// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
// Inputs are :
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
//      -Matrix A
//      -Matrix B
// Return Matrix A with tweaked rotation/scale
template <class T>
Matrix44<T>
computeRSMatrix( bool               keepRotateA,
1026 1027
                 bool               keepScaleA,
                 const Matrix44<T>& A,
1028 1029 1030 1031
                 const Matrix44<T>& B)
{
    Vec3<T> as, ah, ar, at;
    extractSHRT (A, as, ah, ar, at);
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    Vec3<T> bs, bh, br, bt;
    extractSHRT (B, bs, bh, br, bt);

    if (!keepRotateA)
        ar = br;

    if (!keepScaleA)
        as = bs;

    Matrix44<T> mat;
    mat.makeIdentity();
    mat.translate (at);
    mat.rotate (ar);
    mat.scale (as);
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    return mat;
}



//-----------------------------------------------------------------------------
// Implementation for 3x3 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
{
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1066
    return false;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

    return true;
}


template <class T>
Matrix33<T>
sansScaling (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1082
    return mat;
1083 1084

    Matrix33<T> M;
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1104
    return false;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
{
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1122
    return false;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

    return true;
}


template <class T>
Matrix33<T>
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1137 1138
    return mat;

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    return M;
}


template <class T>
bool
removeScalingAndShear (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
1151 1152
    return false;

1153 1154 1155 1156 1157
    return true;
}

template <class T>
bool
1158 1159
extractAndRemoveScalingAndShear (Matrix33<T> &mat,
                 Vec2<T> &scl, T &shr, bool exc)
1160 1161 1162 1163 1164
{
    Vec2<T> row[2];

    row[0] = Vec2<T> (mat[0][0], mat[0][1]);
    row[1] = Vec2<T> (mat[1][0], mat[1][1]);
1165

1166 1167
    T maxVal = 0;
    for (int i=0; i < 2; i++)
1168 1169 1170
    for (int j=0; j < 2; j++)
        if (Imath::abs (row[i][j]) > maxVal)
        maxVal = Imath::abs (row[i][j]);
1171 1172 1173 1174 1175

    //
    // We normalize the 2x2 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 2x2 matrix's coefficients are very
1176 1177
    // close to zero; we correct for this step at the end by multiplying the
    // scaling factors by maxVal at the end (shear and rotation are not
1178 1179 1180 1181
    // affected by the normalization).

    if (maxVal != 0)
    {
1182 1183 1184 1185 1186
    for (int i=0; i < 2; i++)
        if (! checkForZeroScaleInRow (maxVal, row[i], exc))
        return false;
        else
        row[i] /= maxVal;
1187 1188
    }

1189
    // Compute X scale factor.
1190 1191
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
1192
    return false;
1193 1194 1195 1196 1197

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
1198 1199
    // There are 2 combinations (XY, YX), although we only extract the XY
    // shear factor because we can effect the an YX shear factor by
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    // shearing in XY combined with rotations and scales.
    //
    // shear matrix <   1,  YX,  0,
    //                 XY,   1,  0,
    //                  0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr     = row[0].dot (row[1]);
    row[1] -= shr * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
1213
    return false;
1214 1215

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
1216
    row[1] /= scl.y;
1217 1218 1219 1220
    shr    /= scl.y;

    // At this point, the upper 2x2 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
1221
    // is -1, then flip the rotation matrix and adjust the scale(Y)
1222 1223 1224
    // and shear(XY) factors to compensate.
    if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
    {
1225 1226 1227 1228
    row[1][0] *= -1;
    row[1][1] *= -1;
    scl[1] *= -1;
    shr *= -1;
1229 1230 1231 1232 1233 1234
    }

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 2x2 matrix in mat is now a rotation matrix.
    for (int i=0; i < 2; i++)
    {
1235 1236
    mat[i][0] = row[i][0];
    mat[i][1] = row[i][1];
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    }

    scl *= maxVal;

    return true;
}


template <class T>
void
extractEuler (const Matrix33<T> &mat, T &rot)
{
    //
    // Normalize the local x and y axes to remove scaling.
    //

    Vec2<T> i (mat[0][0], mat[0][1]);
    Vec2<T> j (mat[1][0], mat[1][1]);

    i.normalize();
    j.normalize();

    //
    // Extract the angle, rot.
1261
    //
1262 1263 1264 1265 1266 1267

    rot = - Math<T>::atan2 (j[0], i[0]);
}


template <class T>
1268
bool
1269
extractSHRT (const Matrix33<T> &mat,
1270 1271 1272 1273 1274
         Vec2<T> &s,
         T       &h,
         T       &r,
         Vec2<T> &t,
         bool    exc)
1275 1276 1277 1278 1279
{
    Matrix33<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
1280
    return false;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    extractEuler (rot, r);

    t.x = mat[2][0];
    t.y = mat[2][1];

    return true;
}


1291 1292 1293 1294 1295
template <class T>
bool
checkForZeroScaleInRow (const T& scl,
            const Vec2<T> &row,
            bool exc /* = true */ )
1296 1297 1298
{
    for (int i = 0; i < 2; i++)
    {
1299 1300 1301 1302 1303 1304 1305 1306
    if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
    {
        if (exc)
        throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
                       "from matrix.");
        else
        return false;
    }
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    }

    return true;
}


template <class T>
Matrix33<T>
outerProduct (const Vec3<T> &a, const Vec3<T> &b )
{
    return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
                        a.y*b.x, a.y*b.y, a.y*b.z,
                        a.z*b.x, a.z*b.y, a.z*b.z );
}


// Computes the translation and rotation that brings the 'from' points
1324
// as close as possible to the 'to' points under the Frobenius norm.
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
// To be more specific, let x be the matrix of 'from' points and y be
// the matrix of 'to' points, we want to find the matrix A of the form
//    [ R t ]
//    [ 0 1 ]
// that minimizes
//     || (A*x - y)^T * W * (A*x - y) ||_F
// If doScaling is true, then a uniform scale is allowed also.
template <typename T>
Imath::M44d
procrustesRotationAndTranslation (const Imath::Vec3<T>* A,  // From these
                                  const Imath::Vec3<T>* B,  // To these
1336
                                  const T* weights,
1337 1338 1339 1340 1341 1342
                                  const size_t numPoints,
                                  const bool doScaling = false);

// Unweighted:
template <typename T>
Imath::M44d
1343 1344
procrustesRotationAndTranslation (const Imath::Vec3<T>* A,
                                  const Imath::Vec3<T>* B,
1345 1346 1347 1348 1349 1350
                                  const size_t numPoints,
                                  const bool doScaling = false);

// Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
// should be quite accurate (competitive with LAPACK) even for poorly
// conditioned matrices, and because it has been written specifically for the
1351
// 3x3/4x4 case it is much faster than calling out to LAPACK.
1352 1353 1354 1355 1356 1357 1358 1359
//
// The SVD of a 3x3/4x4 matrix A is defined as follows:
//     A = U * S * V^T
// where S is the diagonal matrix of singular values and both U and V are
// orthonormal.  By convention, the entries S are all positive and sorted from
// the largest to the smallest.  However, some uses of this function may
// require that the matrix U*V^T have positive determinant; in this case, we
// may make the smallest singular value negative to ensure that this is
1360
// satisfied.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
//
// Currently only available for single- and double-precision matrices.
template <typename T>
void
jacobiSVD (const Imath::Matrix33<T>& A,
           Imath::Matrix33<T>& U,
           Imath::Vec3<T>& S,
           Imath::Matrix33<T>& V,
           const T tol = Imath::limits<T>::epsilon(),
           const bool forcePositiveDeterminant = false);

template <typename T>
void
jacobiSVD (const Imath::Matrix44<T>& A,
           Imath::Matrix44<T>& U,
           Imath::Vec4<T>& S,
           Imath::Matrix44<T>& V,
           const T tol = Imath::limits<T>::epsilon(),
           const bool forcePositiveDeterminant = false);

// Compute the eigenvalues (S) and the eigenvectors (V) of
// a real symmetric matrix using Jacobi transformation.
//
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
// 	A = V * S * V^T
// where V is orthonormal and S is the diagonal matrix of eigenvalues.
// Input matrix A must be symmetric. A is also modified during
1388
// the computation so that upper diagonal entries of A become zero.
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
//
template <typename T>
void
jacobiEigenSolver (Matrix33<T>& A,
                   Vec3<T>& S,
                   Matrix33<T>& V,
                   const T tol);

template <typename T>
inline
void
jacobiEigenSolver (Matrix33<T>& A,
                   Vec3<T>& S,
                   Matrix33<T>& V)
{
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
}

template <typename T>
void
jacobiEigenSolver (Matrix44<T>& A,
                   Vec4<T>& S,
                   Matrix44<T>& V,
                   const T tol);

template <typename T>
inline
void
jacobiEigenSolver (Matrix44<T>& A,
                   Vec4<T>& S,
                   Matrix44<T>& V)
{
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
}

// Compute a eigenvector corresponding to the abs max/min eigenvalue
// of a real symmetric matrix using Jacobi transformation.
template <typename TM, typename TV>
void
maxEigenVector (TM& A, TV& S);
template <typename TM, typename TV>
void
minEigenVector (TM& A, TV& S);

} // namespace Imath

#endif